using System; using System.Collections; using System.Collections.Generic; using AlgorithmCollection; //https://zh.wikipedia.org/wiki/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95 namespace AlgorithmCollection.Sorting { // 排序主要关注稳定性和效率 // *稳定性,相同值的元素相对位置在排序前后是否改变 // *效率,时间复杂度和空间复杂度 public static class SortingHelper { // 选择合适的算法排序 public static void Sort(T[] data, bool bDescent = false, bool bStable = false) where T : IComparable, IEquatable { int n = data.Length; } #region 归并排序 // 归并排序 | 稳定 | 分治法 // T(n) = O(nlogn) 渐进最优 // S(n) = O(n) 需要大小为n的额外空间 public static void MergeSort(T[] data, bool descent = false) where T : IComparable, IEquatable { T[] temp = new T[data.Length];// 需要额外的临时空间 _MergeSort(data, 0, data.Length - 1, descent, temp); } // 归并排序,非递归 public static void MergeSort_NoneRecursion(T[] data, bool descent = false) where T : IComparable, IEquatable { T[] temp = new T[data.Length];// 需要额外的临时空间 int s = 1; int n = data.Length; for(int seg = 1; seg < n; seg += seg) //步长1,2,4,8... { for(int start = 0; start < n; start += seg * 2) { int left = start, right = Algorithms.Min(start + seg * 2 - 1, n - 1); int mid = Algorithms.Min(start + seg - 1, n - 1); _Merge(data, left, mid, right, descent, temp); _CopyTo(temp, data, left, right); } } } private static void _MergeSort(T[] data, int left, int right, bool descent, T[] temp) where T : IComparable, IEquatable { // 这是一个O(logn)的分治算法,对于每此分治,会有一个O(n)的合并算法,所以归并排序复杂度是O(nlogn) if (left < right) { int middle = (left + right) / 2; _MergeSort(data, left, middle, descent, temp); _MergeSort(data, middle + 1, right, descent, temp); _Merge(data, left, middle, right, descent, temp);// 把left~right部分合并到temp中 _CopyTo(temp, data, left, right); // 把合并后的temp部分复制回去 } } private static T[] _Merge(T[]data, int left, int middle, int right, bool descent, T[] temp) where T : IComparable, IEquatable { // 这是一个O(n)的合并算法 int l = left, r = middle + 1; int i = 0; while(l <= middle || r <= right) { if(l > middle) { temp[i++] = data[r++]; continue; } if(r > right) { temp[i++] = data[l++]; continue; } if (descent && data[l].CompareTo(data[r]) > 0 || !descent && data[l].CompareTo(data[r]) < 0) { temp[i++] = data[l]; l++; } else { temp[i++] = data[r]; r++; } } return temp; } private static void _CopyTo(T[] src, T[] dst, int from, int to) { for (int i = from; i <= to; ++i) dst[i] = src[i - from]; } #endregion #region 快速排序 // 快速排序 | 不稳定 | 原地排序 | 分治法 // 平均T(n)=O(nlogn),最坏T(n)=O(n²) // S(n)=O(1) public static void QuickSort(T[] data, bool descent = false) where T : IComparable, IEquatable { _QuickSort(data, descent, 0, data.Length - 1); } private static void _QuickSort(T[] data, bool descent, int start, int end) where T : IComparable, IEquatable { if(start < end) { int p = _Partion(data, descent, start, end); _QuickSort(data, descent, start, p - 1); _QuickSort(data, descent, p + 1, end); } } private static int _Partion(T[] data, bool descent, int start, int end) where T : IComparable { T v = data[start]; int i = start; int j = end + 1; while(true) { while ((descent && data[++i].CompareTo(v) >= 0 || !descent && data[++i].CompareTo(v) <= 0) && i < end) ; while ((descent && data[--j].CompareTo(v) <= 0 || !descent && data[--j].CompareTo(v) >= 0) && j > start) ; if (i >= j) break; Algorithms.Swap(ref data, i, j); } Algorithms.Swap(ref data, start, j); return j; } #endregion // 冒泡排序,稳定 // O(n²) public static void BubbleSort(T[] data, bool descent = false) where T : IComparable, IEquatable { int n = data.Length; for(int i = 0; i < n; ++i) { for(int j = 0; j < n - i - 1; ++j) { if (descent && data[j].CompareTo(data[j + 1]) < 0 || !descent && data[j].CompareTo(data[j + 1]) > 0) { Algorithms.Swap(ref data, j, j + 1); } } } } } }