C++RAW #include "UnityPrefix.h" #include "Runtime/Math/Quaternion.h" #include "Runtime/Utilities/Utility.h" #include "Runtime/Geometry/AABB.h" #include "Runtime/Geometry/Ray.h" #include "Runtime/Geometry/Ray2D.h" #include "Runtime/Geometry/Intersection.h" #include #include "Runtime/Utilities/BitUtility.h" #include "Runtime/Terrain/PerlinNoise.h" #include "Runtime/Camera/CameraUtil.h" #include "Runtime/Math/Color.h" #include "Runtime/Math/ColorSpaceConversion.h" #include "Runtime/Scripting/ScriptingUtility.h" CSRAW using System; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; namespace UnityEngine { // Representation of 2D vectors and points. THREAD_SAFE STRUCT Vector2 // X component of the vector. CSRAW public float x; // Y component of the vector. CSRAW public float y; // Access the /x/ or /y/ component using [0] or [1] respectively. CSRAW public float this [int index] { get { switch(index) { case 0: return x; case 1: return y; default: throw new IndexOutOfRangeException("Invalid Vector2 index!"); } } set { switch(index) { case 0: x = value; break; case 1: y = value; break; default: throw new IndexOutOfRangeException("Invalid Vector2 index!"); } } } // Constructs a new vector with given x, y components. public Vector2 (float x, float y) { this.x = x; this.y = y; } // Set x and y components of an existing Vector2. CSRAW public void Set (float new_x, float new_y) { x = new_x; y = new_y; } // Linearly interpolates between two vectors. CSRAW public static Vector2 Lerp (Vector2 from, Vector2 to, float t) { t = Mathf.Clamp01 (t); return new Vector2( from.x + (to.x - from.x)*t, from.y + (to.y - from.y)*t ); } // Moves a point /current/ towards /target/. CSRAW static public Vector2 MoveTowards (Vector2 current, Vector2 target, float maxDistanceDelta) { Vector2 toVector = target - current; float dist = toVector.magnitude; if (dist <= maxDistanceDelta || dist == 0) return target; return current + toVector / dist * maxDistanceDelta; } // Multiplies two vectors component-wise. CSRAW public static Vector2 Scale (Vector2 a, Vector2 b) { return new Vector2 (a.x*b.x, a.y*b.y); } // Multiplies every component of this vector by the same component of /scale/. CSRAW public void Scale (Vector2 scale) { x *= scale.x; y *= scale.y; } // Makes this vector have a ::ref::magnitude of 1. CSRAW public void Normalize () { float mag = this.magnitude; if (mag > kEpsilon) this = this / mag; else this = zero; } // Returns this vector with a ::ref::magnitude of 1 (RO). CSRAW public Vector2 normalized { get { Vector2 v = new Vector2(x, y); v.Normalize(); return v; } } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("({0:F1}, {1:F1})", x, y); } // Returns a nicely formatted string for this vector. CSRAW public string ToString(string format) { return UnityString.Format("({0}, {1})", x.ToString(format), y.ToString(format)); } // used to allow Vector2s to be used as keys in hash tables public override int GetHashCode() { return x.GetHashCode() ^ (y.GetHashCode()<<2); } // also required for being able to use Vector2s as keys in hash tables public override bool Equals(object other) { if(!(other is Vector2)) return false; Vector2 rhs=(Vector2)other; return x.Equals(rhs.x) && y.Equals(rhs.y); } // Dot Product of two vectors. public static float Dot (Vector2 lhs, Vector2 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y; } // Returns the length of this vector (RO). CSRAW public float magnitude { get { return Mathf.Sqrt (x*x + y*y); } } // Returns the squared length of this vector (RO). CSRAW public float sqrMagnitude { get { return x*x + y*y; } } // Returns the angle in degrees between /from/ and /to/. CSRAW public static float Angle(Vector2 from, Vector2 to) { return Mathf.Acos(Mathf.Clamp (Vector2.Dot (from.normalized, to.normalized), -1F, 1F)) * Mathf.Rad2Deg; } // Returns the distance between /a/ and /b/. CSRAW public static float Distance (Vector2 a, Vector2 b) { return (a-b).magnitude; } // Returns a copy of /vector/ with its magnitude clamped to /maxLength/. CSRAW public static Vector2 ClampMagnitude (Vector2 vector, float maxLength) { if (vector.sqrMagnitude > maxLength * maxLength) return vector.normalized * maxLength; return vector; } OBSOLETE planned Use Vector2.sqrMagnitude CSRAW public static float SqrMagnitude (Vector2 a) { return a.x*a.x + a.y*a.y; } OBSOLETE planned Use .sqrMagnitude CSRAW public float SqrMagnitude () { return x*x + y*y; } // Returns a vector that is made from the smallest components of two vectors. CSRAW public static Vector2 Min (Vector2 lhs, Vector2 rhs) { return new Vector2 (Mathf.Min(lhs.x,rhs.x), Mathf.Min(lhs.y,rhs.y)); } // Returns a vector that is made from the largest components of two vectors. CSRAW public static Vector2 Max (Vector2 lhs, Vector2 rhs) { return new Vector2 (Mathf.Max(lhs.x,rhs.x), Mathf.Max(lhs.y,rhs.y)); } // Adds two vectors. CSRAW public static Vector2 operator + (Vector2 a, Vector2 b) { return new Vector2 (a.x+b.x, a.y+b.y); } // Subtracts one vector from another. CSRAW public static Vector2 operator - (Vector2 a, Vector2 b) { return new Vector2 (a.x-b.x, a.y-b.y); } // Negates a vector. CSRAW public static Vector2 operator - (Vector2 a) { return new Vector2 (-a.x, -a.y); } // Multiplies a vector by a number. CSRAW public static Vector2 operator * (Vector2 a, float d) { return new Vector2 (a.x*d, a.y*d); } // Multiplies a vector by a number. CSRAW public static Vector2 operator * (float d, Vector2 a) { return new Vector2 (a.x*d, a.y*d); } // Divides a vector by a number. CSRAW public static Vector2 operator / (Vector2 a, float d) { return new Vector2 (a.x/d, a.y/d); } // Returns true if the vectors are equal. CSRAW public static bool operator == (Vector2 lhs, Vector2 rhs) { return SqrMagnitude (lhs - rhs) < kEpsilon * kEpsilon; } // Returns true if vectors different. CSRAW public static bool operator != (Vector2 lhs, Vector2 rhs) { return SqrMagnitude (lhs - rhs) >= kEpsilon * kEpsilon; } // Converts a [[Vector3]] to a Vector2. CSRAW public static implicit operator Vector2(Vector3 v) { return new Vector2(v.x, v.y); } // Converts a Vector2 to a [[Vector3]]. CSRAW public static implicit operator Vector3(Vector2 v) { return new Vector3(v.x, v.y, 0); } // Shorthand for writing @@Vector2(0, 0)@@ CSRAW public static Vector2 zero { get { return new Vector2 (0.0F, 0.0F); } } // Shorthand for writing @@Vector2(1, 1)@@ CSRAW public static Vector2 one { get { return new Vector2 (1.0F, 1.0F); } } // Shorthand for writing @@Vector2(0, 1)@@ CSRAW public static Vector2 up { get { return new Vector2 (0.0F, 1.0F); } } // Shorthand for writing @@Vector2(1, 0)@@ CSRAW public static Vector2 right { get { return new Vector2 (1.0F, 0.0F); } } // *Undocumented* CSRAW public const float kEpsilon = 0.00001F; END // Representation of 3D vectors and points. CSRAW THREAD_SAFE STRUCT Vector3 // *undocumented* CSRAW public const float kEpsilon = 0.00001F; // X component of the vector. CSRAW public float x; // Y component of the vector. CSRAW public float y; // Z component of the vector. CSRAW public float z; // Linearly interpolates between two vectors. CSRAW public static Vector3 Lerp (Vector3 from, Vector3 to, float t) { t = Mathf.Clamp01 (t); return new Vector3( from.x + (to.x - from.x)*t, from.y + (to.y - from.y)*t, from.z + (to.z - from.z)*t ); } // Spherically interpolates between two vectors. CUSTOM static Vector3 Slerp (Vector3 from, Vector3 to, float t) { return Slerp (from, to, clamp01 (t)); } CUSTOM private static void Internal_OrthoNormalize2 (ref Vector3 a, ref Vector3 b) { OrthoNormalize (&a, &b); } CUSTOM private static void Internal_OrthoNormalize3 (ref Vector3 a, ref Vector3 b, ref Vector3 c) { OrthoNormalize (&a, &b, &c); } // Makes vectors normalized and orthogonal to each other. CSRAW static public void OrthoNormalize (ref Vector3 normal, ref Vector3 tangent) { Internal_OrthoNormalize2 (ref normal, ref tangent); } // Makes vectors normalized and orthogonal to each other. CSRAW static public void OrthoNormalize (ref Vector3 normal, ref Vector3 tangent, ref Vector3 binormal) { Internal_OrthoNormalize3 (ref normal, ref tangent, ref binormal); } // Moves a point /current/ in a straight line towards a /target/ point. CSRAW static public Vector3 MoveTowards (Vector3 current, Vector3 target, float maxDistanceDelta) { Vector3 toVector = target - current; float dist = toVector.magnitude; if (dist <= maxDistanceDelta || dist == 0) return target; return current + toVector / dist * maxDistanceDelta; } // Rotates a vector /current/ towards /target/. CUSTOM static Vector3 RotateTowards (Vector3 current, Vector3 target, float maxRadiansDelta, float maxMagnitudeDelta) { return RotateTowards (current, target, maxRadiansDelta, maxMagnitudeDelta); } // Gradually changes a vector towards a desired goal over time. CSRAW public static Vector3 SmoothDamp (Vector3 current, Vector3 target, ref Vector3 currentVelocity, float smoothTime, float maxSpeed = Mathf.Infinity, float deltaTime = Time.deltaTime) { // Based on Game Programming Gems 4 Chapter 1.10 smoothTime = Mathf.Max(0.0001F, smoothTime); float omega = 2F / smoothTime; float x = omega * deltaTime; float exp = 1F / (1F + x + 0.48F*x*x + 0.235F*x*x*x); Vector3 change = current - target; Vector3 originalTo = target; // Clamp maximum speed float maxChange = maxSpeed * smoothTime; change = Vector3.ClampMagnitude(change, maxChange); target = current - change; Vector3 temp = (currentVelocity + omega * change) * deltaTime; currentVelocity = (currentVelocity - omega * temp) * exp; Vector3 output = target + (change + temp) * exp; // Prevent overshooting if (Vector3.Dot(originalTo - current, output - originalTo) > 0) { output = originalTo; currentVelocity = (output - originalTo) / deltaTime; } return output; } // Access the x, y, z components using [0], [1], [2] respectively. CSRAW public float this [int index] { get { switch(index) { case 0: return x; case 1: return y; case 2: return z; default: throw new IndexOutOfRangeException("Invalid Vector3 index!"); } } set { switch(index) { case 0: x = value; break; case 1: y = value; break; case 2: z = value; break; default: throw new IndexOutOfRangeException("Invalid Vector3 index!"); } } } // Creates a new vector with given x, y, z components. public Vector3 (float x, float y, float z) { this.x = x; this.y = y; this.z = z; } // Creates a new vector with given x, y components and sets /z/ to zero. public Vector3 (float x, float y) { this.x = x; this.y = y; z = 0F; } // Set x, y and z components of an existing Vector3. CSRAW public void Set (float new_x, float new_y, float new_z) { x = new_x; y = new_y; z = new_z; } // Multiplies two vectors component-wise. CSRAW public static Vector3 Scale (Vector3 a, Vector3 b) { return new Vector3 (a.x*b.x, a.y*b.y, a.z*b.z); } // Multiplies every component of this vector by the same component of /scale/. CSRAW public void Scale (Vector3 scale) { x *= scale.x; y *= scale.y; z *= scale.z; } // Cross Product of two vectors. CSRAW public static Vector3 Cross (Vector3 lhs, Vector3 rhs) { return new Vector3 ( lhs.y * rhs.z - lhs.z * rhs.y, lhs.z * rhs.x - lhs.x * rhs.z, lhs.x * rhs.y - lhs.y * rhs.x); } // used to allow Vector3s to be used as keys in hash tables public override int GetHashCode() { return x.GetHashCode() ^ (y.GetHashCode()<<2) ^ (z.GetHashCode()>>2); } // also required for being able to use Vector3s as keys in hash tables public override bool Equals(object other) { if(!(other is Vector3)) return false; Vector3 rhs=(Vector3)other; return x.Equals(rhs.x) && y.Equals(rhs.y) && z.Equals(rhs.z); } // Reflects a vector off the plane defined by a normal. CSRAW public static Vector3 Reflect (Vector3 inDirection, Vector3 inNormal) { return -2F * Dot (inNormal, inDirection) * inNormal + inDirection; } // *undoc* --- we have normalized property now CSRAW public static Vector3 Normalize (Vector3 value) { float mag = Magnitude (value); if (mag > kEpsilon) return value / mag; else return zero; } // Makes this vector have a ::ref::magnitude of 1. CSRAW public void Normalize () { float mag = Magnitude (this); if (mag > kEpsilon) this = this / mag; else this = zero; } // Returns this vector with a ::ref::magnitude of 1 (RO). CSRAW public Vector3 normalized { get { return Vector3.Normalize (this); } } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("({0:F1}, {1:F1}, {2:F1})", x, y, z); } // Returns a nicely formatted string for this vector. CSRAW public string ToString(string format) { return UnityString.Format("({0}, {1}, {2})", x.ToString(format), y.ToString(format), z.ToString(format)); } // Dot Product of two vectors. public static float Dot (Vector3 lhs, Vector3 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z; } // Projects a vector onto another vector. public static Vector3 Project (Vector3 vector, Vector3 onNormal) { float sqrMag = Dot(onNormal,onNormal); if (sqrMag < Mathf.Epsilon) return zero; else return onNormal * Dot (vector, onNormal) / sqrMag; } //*undocumented* --------------------------- TODO is this generally useful? What is the intention? I know i understood it once upon a time but it evaded my mind. CSRAW public static Vector3 Exclude (Vector3 excludeThis, Vector3 fromThat) { return fromThat - Project (fromThat, excludeThis); } // Returns the angle in degrees between /from/ and /to/. This is always the smallest CSRAW public static float Angle(Vector3 from, Vector3 to) { return Mathf.Acos(Mathf.Clamp (Vector3.Dot (from.normalized, to.normalized), -1F, 1F)) * Mathf.Rad2Deg; } // Returns the distance between /a/ and /b/. public static float Distance (Vector3 a, Vector3 b) { Vector3 vec = new Vector3 (a.x - b.x, a.y - b.y, a.z - b.z); return Mathf.Sqrt (vec.x * vec.x + vec.y * vec.y + vec.z * vec.z); } // Returns a copy of /vector/ with its magnitude clamped to /maxLength/. CSRAW public static Vector3 ClampMagnitude (Vector3 vector, float maxLength) { if (vector.sqrMagnitude > maxLength * maxLength) return vector.normalized * maxLength; return vector; } // *undoc* --- there's a property now CSRAW public static float Magnitude (Vector3 a) { return Mathf.Sqrt (a.x*a.x + a.y*a.y + a.z*a.z); } // Returns the length of this vector (RO). CSRAW public float magnitude { get { return Mathf.Sqrt (x*x + y*y + z*z); } } // *undoc* --- there's a property now CSRAW public static float SqrMagnitude (Vector3 a) { return a.x*a.x + a.y*a.y + a.z*a.z; } // Returns the squared length of this vector (RO). CSRAW public float sqrMagnitude { get { return x * x + y * y + z * z; } } // Returns a vector that is made from the smallest components of two vectors. CSRAW public static Vector3 Min (Vector3 lhs, Vector3 rhs) { return new Vector3 (Mathf.Min(lhs.x,rhs.x), Mathf.Min(lhs.y,rhs.y), Mathf.Min(lhs.z,rhs.z)); } // Returns a vector that is made from the largest components of two vectors. CSRAW public static Vector3 Max (Vector3 lhs, Vector3 rhs) { return new Vector3 (Mathf.Max(lhs.x,rhs.x), Mathf.Max(lhs.y,rhs.y), Mathf.Max(lhs.z,rhs.z)); } // Shorthand for writing @@Vector3(0, 0, 0)@@ CSRAW public static Vector3 zero { get { return new Vector3 (0F, 0F, 0F); } } // Shorthand for writing @@Vector3(1, 1, 1)@@ CSRAW public static Vector3 one { get { return new Vector3 (1F, 1F, 1F); } } // Shorthand for writing @@Vector3(0, 0, 1)@@ CSRAW public static Vector3 forward { get { return new Vector3 (0F, 0F, 1F); } } OBSOLETE planned Use -Vector3.forward CSRAW public static Vector3 back { get { return new Vector3 (0F, 0F, -1F); } } // Shorthand for writing @@Vector3(0, 1, 0)@@ CSRAW public static Vector3 up { get { return new Vector3 (0F, 1F, 0F); } } OBSOLETE planned Use -Vector3.up CSRAW public static Vector3 down { get { return new Vector3 (0F, -1F, 0F); } } OBSOLETE planned Use -Vector3.right CSRAW public static Vector3 left { get { return new Vector3 (-1F, 0F, 0F); } } // Shorthand for writing @@Vector3(1, 0, 0)@@ CSRAW public static Vector3 right { get { return new Vector3 (1F, 0F, 0F); } } // Adds two vectors. CSRAW public static Vector3 operator + (Vector3 a, Vector3 b) { return new Vector3 (a.x+b.x, a.y+b.y, a.z+b.z); } // Subtracts one vector from another. CSRAW public static Vector3 operator - (Vector3 a, Vector3 b) { return new Vector3 (a.x-b.x, a.y-b.y, a.z-b.z); } // Negates a vector. CSRAW public static Vector3 operator - (Vector3 a) { return new Vector3 (-a.x, -a.y, -a.z); } // Multiplies a vector by a number. CSRAW public static Vector3 operator * (Vector3 a, float d) { return new Vector3 (a.x*d, a.y*d, a.z*d); } // Multiplies a vector by a number. CSRAW public static Vector3 operator * (float d, Vector3 a) { return new Vector3 (a.x*d, a.y*d, a.z*d); } // Divides a vector by a number. CSRAW public static Vector3 operator / (Vector3 a, float d) { return new Vector3 (a.x/d, a.y/d, a.z/d); } // Returns true if the vectors are equal. CSRAW public static bool operator == (Vector3 lhs, Vector3 rhs) { return SqrMagnitude (lhs - rhs) < kEpsilon * kEpsilon; } // Returns true if vectors different. CSRAW public static bool operator != (Vector3 lhs, Vector3 rhs) { return SqrMagnitude (lhs - rhs) >= kEpsilon * kEpsilon; } OBSOLETE warning Use Vector3.forward instead. CSRAW public static Vector3 fwd { get { return new Vector3 (0F, 0F, 1F); } } OBSOLETE warning Use Vector3.Angle instead. AngleBetween uses radians instead of degrees and was deprecated for this reason CSRAW public static float AngleBetween(Vector3 from, Vector3 to) { return Mathf.Acos(Mathf.Clamp (Vector3.Dot (from.normalized, to.normalized), -1F, 1F)); } END // Representation of RGBA colors. THREAD_SAFE STRUCT Color // Red component of the color. CSRAW public float r; // Green component of the color. CSRAW public float g; // Blue component of the color. CSRAW public float b; // Alpha component of the color. CSRAW public float a; // Constructs a new Color with given r,g,b,a components. CSRAW public Color (float r, float g, float b, float a) { this.r = r; this.g = g; this.b = b; this.a = a; } // Constructs a new Color with given r,g,b components and sets /a/ to 1. CSRAW public Color (float r, float g, float b) { this.r = r; this.g = g; this.b = b; this.a = 1.0F; } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("RGBA({0:F3}, {1:F3}, {2:F3}, {3:F3})", r, g, b, a); } // Returns a nicely formatted string of this color. CSRAW public string ToString(string format) { return UnityString.Format("RGBA({0}, {1}, {2}, {3})", r.ToString(format), g.ToString(format), b.ToString(format), a.ToString(format)); } // used to allow Colors to be used as keys in hash tables public override int GetHashCode() { return ((Vector4)this).GetHashCode(); } // also required for being able to use Colors as keys in hash tables public override bool Equals(object other) { if (!(other is Color)) return false; Color rhs = (Color)other; return r.Equals(rhs.r) && g.Equals(rhs.g) && b.Equals(rhs.b) && a.Equals(rhs.a); } // Adds two colors together. Each component is added separately. CSRAW public static Color operator + (Color a, Color b) { return new Color (a.r+b.r, a.g+b.g, a.b+b.b, a.a+b.a); } // Subtracts color /b/ from color /a/. Each component is subtracted separately. CSRAW public static Color operator - (Color a, Color b) { return new Color (a.r-b.r, a.g-b.g, a.b-b.b, a.a-b.a); } // Multiplies two colors together. Each component is multiplied separately. CSRAW public static Color operator * (Color a, Color b) { return new Color (a.r*b.r, a.g*b.g, a.b*b.b, a.a*b.a); } // Multiplies color /a/ by the float /b/. Each color component is scaled separately. CSRAW public static Color operator * (Color a, float b) { return new Color (a.r*b, a.g*b, a.b*b, a.a*b); } // Multiplies color /a/ by the float /b/. Each color component is scaled separately. CSRAW public static Color operator * (float b, Color a) { return new Color (a.r*b, a.g*b, a.b*b, a.a*b); } // Divides color /a/ by the float /b/. Each color component is scaled separately. CSRAW public static Color operator / (Color a, float b) { return new Color (a.r/b, a.g/b, a.b/b, a.a/b); } //*undoc* CSRAW public static bool operator == (Color lhs, Color rhs) { return ((Vector4)lhs == (Vector4)rhs); } //*undoc* CSRAW public static bool operator != (Color lhs, Color rhs) { return ((Vector4)lhs != (Vector4)rhs); } // Interpolates between colors /a/ and /b/ by /t/. CSRAW public static Color Lerp (Color a, Color b, float t) { t = Mathf.Clamp01 (t); return new Color( a.r + (b.r - a.r)*t, a.g + (b.g - a.g)*t, a.b + (b.b - a.b)*t, a.a + (b.a - a.a)*t ); } // Returns new color that has RGB components multiplied, but leaving alpha untouched. CSRAW internal Color RGBMultiplied (float multiplier) { return new Color (r * multiplier, g * multiplier, b * multiplier, a); } // Returns new color that has RGB components multiplied, but leaving alpha untouched. CSRAW internal Color AlphaMultiplied (float multiplier) { return new Color (r,g,b,a * multiplier); } // Returns new color that has RGB components multiplied, but leaving alpha untouched. CSRAW internal Color RGBMultiplied (Color multiplier) { return new Color (r * multiplier.r, g * multiplier.g, b * multiplier.b, a); } // Solid red. RGBA is (1, 0, 0, 1). CSRAW public static Color red { get { return new Color (1F, 0F, 0F, 1F); } } // Solid green. RGBA is (0, 1, 0, 1). CSRAW public static Color green { get { return new Color (0F, 1F, 0F, 1F); } } // Solid blue. RGBA is (0, 0, 1, 1). CSRAW public static Color blue { get { return new Color (0F, 0F, 1F, 1F); } } // Solid white. RGBA is (1, 1, 1, 1). CSRAW public static Color white { get { return new Color (1F, 1F, 1F, 1F); } } // Solid black. RGBA is (0, 0, 0, 1). CSRAW public static Color black { get { return new Color (0F, 0F, 0F, 1F); } } // Yellow. RGBA is (1, 0.92, 0.016, 1), but the color is nice to look at! CSRAW public static Color yellow { get { return new Color (1F, 235F / 255F, 4F / 255F, 1F); } } // Cyan. RGBA is (0, 1, 1, 1). CSRAW public static Color cyan { get { return new Color (0F, 1F, 1F, 1F); } } // Magenta. RGBA is (1, 0, 1, 1). CSRAW public static Color magenta { get { return new Color (1F, 0F, 1F, 1F); } } // Gray. RGBA is (0.5, 0.5, 0.5, 1). CSRAW public static Color gray { get { return new Color (.5F, .5F, .5F, 1F); } } // English spelling for ::ref::gray. RGBA is the same (0.5, 0.5, 0.5, 1). CSRAW public static Color grey { get { return new Color (.5F, .5F, .5F, 1F); } } // Completely transparent. RGBA is (0, 0, 0, 0). CSRAW public static Color clear { get { return new Color (0F, 0F, 0F, 0F); } } // The grayscale value of the color (RO) CSRAW public float grayscale { get { return 0.299F * r + 0.587F * g + 0.114F * b; } } // A version of the color that has had the inverse gamma curve applied CSRAW public Color linear { get { return new Color (Mathf.GammaToLinearSpace(r), Mathf.GammaToLinearSpace(g), Mathf.GammaToLinearSpace(b), a); } } // A version of the color that has had the gamma curve applied CSRAW public Color gamma { get { return new Color (Mathf.LinearToGammaSpace(r), Mathf.LinearToGammaSpace(g), Mathf.LinearToGammaSpace(b), a); } } // Colors can be implicitly converted to and from [[Vector4]]. CSRAW public static implicit operator Vector4(Color c) { return new Vector4(c.r, c.g, c.b, c.a); } // Colors can be implicitly converted to and from [[Vector4]]. CSRAW public static implicit operator Color(Vector4 v) { return new Color(v.x, v.y, v.z, v.w); } // Access the r, g, b,a components using [0], [1], [2], [3] respectively. CSRAW public float this [int index] { get { switch(index) { case 0: return r; case 1: return g; case 2: return b; case 3: return a; default: throw new IndexOutOfRangeException("Invalid Vector3 index!"); } } set { switch(index) { case 0: r = value; break; case 1: g = value; break; case 2: b = value; break; case 3: a = value; break; default: throw new IndexOutOfRangeException("Invalid Vector3 index!"); } } } END // Representation of RGBA colors in 32 bit format THREAD_SAFE STRUCT Color32 // Red component of the color. CSRAW public byte r; // Green component of the color. CSRAW public byte g; // Blue component of the color. CSRAW public byte b; // Alpha component of the color. CSRAW public byte a; // Constructs a new Color with given r, g, b, a components. CSRAW public Color32(byte r, byte g, byte b, byte a) { this.r = r; this.g = g; this.b = b; this.a = a; } // Color32 can be implicitly converted to and from [[Color]]. CSRAW public static implicit operator Color32(Color c) { return new Color32((byte)(Mathf.Clamp01(c.r) * 255), (byte)(Mathf.Clamp01(c.g) * 255), (byte)(Mathf.Clamp01(c.b) * 255), (byte)(Mathf.Clamp01(c.a) * 255)); } // Color32 can be implicitly converted to and from [[Color]]. CSRAW public static implicit operator Color (Color32 c) { return new Color(c.r / 255f, c.g / 255f, c.b / 255f, c.a / 255f); } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("RGBA({0}, {1}, {2}, {3})", r, g, b, a); } // Returns a nicely formatted string of this color. CSRAW public string ToString(string format) { return UnityString.Format("RGBA({0}, {1}, {2}, {3})", r.ToString(format), g.ToString(format), b.ToString(format), a.ToString(format)); } // Interpolates between colors /a/ and /b/ by /t/. CSRAW public static Color32 Lerp (Color32 a, Color32 b, float t) { t = Mathf.Clamp01 (t); return new Color32( (byte)(a.r + (b.r - a.r)*t), (byte)(a.g + (b.g - a.g)*t), (byte)(a.b + (b.b - a.b)*t), (byte)(a.a + (b.a - a.a)*t) ); } END // Quaternions are used to represent rotations. CSRAW THREAD_SAFE STRUCT Quaternion // X component of the Quaternion. Don't modify this directly unless you know quaternions inside out. CSRAW public float x; // Y component of the Quaternion. Don't modify this directly unless you know quaternions inside out. CSRAW public float y; // Z component of the Quaternion. Don't modify this directly unless you know quaternions inside out. CSRAW public float z; // W component of the Quaternion. Don't modify this directly unless you know quaternions inside out. CSRAW public float w; // Access the x, y, z, w components using [0], [1], [2], [3] respectively. CSRAW public float this [int index] { get { switch(index) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; default: throw new IndexOutOfRangeException("Invalid Quaternion index!"); } } set { switch(index) { case 0: x = value; break; case 1: y = value; break; case 2: z = value; break; case 3: w = value; break; default: throw new IndexOutOfRangeException("Invalid Quaternion index!"); } } } // Constructs new Quaternion with given x,y,z,w components. CSRAW public Quaternion (float x, float y, float z, float w) { this.x = x; this.y = y; this.z = z; this.w = w; } // Set x, y, z and w components of an existing Quaternion. CSRAW public void Set (float new_x, float new_y, float new_z, float new_w) { x = new_x; y = new_y; z = new_z; w = new_w; } // The identity rotation (RO). This quaternion corresponds to "no rotation": the object CSRAW public static Quaternion identity { get { return new Quaternion (0F, 0F, 0F, 1F); } } // Combines rotations /lhs/ and /rhs/. CSRAW public static Quaternion operator * (Quaternion lhs, Quaternion rhs) { return new Quaternion ( lhs.w*rhs.x + lhs.x*rhs.w + lhs.y*rhs.z - lhs.z*rhs.y, lhs.w*rhs.y + lhs.y*rhs.w + lhs.z*rhs.x - lhs.x*rhs.z, lhs.w*rhs.z + lhs.z*rhs.w + lhs.x*rhs.y - lhs.y*rhs.x, lhs.w*rhs.w - lhs.x*rhs.x - lhs.y*rhs.y - lhs.z*rhs.z); } // Rotates the point /point/ with /rotation/. CSRAW public static Vector3 operator * (Quaternion rotation, Vector3 point) { float x = rotation.x * 2F; float y = rotation.y * 2F; float z = rotation.z * 2F; float xx = rotation.x * x; float yy = rotation.y * y; float zz = rotation.z * z; float xy = rotation.x * y; float xz = rotation.x * z; float yz = rotation.y * z; float wx = rotation.w * x; float wy = rotation.w * y; float wz = rotation.w * z; Vector3 res; res.x = (1F - (yy + zz)) * point.x + (xy - wz) * point.y + (xz + wy) * point.z; res.y = (xy + wz) * point.x + (1F - (xx + zz)) * point.y + (yz - wx) * point.z; res.z = (xz - wy) * point.x + (yz + wx) * point.y + (1F - (xx + yy)) * point.z; return res; } // *undocumented* CSRAW public const float kEpsilon = 0.000001F; // Are two quaternions equal to each other? CSRAW public static bool operator == (Quaternion lhs, Quaternion rhs) { return Dot (lhs, rhs) > 1.0f-kEpsilon; } // Are two quaternions different from each other? CSRAW public static bool operator != (Quaternion lhs, Quaternion rhs) { return Dot (lhs, rhs) <= 1.0f-kEpsilon; } // The dot product between two rotations. CSRAW public static float Dot (Quaternion a, Quaternion b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } // Creates a rotation which rotates /angle/ degrees around /axis/. CUSTOM static Quaternion AngleAxis (float angle, Vector3 axis) { return AxisAngleToQuaternionSafe (axis, Deg2Rad(angle)); } // Converts a rotation to angle-axis representation. CSRAW public void ToAngleAxis (out float angle, out Vector3 axis) { Internal_ToAxisAngleRad (this, out axis, out angle); angle *= Mathf.Rad2Deg; } // Creates a rotation which rotates from /fromDirection/ to /toDirection/. CUSTOM static Quaternion FromToRotation (Vector3 fromDirection, Vector3 toDirection) { return FromToQuaternionSafe (fromDirection, toDirection); } // Creates a rotation which rotates from /fromDirection/ to /toDirection/. CSRAW public void SetFromToRotation (Vector3 fromDirection, Vector3 toDirection) { this = FromToRotation (fromDirection, toDirection); } // Creates a rotation with the specified /forward/ and /upwards/ directions. CUSTOM static Quaternion LookRotation (Vector3 forward, Vector3 upwards = Vector3.up) { Quaternionf q = Quaternionf::identity (); if (!LookRotationToQuaternion (forward, upwards, &q)) { float mag = Magnitude (forward); if (mag > Vector3f::epsilon) { Matrix3x3f m; m.SetFromToRotation (Vector3f::zAxis, forward / mag); MatrixToQuaternion (m, q); } else { LogString ("Look rotation viewing vector is zero"); } } return q; } // Creates a rotation with the specified /forward/ and /upwards/ directions. CSRAW public void SetLookRotation (Vector3 view, Vector3 up = Vector3.up) { this = LookRotation (view, up); } // Spherically interpolates between /from/ and /to/ by t. CUSTOM static Quaternion Slerp (Quaternion from, Quaternion to, float t) { return Slerp (from, to, clamp01 (t)); } // Interpolates between /from/ and /to/ by /t/ and normalizes the result afterwards. CUSTOM static Quaternion Lerp (Quaternion from, Quaternion to, float t) { return Lerp (from, to, clamp01 (t)); } // Rotates a rotation /from/ towards /to/. CSRAW public static Quaternion RotateTowards (Quaternion from, Quaternion to, float maxDegreesDelta) { float angle = Quaternion.Angle(from, to); if (angle == 0.0f) return to; float slerpValue = Mathf.Min(1.0f, maxDegreesDelta / angle); return UnclampedSlerp(from, to, slerpValue); } CUSTOM private static Quaternion UnclampedSlerp (Quaternion from, Quaternion to, float t) { return Slerp (from, to, t); } // Returns the Inverse of /rotation/. CUSTOM static Quaternion Inverse (Quaternion rotation) { return Inverse (rotation); } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("({0:F1}, {1:F1}, {2:F1}, {3:F1})", x, y, z, w); } // Returns a nicely formatted string of the Quaternion CSRAW public string ToString(string format) { return UnityString.Format("({0}, {1}, {2}, {3})", x.ToString(format), y.ToString(format), z.ToString(format), w.ToString(format)); } // Returns the angle in degrees between two rotations /a/ and /b/. CSRAW static public float Angle (Quaternion a, Quaternion b) { float dot = Dot(a, b); return Mathf.Acos(Mathf.Min(Mathf.Abs(dot), 1.0F)) * 2.0F * Mathf.Rad2Deg; } // Returns the euler angle representation of the rotation. CSRAW public Vector3 eulerAngles { get { return Internal_ToEulerRad(this) * Mathf.Rad2Deg; } set { this=Internal_FromEulerRad(value * Mathf.Deg2Rad); } } // Returns a rotation that rotates z degrees around the z axis, x degrees around the x axis, and y degrees around the y axis (in that order). CSRAW static public Quaternion Euler (float x, float y, float z) { return Internal_FromEulerRad (new Vector3 (x, y, z) * Mathf.Deg2Rad); } // Returns a rotation that rotates z degrees around the z axis, x degrees around the x axis, and y degrees around the y axis (in that order). CSRAW static public Quaternion Euler (Vector3 euler) { return Internal_FromEulerRad (euler * Mathf.Deg2Rad); } // Internal implementation. Note Rad suffix that indicates that this method works in radians. CUSTOM static private Vector3 Internal_ToEulerRad (Quaternion rotation) { Quaternionf outRotation = NormalizeSafe (rotation); return QuaternionToEuler (outRotation); } // Internal implementation. Note Rad suffix that indicates that this method works in radians. CUSTOM static private Quaternion Internal_FromEulerRad (Vector3 euler) { return EulerToQuaternion (euler); } // Internal implementation. Note Rad suffix that indicates that this method works in radians. CUSTOM private static void Internal_ToAxisAngleRad (Quaternion q, out Vector3 axis, out float angle) { QuaternionToAxisAngle (NormalizeSafe (q), axis, angle); } // Old obsolete radians-based Euler functions: OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW static public Quaternion EulerRotation (float x, float y, float z) { return Internal_FromEulerRad (new Vector3 (x, y, z)); } OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW public static Quaternion EulerRotation (Vector3 euler) { return Internal_FromEulerRad (euler); } OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW public void SetEulerRotation (float x, float y, float z) { this = Internal_FromEulerRad (new Vector3 (x, y, z)); } OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW public void SetEulerRotation (Vector3 euler) { this = Internal_FromEulerRad (euler); } OBSOLETE warning Use Quaternion.eulerAngles instead. This function was deprecated because it uses radians instead of degrees CSRAW public Vector3 ToEuler () { return Internal_ToEulerRad (this); } OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW static public Quaternion EulerAngles (float x, float y, float z) { return Internal_FromEulerRad (new Vector3 (x, y, z)); } OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW public static Quaternion EulerAngles (Vector3 euler) { return Internal_FromEulerRad (euler); } OBSOLETE warning Use Quaternion.ToAngleAxis instead. This function was deprecated because it uses radians instead of degrees CSRAW public void ToAxisAngle (out Vector3 axis, out float angle) { Internal_ToAxisAngleRad (this, out axis, out angle); } OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW public void SetEulerAngles (float x, float y, float z) { SetEulerRotation (new Vector3 (x, y, z)); } OBSOLETE warning Use Quaternion.Euler instead. This function was deprecated because it uses radians instead of degrees CSRAW public void SetEulerAngles (Vector3 euler) { this = EulerRotation (euler); } OBSOLETE warning Use Quaternion.eulerAngles instead. This function was deprecated because it uses radians instead of degrees CSRAW public static Vector3 ToEulerAngles (Quaternion rotation) { return Quaternion.Internal_ToEulerRad (rotation); } OBSOLETE warning Use Quaternion.eulerAngles instead. This function was deprecated because it uses radians instead of degrees CSRAW public Vector3 ToEulerAngles () { return Quaternion.Internal_ToEulerRad (this); } OBSOLETE warning Use Quaternion.AngleAxis instead. This function was deprecated because it uses radians instead of degrees CUSTOM static Quaternion AxisAngle (Vector3 axis, float angle) { return AxisAngleToQuaternionSafe (axis, angle); } OBSOLETE warning Use Quaternion.AngleAxis instead. This function was deprecated because it uses radians instead of degrees CSRAW public void SetAxisAngle (Vector3 axis, float angle) { this = AxisAngle (axis, angle); } // used to allow Quaternions to be used as keys in hash tables CSRAW public override int GetHashCode() { return x.GetHashCode() ^ (y.GetHashCode()<<2) ^ (z.GetHashCode()>>2) ^ (w.GetHashCode()>>1); } // also required for being able to use Quaternions as keys in hash tables public override bool Equals(object other) { if(!(other is Quaternion)) return false; Quaternion rhs=(Quaternion)other; return x.Equals(rhs.x) && y.Equals(rhs.y) && z.Equals(rhs.z) && w.Equals(rhs.w); } END // A 2D Rectangle defined by x, y position and width, height THREAD_SAFE STRUCT Rect CSRAW private float m_XMin, m_YMin, m_Width, m_Height; // Creates a new rectangle. CSRAW public Rect (float left, float top, float width, float height) { m_XMin = left; m_YMin = top; m_Width = width; m_Height = height; } //*undocumented* CSRAW public Rect (Rect source) { m_XMin = source.m_XMin; m_YMin = source.m_YMin; m_Width = source.m_Width; m_Height= source.m_Height; } // Creates a rectangle from min/max coordinate values. static public Rect MinMaxRect (float left, float top, float right, float bottom) { return new Rect (left, top, right - left, bottom - top); } // Set components of an existing Rect. CSRAW public void Set (float left, float top, float width, float height) { m_XMin = left; m_YMin = top; m_Width = width; m_Height = height; } // Left coordinate of the rectangle. CSRAW public float x { get { return m_XMin; } set { m_XMin = value; } } // Top coordinate of the rectangle. CSRAW public float y { get { return m_YMin; } set { m_YMin = value; } } // Center coordinate of the rectangle. CSRAW public Vector2 center { get { return new Vector2 (x + m_Width / 2f, y + m_Height / 2f); } set { m_XMin = value.x - m_Width / 2f; m_YMin = value.y - m_Height / 2f; } } // Width of the rectangle. CSRAW public float width { get { return m_Width; } set { m_Width = value; } } // Height of the rectangle. CSRAW public float height { get { return m_Height; } set { m_Height = value; } } OBSOLETE warning use xMin CSRAW public float left { get { return m_XMin; } } OBSOLETE warning use xMax CSRAW public float right { get { return m_XMin + m_Width; } } OBSOLETE warning use yMin CSRAW public float top { get { return m_YMin; } } OBSOLETE warning use yMax CSRAW public float bottom { get { return m_YMin + m_Height; } } // Left coordinate of the rectangle. CSRAW public float xMin { get { return m_XMin; } set { float oldxmax = xMax; m_XMin = value; m_Width = oldxmax - m_XMin; } } // Top coordinate of the rectangle. CSRAW public float yMin { get { return m_YMin; } set { float oldymax = yMax; m_YMin = value; m_Height = oldymax - m_YMin; } } // Right coordinate of the rectangle. CSRAW public float xMax { get { return m_Width + m_XMin; } set { m_Width = value - m_XMin; } } // Bottom coordinate of the rectangle. CSRAW public float yMax { get { return m_Height + m_YMin; } set { m_Height = value - m_YMin; } } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("(x:{0:F2}, y:{1:F2}, width:{2:F2}, height:{3:F2})", x, y, width, height); } // Returns a nicely formatted string for this Rect. CSRAW public string ToString(string format) { return UnityString.Format("(x:{0}, y:{1}, width:{2}, height:{3})", x.ToString(format), y.ToString(format), width.ToString(format), height.ToString(format)); } /// *listonly* CSRAW public bool Contains (Vector2 point) { return (point.x >= xMin) && (point.x < xMax) && (point.y >= yMin) && (point.y < yMax); } // Returns true if the /x/ and /y/ components of /point/ is a point inside this rectangle. public bool Contains (Vector3 point) { return (point.x >= xMin) && (point.x < xMax) && (point.y >= yMin) && (point.y < yMax); } public bool Contains(Vector3 point, bool allowInverse) { if (!allowInverse) { return Contains(point); } bool xAxis = false; if (width < 0f && (point.x <= xMin) && (point.x > xMax) || width >= 0f && (point.x >= xMin) && (point.x < xMax)) xAxis = true; if (xAxis && (height < 0f && (point.y <= yMin) && (point.y > yMax) || height >= 0f && (point.y >= yMin) && (point.y < yMax))) return true; return false; } // removed for 2.0 // Clamp a point to be within a rectangle. // CSRAW public Vector2 Clamp (Vector2 point) { // return new Vector2 (Mathf.Clamp (point.x, left, xMax-1), Mathf.Clamp (point.y, yMin, yMax-1)); // } // Swaps min and max if min was greater than max. private static Rect OrderMinMax (Rect rect) { if (rect.xMin > rect.xMax) { float temp = rect.xMin; rect.xMin = rect.xMax; rect.xMax = temp; } if (rect.yMin > rect.yMax) { float temp = rect.yMin; rect.yMin = rect.yMax; rect.yMax = temp; } return rect; } CSRAW public bool Overlaps (Rect other) { return (other.xMax > xMin && other.xMin < xMax && other.yMax > yMin && other.yMin < yMax); } CSRAW public bool Overlaps (Rect other, bool allowInverse) { Rect self = this; if (allowInverse) { self = OrderMinMax (self); other = OrderMinMax (other); } return self.Overlaps (other); } // Returns true if the rectangles are different. CSRAW public static bool operator != (Rect lhs, Rect rhs) { return lhs.x != rhs.x || lhs.y != rhs.y || lhs.width != rhs.width || lhs.height != rhs.height; } // Returns true if the rectangles are the same. CSRAW public static bool operator == (Rect lhs, Rect rhs) { return lhs.x == rhs.x && lhs.y == rhs.y && lhs.width == rhs.width && lhs.height == rhs.height; } public override int GetHashCode() { return x.GetHashCode() ^ (width.GetHashCode()<<2) ^ (y.GetHashCode()>>2) ^ (height.GetHashCode()>>1); } public override bool Equals(object other) { if(!(other is Rect)) return false; Rect rhs=(Rect)other; return x.Equals(rhs.x) && y.Equals(rhs.y) && width.Equals(rhs.width) && height.Equals(rhs.height); } END // A standard 4x4 transformation matrix. THREAD_SAFE STRUCT Matrix4x4 CSRAW ///*undocumented* public float m00; ///*undocumented* public float m10; ///*undocumented* public float m20; ///*undocumented* public float m30; ///*undocumented* public float m01; ///*undocumented* public float m11; ///*undocumented* public float m21; ///*undocumented* public float m31; ///*undocumented* public float m02; ///*undocumented* public float m12; ///*undocumented* public float m22; ///*undocumented* public float m32; ///*undocumented* public float m03; ///*undocumented* public float m13; ///*undocumented* public float m23; ///*undocumented* public float m33; CSRAW // Access element at [row, column]. public float this [int row, int column] { get { return this [ row + column*4 ]; } set { this [ row + column*4 ] = value; } } // Access element at sequential index (0..15 inclusive). CSRAW public float this [int index] { get { switch(index) { case 0: return m00; case 1: return m10; case 2: return m20; case 3: return m30; case 4: return m01; case 5: return m11; case 6: return m21; case 7: return m31; case 8: return m02; case 9: return m12; case 10:return m22; case 11:return m32; case 12:return m03; case 13:return m13; case 14:return m23; case 15:return m33; default: throw new IndexOutOfRangeException("Invalid matrix index!"); } } set { switch(index) { case 0: m00 = value; break; case 1: m10 = value; break; case 2: m20 = value; break; case 3: m30 = value; break; case 4: m01 = value; break; case 5: m11 = value; break; case 6: m21 = value; break; case 7: m31 = value; break; case 8: m02 = value; break; case 9: m12 = value; break; case 10:m22 = value; break; case 11:m32 = value; break; case 12:m03 = value; break; case 13:m13 = value; break; case 14:m23 = value; break; case 15:m33 = value; break; default: throw new IndexOutOfRangeException("Invalid matrix index!"); } } } // used to allow Matrix4x4s to be used as keys in hash tables public override int GetHashCode() { return GetColumn( 0 ).GetHashCode() ^ (GetColumn( 1 ).GetHashCode()<<2) ^ (GetColumn( 2 ).GetHashCode()>>2) ^ (GetColumn( 3 ).GetHashCode()>>1); } // also required for being able to use Matrix4x4s as keys in hash tables public override bool Equals(object other) { if(!(other is Matrix4x4)) return false; Matrix4x4 rhs=(Matrix4x4)other; return GetColumn( 0 ).Equals(rhs.GetColumn( 0 )) && GetColumn( 1 ).Equals(rhs.GetColumn( 1 )) && GetColumn( 2 ).Equals(rhs.GetColumn( 2 )) && GetColumn( 3 ).Equals(rhs.GetColumn( 3 )); } // Multiplies two matrices. CSRAW static public Matrix4x4 operator * (Matrix4x4 lhs, Matrix4x4 rhs) { Matrix4x4 res = new Matrix4x4(); res.m00 = lhs.m00 * rhs.m00 + lhs.m01 * rhs.m10 + lhs.m02 * rhs.m20 + lhs.m03 * rhs.m30; res.m01 = lhs.m00 * rhs.m01 + lhs.m01 * rhs.m11 + lhs.m02 * rhs.m21 + lhs.m03 * rhs.m31; res.m02 = lhs.m00 * rhs.m02 + lhs.m01 * rhs.m12 + lhs.m02 * rhs.m22 + lhs.m03 * rhs.m32; res.m03 = lhs.m00 * rhs.m03 + lhs.m01 * rhs.m13 + lhs.m02 * rhs.m23 + lhs.m03 * rhs.m33; res.m10 = lhs.m10 * rhs.m00 + lhs.m11 * rhs.m10 + lhs.m12 * rhs.m20 + lhs.m13 * rhs.m30; res.m11 = lhs.m10 * rhs.m01 + lhs.m11 * rhs.m11 + lhs.m12 * rhs.m21 + lhs.m13 * rhs.m31; res.m12 = lhs.m10 * rhs.m02 + lhs.m11 * rhs.m12 + lhs.m12 * rhs.m22 + lhs.m13 * rhs.m32; res.m13 = lhs.m10 * rhs.m03 + lhs.m11 * rhs.m13 + lhs.m12 * rhs.m23 + lhs.m13 * rhs.m33; res.m20 = lhs.m20 * rhs.m00 + lhs.m21 * rhs.m10 + lhs.m22 * rhs.m20 + lhs.m23 * rhs.m30; res.m21 = lhs.m20 * rhs.m01 + lhs.m21 * rhs.m11 + lhs.m22 * rhs.m21 + lhs.m23 * rhs.m31; res.m22 = lhs.m20 * rhs.m02 + lhs.m21 * rhs.m12 + lhs.m22 * rhs.m22 + lhs.m23 * rhs.m32; res.m23 = lhs.m20 * rhs.m03 + lhs.m21 * rhs.m13 + lhs.m22 * rhs.m23 + lhs.m23 * rhs.m33; res.m30 = lhs.m30 * rhs.m00 + lhs.m31 * rhs.m10 + lhs.m32 * rhs.m20 + lhs.m33 * rhs.m30; res.m31 = lhs.m30 * rhs.m01 + lhs.m31 * rhs.m11 + lhs.m32 * rhs.m21 + lhs.m33 * rhs.m31; res.m32 = lhs.m30 * rhs.m02 + lhs.m31 * rhs.m12 + lhs.m32 * rhs.m22 + lhs.m33 * rhs.m32; res.m33 = lhs.m30 * rhs.m03 + lhs.m31 * rhs.m13 + lhs.m32 * rhs.m23 + lhs.m33 * rhs.m33; return res; } // Transforms a [[Vector4]] by a matrix. CSRAW static public Vector4 operator * (Matrix4x4 lhs, Vector4 v) { Vector4 res; res.x = lhs.m00 * v.x + lhs.m01 * v.y + lhs.m02 * v.z + lhs.m03 * v.w; res.y = lhs.m10 * v.x + lhs.m11 * v.y + lhs.m12 * v.z + lhs.m13 * v.w; res.z = lhs.m20 * v.x + lhs.m21 * v.y + lhs.m22 * v.z + lhs.m23 * v.w; res.w = lhs.m30 * v.x + lhs.m31 * v.y + lhs.m32 * v.z + lhs.m33 * v.w; return res; } //*undoc* CSRAW public static bool operator == (Matrix4x4 lhs, Matrix4x4 rhs) { return lhs.GetColumn( 0 ) == rhs.GetColumn( 0 ) && lhs.GetColumn( 1 ) == rhs.GetColumn( 1 ) && lhs.GetColumn( 2 ) == rhs.GetColumn( 2 ) && lhs.GetColumn( 3 ) == rhs.GetColumn( 3 ); } //*undoc* CSRAW public static bool operator != (Matrix4x4 lhs, Matrix4x4 rhs) { return !(lhs == rhs); } //*undocumented* --- have a property now CUSTOM static Matrix4x4 Inverse (Matrix4x4 m) { Matrix4x4f output (m); output.Invert_Full(); return output; } //*undocumented* --- have a property now CUSTOM static Matrix4x4 Transpose (Matrix4x4 m) { Matrix4x4f output (m); output.Transpose(); return output; } // Invert a matrix and return the success code. CUSTOM internal static bool Invert (Matrix4x4 inMatrix, out Matrix4x4 dest) { return Matrix4x4f::Invert_Full(inMatrix, *dest); } // The inverse of this matrix (RO). CSRAW public Matrix4x4 inverse { get { return Matrix4x4.Inverse (this); } } // Returns the transpose of this matrix (RO). CSRAW public Matrix4x4 transpose { get { return Matrix4x4.Transpose (this); } } // Is this the identity matrix? CUSTOM_PROP bool isIdentity { return self.IsIdentity(); } // Get a column of the matrix. CSRAW public Vector4 GetColumn (int i) { return new Vector4 (this[0, i], this[1, i], this[2, i], this[3, i]); } // Returns a row of the matrix. CSRAW public Vector4 GetRow (int i) { return new Vector4 (this[i, 0], this[i, 1], this[i, 2], this[i, 3]); } // Sets a column of the matrix. CSRAW public void SetColumn (int i, Vector4 v) { this[0, i] = v.x; this[1, i] = v.y; this[2, i] = v.z; this[3, i] = v.w; } // Sets a row of the matrix. CSRAW public void SetRow (int i, Vector4 v){ this[i, 0] = v.x; this[i, 1] = v.y; this[i, 2] = v.z; this[i, 3] = v.w; } // Transforms a position by this matrix (generic). CSRAW public Vector3 MultiplyPoint (Vector3 v) { Vector3 res; float w; res.x = this.m00 * v.x + this.m01 * v.y + this.m02 * v.z + this.m03; res.y = this.m10 * v.x + this.m11 * v.y + this.m12 * v.z + this.m13; res.z = this.m20 * v.x + this.m21 * v.y + this.m22 * v.z + this.m23; w = this.m30 * v.x + this.m31 * v.y + this.m32 * v.z + this.m33; w = 1F / w; res.x *= w; res.y *= w; res.z *= w; return res; } // Transforms a position by this matrix (fast). CSRAW public Vector3 MultiplyPoint3x4 (Vector3 v) { Vector3 res; res.x = this.m00 * v.x + this.m01 * v.y + this.m02 * v.z + this.m03; res.y = this.m10 * v.x + this.m11 * v.y + this.m12 * v.z + this.m13; res.z = this.m20 * v.x + this.m21 * v.y + this.m22 * v.z + this.m23; return res; } // Transforms a direction by this matrix. CSRAW public Vector3 MultiplyVector (Vector3 v) { Vector3 res; res.x = this.m00 * v.x + this.m01 * v.y + this.m02 * v.z; res.y = this.m10 * v.x + this.m11 * v.y + this.m12 * v.z; res.z = this.m20 * v.x + this.m21 * v.y + this.m22 * v.z; return res; } // Creates a scaling matrix. CSRAW static public Matrix4x4 Scale (Vector3 v) { Matrix4x4 m = new Matrix4x4(); m.m00 = v.x; m.m01 = 0F; m.m02 = 0F; m.m03 = 0F; m.m10 = 0F; m.m11 = v.y; m.m12 = 0F; m.m13 = 0F; m.m20 = 0F; m.m21 = 0F; m.m22 = v.z; m.m23 = 0F; m.m30 = 0F; m.m31 = 0F; m.m32 = 0F; m.m33 = 1F; return m; } // Returns a matrix with all elements set to zero (RO). CSRAW public static Matrix4x4 zero { get { Matrix4x4 m = new Matrix4x4(); m.m00 = 0F; m.m01 = 0F; m.m02 = 0F; m.m03 = 0F; m.m10 = 0F; m.m11 = 0F; m.m12 = 0F; m.m13 = 0F; m.m20 = 0F; m.m21 = 0F; m.m22 = 0F; m.m23 = 0F; m.m30 = 0F; m.m31 = 0F; m.m32 = 0F; m.m33 = 0F; return m; } } // Returns the identity matrix (RO). CSRAW public static Matrix4x4 identity { get { Matrix4x4 m = new Matrix4x4(); m.m00 = 1F; m.m01 = 0F; m.m02 = 0F; m.m03 = 0F; m.m10 = 0F; m.m11 = 1F; m.m12 = 0F; m.m13 = 0F; m.m20 = 0F; m.m21 = 0F; m.m22 = 1F; m.m23 = 0F; m.m30 = 0F; m.m31 = 0F; m.m32 = 0F; m.m33 = 1F; return m; } } // Sets this matrix to a translation, rotation and scaling matrix. CSRAW public void SetTRS(Vector3 pos, Quaternion q, Vector3 s) { this = Matrix4x4.TRS(pos, q, s); } // Creates a translation, rotation and scaling matrix. CUSTOM static Matrix4x4 TRS(Vector3 pos, Quaternion q, Vector3 s) { Matrix4x4f temp; temp.SetTRS(pos,q,s); return temp; } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("{0:F5}\t{1:F5}\t{2:F5}\t{3:F5}\n{4:F5}\t{5:F5}\t{6:F5}\t{7:F5}\n{8:F5}\t{9:F5}\t{10:F5}\t{11:F5}\n{12:F5}\t{13:F5}\t{14:F5}\t{15:F5}\n", m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33); } // Returns a nicely formatted string for this matrix. CSRAW public string ToString(string format) { return UnityString.Format("{0}\t{1}\t{2}\t{3}\n{4}\t{5}\t{6}\t{7}\n{8}\t{9}\t{10}\t{11}\n{12}\t{13}\t{14}\t{15}\n", m00.ToString(format), m01.ToString(format), m02.ToString(format), m03.ToString(format), m10.ToString(format), m11.ToString(format), m12.ToString(format), m13.ToString(format), m20.ToString(format), m21.ToString(format), m22.ToString(format), m23.ToString(format), m30.ToString(format), m31.ToString(format), m32.ToString(format), m33.ToString(format)); } // Creates an orthogonal projection matrix. CUSTOM static public Matrix4x4 Ortho (float left, float right, float bottom, float top, float zNear, float zFar) { Matrix4x4f m; m.SetOrtho(left, right, bottom, top, zNear, zFar); return m; } // Creates a perspective projection matrix. CUSTOM static public Matrix4x4 Perspective (float fov, float aspect, float zNear, float zFar) { Matrix4x4f m; m.SetPerspective( fov, aspect, zNear, zFar ); return m; } END // Represents an axis aligned bounding box. THREAD_SAFE STRUCT Bounds CSRAW private Vector3 m_Center; CSRAW private Vector3 m_Extents; // Creates new Bounds with a given /center/ and total /size/. Bound ::ref::extents will be half the given size. CSRAW public Bounds (Vector3 center, Vector3 size) { m_Center = center; m_Extents = size * 0.5F; } // used to allow Bounds to be used as keys in hash tables public override int GetHashCode() { return center.GetHashCode() ^ (extents.GetHashCode()<<2); } // also required for being able to use Vector4s as keys in hash tables public override bool Equals(object other) { if(!(other is Bounds)) return false; Bounds rhs=(Bounds)other; return center.Equals(rhs.center) && extents.Equals(rhs.extents); } // The center of the bounding box. CSRAW public Vector3 center { get { return m_Center; } set { m_Center = value; } } // The total size of the box. This is always twice as large as the ::ref::extents. CSRAW public Vector3 size { get { return m_Extents * 2.0F; } set { m_Extents = value * 0.5F; } } // The extents of the box. This is always half of the ::ref::size. CSRAW public Vector3 extents { get { return m_Extents; } set { m_Extents = value; } } // The minimal point of the box. This is always equal to ''center-extents''. CSRAW public Vector3 min { get { return center - extents; } set { SetMinMax (value, max); } } // The maximal point of the box. This is always equal to ''center+extents''. CSRAW public Vector3 max { get { return center + extents; } set { SetMinMax (min, value); } } //*undoc* CSRAW public static bool operator == (Bounds lhs, Bounds rhs) { return (lhs.center == rhs.center && lhs.extents == rhs.extents); } //*undoc* CSRAW public static bool operator != (Bounds lhs, Bounds rhs) { return !(lhs == rhs); } // Sets the bounds to the /min/ and /max/ value of the box. CSRAW public void SetMinMax (Vector3 min, Vector3 max) { extents = (max - min) * 0.5F; center = min + extents; } // Grows the Bounds to include the /point/. CSRAW public void Encapsulate (Vector3 point) { SetMinMax(Vector3.Min (min, point), Vector3.Max (max, point)); } // Grow the bounds to encapsulate the bounds. CSRAW public void Encapsulate (Bounds bounds) { Encapsulate (bounds.center - bounds.extents); Encapsulate (bounds.center + bounds.extents); } // Expand the bounds by increasing its /size/ by /amount/ along each side. CSRAW public void Expand (float amount) { amount *= .5f; extents += new Vector3 (amount, amount, amount); } // Expand the bounds by increasing its /size/ by /amount/ along each side. CSRAW public void Expand (Vector3 amount) { extents += amount * .5f; } // Does another bounding box intersect with this bounding box? CSRAW public bool Intersects (Bounds bounds) { return (min.x <= bounds.max.x) && (max.x >= bounds.min.x) && (min.y <= bounds.max.y) && (max.y >= bounds.min.y) && (min.z <= bounds.max.z) && (max.z >= bounds.min.z); } CUSTOM private static bool Internal_Contains (Bounds m, Vector3 point) { return m.IsInside (point); } // Is /point/ contained in the bounding box? CSRAW public bool Contains (Vector3 point) { return Internal_Contains (this, point); } CUSTOM private static float Internal_SqrDistance (Bounds m, Vector3 point) { return CalculateSqrDistance(point, m); } // The smallest squared distance between the point and this bounding box. CSRAW public float SqrDistance (Vector3 point) { return Internal_SqrDistance(this, point); } CUSTOM private static bool Internal_IntersectRay (ref Ray ray, ref Bounds bounds, out float distance) { return IntersectRayAABB(ray, bounds, distance); } // Does /ray/ intersect this bounding box? CSRAW public bool IntersectRay (Ray ray) { float dist; return Internal_IntersectRay (ref ray, ref this, out dist); } // Does /ray/ intersect this bounding box? CSRAW public bool IntersectRay (Ray ray, out float distance) { return Internal_IntersectRay (ref ray, ref this, out distance); } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("Center: {0}, Extents: {1}", m_Center, m_Extents); } // Returns a nicely formatted string for the bounds. CSRAW public string ToString(string format) { return UnityString.Format("Center: {0}, Extents: {1}", m_Center.ToString(format), m_Extents.ToString(format)); } END // Representation of four-dimensional vectors. THREAD_SAFE STRUCT Vector4 // *undocumented* CSRAW public const float kEpsilon = 0.00001F; // X component of the vector. CSRAW public float x; // Y component of the vector. CSRAW public float y; // Z component of the vector. CSRAW public float z; // W component of the vector. CSRAW public float w; // Access the x, y, z, w components using [0], [1], [2], [3] respectively. CSRAW public float this [int index] { get { switch(index) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; default: throw new IndexOutOfRangeException("Invalid Vector4 index!"); } } set { switch(index) { case 0: x = value; break; case 1: y = value; break; case 2: z = value; break; case 3: w = value; break; default: throw new IndexOutOfRangeException("Invalid Vector4 index!"); } } } // Creates a new vector with given x, y, z, w components. CSRAW public Vector4 (float x, float y, float z, float w) { this.x = x; this.y = y; this.z = z; this.w = w; } // Creates a new vector with given x, y, z components and sets /w/ to zero. CSRAW public Vector4 (float x, float y, float z) { this.x = x; this.y = y; this.z = z; this.w = 0F; } // Creates a new vector with given x, y components and sets /z/ and /w/ to zero. CSRAW public Vector4 (float x, float y) { this.x = x; this.y = y; this.z = 0F; this.w = 0F; } // Set x, y, z and w components of an existing Vector4. CSRAW public void Set (float new_x, float new_y, float new_z, float new_w) { x = new_x; y = new_y; z = new_z; w = new_w; } // Linearly interpolates between two vectors. CSRAW public static Vector4 Lerp (Vector4 from, Vector4 to, float t) { t = Mathf.Clamp01 (t); return new Vector4( from.x + (to.x - from.x)*t, from.y + (to.y - from.y)*t, from.z + (to.z - from.z)*t, from.w + (to.w - from.w)*t ); } // Moves a point /current/ towards /target/. CSRAW static public Vector4 MoveTowards (Vector4 current, Vector4 target, float maxDistanceDelta) { Vector4 toVector = target - current; float dist = toVector.magnitude; if (dist <= maxDistanceDelta || dist == 0) return target; return current + toVector / dist * maxDistanceDelta; } // Multiplies two vectors component-wise. CSRAW public static Vector4 Scale (Vector4 a, Vector4 b) { return new Vector4 (a.x*b.x, a.y*b.y, a.z*b.z, a.w*b.w); } // Multiplies every component of this vector by the same component of /scale/. CSRAW public void Scale (Vector4 scale) { x *= scale.x; y *= scale.y; z *= scale.z; w *= scale.w; } // used to allow Vector4s to be used as keys in hash tables public override int GetHashCode() { return x.GetHashCode() ^ (y.GetHashCode()<<2) ^ (z.GetHashCode()>>2) ^ (w.GetHashCode()>>1); } // also required for being able to use Vector4s as keys in hash tables public override bool Equals(object other) { if(!(other is Vector4)) return false; Vector4 rhs=(Vector4)other; return x.Equals(rhs.x) && y.Equals(rhs.y) && z.Equals(rhs.z) && w.Equals(rhs.w); } // *undoc* --- we have normalized property now CSRAW public static Vector4 Normalize (Vector4 a) { float mag = Magnitude (a); if (mag > kEpsilon) return a / mag; else return zero; } // Makes this vector have a ::ref::magnitude of 1. CSRAW public void Normalize () { float mag = Magnitude (this); if (mag > kEpsilon) this = this / mag; else this = zero; } // Returns this vector with a ::ref::magnitude of 1 (RO). CSRAW public Vector4 normalized { get { return Vector4.Normalize(this); } } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("({0:F1}, {1:F1}, {2:F1}, {3:F1})", x, y, z, w); } // Returns a nicely formatted string for this vector. CSRAW public string ToString(string format) { return UnityString.Format("({0}, {1}, {2}, {3})", x.ToString(format), y.ToString(format), z.ToString(format), w.ToString(format)); } // Dot Product of two vectors. CSRAW public static float Dot (Vector4 a, Vector4 b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } // Projects a vector onto another vector. CSRAW public static Vector4 Project (Vector4 a, Vector4 b) { return b * Dot (a, b) / Dot (b, b); } // Returns the distance between /a/ and /b/. CSRAW public static float Distance (Vector4 a, Vector4 b) { return Magnitude (a-b); } // *undoc* --- there's a property now CSRAW public static float Magnitude (Vector4 a) { return Mathf.Sqrt (Dot (a, a)); } // Returns the length of this vector (RO). CSRAW public float magnitude { get { return Mathf.Sqrt (Dot (this, this)); } } // *undoc* --- there's a property now CSRAW public static float SqrMagnitude (Vector4 a) { return Vector4.Dot (a, a); } // *undoc* --- there's a property now CSRAW public float SqrMagnitude () { return Dot (this, this); } // Returns the squared length of this vector (RO). CSRAW public float sqrMagnitude { get { return Dot (this, this); } } // Returns a vector that is made from the smallest components of two vectors. CSRAW public static Vector4 Min (Vector4 lhs, Vector4 rhs) { return new Vector4 (Mathf.Min(lhs.x,rhs.x), Mathf.Min(lhs.y,rhs.y), Mathf.Min(lhs.z,rhs.z), Mathf.Min(lhs.w,rhs.w)); } // Returns a vector that is made from the largest components of two vectors. CSRAW public static Vector4 Max (Vector4 lhs, Vector4 rhs) { return new Vector4 (Mathf.Max(lhs.x,rhs.x), Mathf.Max(lhs.y,rhs.y), Mathf.Max(lhs.z,rhs.z), Mathf.Max(lhs.w,rhs.w)); } // Shorthand for writing @@Vector4(0,0,0,0)@@ CSRAW public static Vector4 zero { get { return new Vector4 (0F, 0F, 0F, 0F); } } // Shorthand for writing @@Vector4(1,1,1,1)@@ CSRAW public static Vector4 one { get { return new Vector4 (1F, 1F, 1F, 1F); } } // Adds two vectors. CSRAW public static Vector4 operator + (Vector4 a, Vector4 b) { return new Vector4 (a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } // Subtracts one vector from another. CSRAW public static Vector4 operator - (Vector4 a, Vector4 b) { return new Vector4 (a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w); } // Negates a vector. CSRAW public static Vector4 operator - (Vector4 a) { return new Vector4 (-a.x, -a.y, -a.z, -a.w); } // Multiplies a vector by a number. CSRAW public static Vector4 operator * (Vector4 a, float d) { return new Vector4 (a.x*d, a.y*d, a.z*d, a.w*d); } // Multiplies a vector by a number. CSRAW public static Vector4 operator * (float d, Vector4 a) { return new Vector4 (a.x*d, a.y*d, a.z*d, a.w*d); } // Divides a vector by a number. CSRAW public static Vector4 operator / (Vector4 a, float d) { return new Vector4 (a.x/d, a.y/d, a.z/d, a.w/d); } // Returns true if the vectors are equal. CSRAW public static bool operator == (Vector4 lhs, Vector4 rhs) { return SqrMagnitude (lhs - rhs) < kEpsilon * kEpsilon; } // Returns true if vectors different. CSRAW public static bool operator != (Vector4 lhs, Vector4 rhs) { return SqrMagnitude (lhs - rhs) >= kEpsilon * kEpsilon; } // Converts a [[Vector3]] to a Vector4. CSRAW public static implicit operator Vector4(Vector3 v) { return new Vector4(v.x, v.y, v.z, 0.0F); } // Converts a Vector4 to a [[Vector3]]. CSRAW public static implicit operator Vector3(Vector4 v) { return new Vector3(v.x, v.y, v.z); } // Converts a [[Vector2]] to a Vector4. CSRAW public static implicit operator Vector4(Vector2 v) { return new Vector4(v.x, v.y, 0.0F, 0.0F); } // Converts a Vector4 to a [[Vector2]]. CSRAW public static implicit operator Vector2(Vector4 v) { return new Vector2(v.x, v.y); } END // Representation of rays. THREAD_SAFE STRUCT Ray CSRAW private Vector3 m_Origin; CSRAW private Vector3 m_Direction; // Creates a ray starting at /origin/ along /direction/. CSRAW public Ray (Vector3 origin, Vector3 direction) { m_Origin = origin; m_Direction = direction.normalized; } // The origin point of the ray. CSRAW public Vector3 origin { get { return m_Origin; } set { m_Origin = value; } } // The direction of the ray. CSRAW public Vector3 direction { get { return m_Direction; } set { m_Direction = value.normalized; } } // Returns a point at /distance/ units along the ray. CSRAW public Vector3 GetPoint (float distance) { return m_Origin + m_Direction * distance; } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("Origin: {0}, Dir: {1}", m_Origin, m_Direction); } // Returns a nicely formatted string for this ray. CSRAW public string ToString(string format) { return UnityString.Format("Origin: {0}, Dir: {1}", m_Origin.ToString(format), m_Direction.ToString(format)); } END // Representation of 2D rays. THREAD_SAFE STRUCT Ray2D CSRAW private Vector2 m_Origin; CSRAW private Vector2 m_Direction; // Creates a ray starting at /origin/ along /direction/. CSRAW public Ray2D (Vector2 origin, Vector2 direction) { m_Origin = origin; m_Direction = direction.normalized; } // The origin point of the ray. CSRAW public Vector2 origin { get { return m_Origin; } set { m_Origin = value; } } // The direction of the ray. CSRAW public Vector2 direction { get { return m_Direction; } set { m_Direction = value.normalized; } } // Returns a point at /distance/ units along the ray. CSRAW public Vector2 GetPoint (float distance) { return m_Origin + m_Direction * distance; } /// *listonly* CSRAW override public string ToString() { return UnityString.Format("Origin: {0}, Dir: {1}", m_Origin, m_Direction); } // Returns a nicely formatted string for this ray. CSRAW public string ToString(string format) { return UnityString.Format("Origin: {0}, Dir: {1}", m_Origin.ToString(format), m_Direction.ToString(format)); } END // Representation of planes. THREAD_SAFE STRUCT Plane CSRAW Vector3 m_Normal; CSRAW float m_Distance; // Normal vector of the plane. CSRAW public Vector3 normal { get { return m_Normal; } set { m_Normal = value; } } // Distance from the origin to the plane. CSRAW public float distance { get { return m_Distance; } set { m_Distance = value; } } // Creates a plane. public Plane (Vector3 inNormal, Vector3 inPoint) { m_Normal = Vector3.Normalize (inNormal); m_Distance = -Vector3.Dot (inNormal, inPoint); } // Creates a plane. public Plane (Vector3 inNormal, float d) { m_Normal = Vector3.Normalize (inNormal); m_Distance = d; } // Creates a plane. public Plane (Vector3 a, Vector3 b, Vector3 c) { m_Normal = Vector3.Normalize (Vector3.Cross (b - a, c - a)); m_Distance = -Vector3.Dot (m_Normal, a); } // Sets a plane using a point that lies within it plus a normal to orient it (note that the normal must be a normalised vector). public void SetNormalAndPosition (Vector3 inNormal, Vector3 inPoint) { normal = Vector3.Normalize (inNormal); distance = -Vector3.Dot (inNormal, inPoint); } // Sets a plane using three points that lie within it. The points go around clockwise as you look down on the top surface of the plane. public void Set3Points (Vector3 a, Vector3 b, Vector3 c) { normal = Vector3.Normalize (Vector3.Cross (b - a, c - a)); distance = -Vector3.Dot (normal, a); } // Returns a signed distance from plane to point. public float GetDistanceToPoint (Vector3 inPt) { return Vector3.Dot (normal, inPt) + distance; } // Is a point on the positive side of the plane? public bool GetSide (Vector3 inPt) { return Vector3.Dot (normal, inPt) + distance > 0.0F; } // Are two points on the same side of the plane? public bool SameSide (Vector3 inPt0, Vector3 inPt1) { float d0 = GetDistanceToPoint(inPt0); float d1 = GetDistanceToPoint(inPt1); if (d0 > 0.0f && d1 > 0.0f) return true; else if (d0 <= 0.0f && d1 <= 0.0f) return true; else return false; } // Intersects a ray with the plane. public bool Raycast (Ray ray, out float enter) { float vdot = Vector3.Dot (ray.direction, normal); float ndot = -Vector3.Dot (ray.origin, normal) - distance; // is line parallel to the plane? if so, even if the line is // at the plane it is not considered as intersection because // it would be impossible to determine the point of intersection if ( Mathf.Approximately (vdot, 0.0f) ) { enter = 0.0F; return false; } // the resulting intersection is behind the origin of the ray // if the result is negative ( enter < 0 ) enter = ndot / vdot; return enter > 0.0F; } END // A collection of common math functions. THREAD_SAFE STRUCT Mathf CSRAW // Returns the sine of angle /f/ in radians. CSRAW public static float Sin (float f) { return (float)Math.Sin (f); } // Returns the cosine of angle /f/ in radians. CSRAW public static float Cos (float f) { return (float)Math.Cos (f); } // Returns the tangent of angle /f/ in radians. CSRAW public static float Tan (float f) { return (float)Math.Tan (f); } // Returns the arc-sine of /f/ - the angle in radians whose sine is /f/. CSRAW public static float Asin (float f) { return (float)Math.Asin (f); } // Returns the arc-cosine of /f/ - the angle in radians whose cosine is /f/. CSRAW public static float Acos (float f) { return (float)Math.Acos (f); } // Returns the arc-tangent of /f/ - the angle in radians whose tangent is /f/. CSRAW public static float Atan (float f) { return (float)Math.Atan (f); } // Returns the angle in radians whose ::ref::Tan is @@y/x@@. CSRAW public static float Atan2 (float y, float x) { return (float)Math.Atan2 (y,x); } // Returns square root of /f/. CSRAW public static float Sqrt (float f) { return (float)Math.Sqrt (f); } // Returns the absolute value of /f/. CSRAW public static float Abs (float f) { return (float)Math.Abs (f); } // Returns the absolute value of /value/. CSRAW public static int Abs (int value) { return Math.Abs (value); } /// *listonly* CSRAW public static float Min (float a, float b) { return a < b ? a : b; } // Returns the smallest of two or more values. CSRAW public static float Min (params float[] values) { int len = values.Length; // cache the length if (len == 0) return 0; float m = values[0]; for (int i=1; i b ? a : b; } // Returns largest of two or more values. CSRAW public static float Max (params float[] values) { int len = values.Length; // cache the length if (len == 0) return 0; float m = values[0]; for (int i=1; i m) m = values[i]; } return m; } /// *listonly* CSRAW public static int Max (int a, int b) { return a > b ? a : b; } // Returns the largest of two or more values. CSRAW public static int Max (params int[] values) { int len = values.Length; // cache the length if (len == 0) return 0; int m = values[0]; for (int i=1; i m) m = values[i]; } return m; } // Returns /f/ raised to power /p/. CSRAW public static float Pow (float f, float p) { return (float)Math.Pow (f, p); } // Returns e raised to the specified power. CSRAW public static float Exp (float power) { return (float)Math.Exp (power); } // Returns the logarithm of a specified number in a specified base. CSRAW public static float Log (float f, float p) { return (float)Math.Log (f, p); } // Returns the natural (base e) logarithm of a specified number. CSRAW public static float Log (float f) { return (float)Math.Log (f); } // Returns the base 10 logarithm of a specified number. CSRAW public static float Log10 (float f) { return (float)Math.Log10 (f); } // Returns the smallest integer greater to or equal to /f/. CSRAW public static float Ceil (float f) { return (float)Math.Ceiling (f); } // Returns the largest integer smaller to or equal to /f/. CSRAW public static float Floor (float f) { return (float)Math.Floor (f); } // Returns /f/ rounded to the nearest integer. CSRAW public static float Round (float f) { return (float)Math.Round (f); } // Returns the smallest integer greater to or equal to /f/. CSRAW public static int CeilToInt (float f) { return (int)Math.Ceiling (f); } // Returns the largest integer smaller to or equal to /f/. CSRAW public static int FloorToInt (float f) { return (int)Math.Floor (f); } // Returns /f/ rounded to the nearest integer. CSRAW public static int RoundToInt (float f) { return (int)Math.Round (f); } // Returns the sign of /f/. CSRAW public static float Sign (float f) { return f >= 0F ? 1F : -1F; } // The infamous ''3.14159265358979...'' value (RO). CSRAW public const float PI = (float)Math.PI; // A representation of positive infinity (RO). CSRAW public const float Infinity = Single.PositiveInfinity; // A representation of negative infinity (RO). CSRAW public const float NegativeInfinity = Single.NegativeInfinity; // Degrees-to-radians conversion constant (RO). CSRAW public const float Deg2Rad = PI * 2F / 360F; // Radians-to-degrees conversion constant (RO). CSRAW public const float Rad2Deg = 1F / Deg2Rad; // A tiny floating point value (RO). #if UNITY_IPHONE || UNITY_BB10 || UNITY_TIZEN CSRAW public const float Epsilon = 1.17549435E-38f; // VFP rounds de-normlized values to 0, unfortunatelly Single.Epsilon is de-normalized value! #else CSRAW public const float Epsilon = Single.Epsilon; #endif // Clamps a value between a minimum float and maximum float value. CSRAW public static float Clamp (float value, float min, float max) { if (value < min) value = min; else if (value > max) value = max; return value; } // Clamps value between min and max and returns value. // Set the position of the transform to be that of the time // but never less than 1 or more than 3 // CSRAW public static int Clamp (int value, int min, int max) { if (value < min) value = min; else if (value > max) value = max; return value; } // Clamps value between 0 and 1 and returns value CSRAW public static float Clamp01 (float value) { if (value < 0F) return 0F; else if (value > 1F) return 1F; else return value; } // Interpolates between /a/ and /b/ by /t/. /t/ is clamped between 0 and 1. CSRAW public static float Lerp (float from, float to, float t) { return from + (to - from) * Clamp01 (t); } // Same as ::ref::Lerp but makes sure the values interpolate correctly when they wrap around 360 degrees. CSRAW public static float LerpAngle (float a, float b, float t) { float delta = Repeat ((b - a), 360); if (delta > 180) delta -= 360; return a + delta * Clamp01 (t); } // Moves a value /current/ towards /target/. CSRAW static public float MoveTowards (float current, float target, float maxDelta) { if (Mathf.Abs(target - current) <= maxDelta) return target; return current + Mathf.Sign(target - current) * maxDelta; } // Same as ::ref::MoveTowards but makes sure the values interpolate correctly when they wrap around 360 degrees. CSRAW static public float MoveTowardsAngle (float current, float target, float maxDelta) { target = current + DeltaAngle(current, target); return MoveTowards(current, target, maxDelta); } // Interpolates between /min/ and /max/ with smoothing at the limits. CSRAW public static float SmoothStep (float from, float to, float t) { t = Mathf.Clamp01(t); t = -2.0F * t*t*t + 3.0F * t*t; return to * t + from * (1F - t); } //*undocumented CSRAW public static float Gamma (float value, float absmax, float gamma) { bool negative = false; if (value < 0F) negative = true; float absval = Abs(value); if (absval > absmax) return negative ? -absval : absval; float result = Pow(absval / absmax, gamma) * absmax; return negative ? -result : result; } // Compares two floating point values if they are similar. CSRAW public static bool Approximately (float a, float b) { // If a or b is zero, compare that the other is less or equal to epsilon. // If neither a or b are 0, then find an epsilon that is good for // comparing numbers at the maximum magnitude of a and b. // Floating points have about 7 significant digits, so // 1.000001f can be represented while 1.0000001f is rounded to zero, // thus we could use an epsilon of 0.000001f for comparing values close to 1. // We multiply this epsilon by the biggest magnitude of a and b. return Abs(b - a) < Max( 0.000001f * Max(Abs(a), Abs(b)), Epsilon*8); } // Gradually changes a value towards a desired goal over time. CSRAW public static float SmoothDamp (float current, float target, ref float currentVelocity, float smoothTime, float maxSpeed = Mathf.Infinity, float deltaTime = Time.deltaTime) { // Based on Game Programming Gems 4 Chapter 1.10 smoothTime = Mathf.Max(0.0001F, smoothTime); float omega = 2F / smoothTime; float x = omega * deltaTime; float exp = 1F / (1F + x + 0.48F*x*x + 0.235F*x*x*x); float change = current - target; float originalTo = target; // Clamp maximum speed float maxChange = maxSpeed * smoothTime; change = Mathf.Clamp(change, -maxChange, maxChange); target = current - change; float temp = (currentVelocity + omega * change) * deltaTime; currentVelocity = (currentVelocity - omega * temp) * exp; float output = target + (change + temp) * exp; // Prevent overshooting if (originalTo - current > 0.0F == output > originalTo) { output = originalTo; currentVelocity = (output - originalTo) / deltaTime; } return output; } // Gradually changes an angle given in degrees towards a desired goal angle over time. CSRAW public static float SmoothDampAngle (float current, float target, ref float currentVelocity, float smoothTime, float maxSpeed = Mathf.Infinity, float deltaTime = Time.deltaTime) { // Normalize angles target = current + DeltaAngle(current, target); return SmoothDamp(current, target, ref currentVelocity, smoothTime, maxSpeed, deltaTime); } // Loops the value t, so that it is never larger than length and never smaller than 0. CSRAW public static float Repeat (float t, float length) { return t - Mathf.Floor (t / length) * length; } // PingPongs the value t, so that it is never larger than length and never smaller than 0. CSRAW public static float PingPong (float t, float length) { t = Repeat (t, length * 2F); return length - Mathf.Abs (t - length); } // Calculates the ::ref::Lerp parameter between of two values. CSRAW public static float InverseLerp (float from, float to, float value) { if (from < to) { if (value < from) return 0.0F; else if (value > to) return 1.0F; else { value -= from; value /= (to - from); return value; } } else if (from > to) { if (value < to) return 1.0F; else if (value > from) return 0.0F; else { return 1.0F - ((value - to) / (from - to)); } } else { return 0.0F; } } // Returns the closest power of two value. CUSTOM static int ClosestPowerOfTwo (int value) { return ClosestPowerOfTwo(value); } // Converts the given value from gamma to linear color space. CUSTOM static float GammaToLinearSpace (float value) { return GammaToLinearSpace (value); } // Converts the given value from linear to gamma color space. CUSTOM static float LinearToGammaSpace (float value) { return LinearToGammaSpace (value); } // Returns true if the value is power of two. CUSTOM static bool IsPowerOfTwo (int value) { return IsPowerOfTwo(value); } // Returns the next power of two value CUSTOM static int NextPowerOfTwo (int value) { return NextPowerOfTwo(value); } // Calculates the shortest difference between two given angles. CSRAW public static float DeltaAngle (float current, float target) { float delta = Mathf.Repeat ((target - current), 360.0F); if (delta > 180.0F) delta -= 360.0F; return delta; } // Generate 2D Perlin noise. CUSTOM static float PerlinNoise (float x, float y) { return PerlinNoise::NoiseNormalized (x,y); } // Infinite Line Intersection (line1 is p1-p2 and line2 is p3-p4) CSRAW internal static bool LineIntersection (Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, ref Vector2 result) { float bx = p2.x - p1.x; float by = p2.y - p1.y; float dx = p4.x - p3.x; float dy = p4.y - p3.y; float bDotDPerp = bx * dy - by * dx; if (bDotDPerp == 0) { return false; } float cx = p3.x - p1.x; float cy = p3.y - p1.y; float t = (cx * dy - cy * dx) / bDotDPerp; result = new Vector2 (p1.x + t * bx, p1.y + t * by); return true; } // Line Segment Intersection (line1 is p1-p2 and line2 is p3-p4) CSRAW internal static bool LineSegmentIntersection(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, ref Vector2 result) { float bx = p2.x - p1.x; float by = p2.y - p1.y; float dx = p4.x - p3.x; float dy = p4.y - p3.y; float bDotDPerp = bx * dy - by * dx; if (bDotDPerp == 0) { return false; } float cx = p3.x - p1.x; float cy = p3.y - p1.y; float t = (cx * dy - cy * dx) / bDotDPerp; if (t < 0 || t > 1) { return false; } float u = (cx * by - cy * bx) / bDotDPerp; if (u < 0 || u > 1) { return false; } result = new Vector2(p1.x + t * bx, p1.y + t * by); return true; } END CSRAW }