summaryrefslogtreecommitdiff
path: root/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Point/PointKDTree.cs
diff options
context:
space:
mode:
Diffstat (limited to 'Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Point/PointKDTree.cs')
-rw-r--r--Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Point/PointKDTree.cs309
1 files changed, 309 insertions, 0 deletions
diff --git a/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Point/PointKDTree.cs b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Point/PointKDTree.cs
new file mode 100644
index 0000000..37bc463
--- /dev/null
+++ b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Point/PointKDTree.cs
@@ -0,0 +1,309 @@
+using System.Collections.Generic;
+
+namespace Pathfinding {
+ using Pathfinding.Util;
+
+ /// <summary>
+ /// Represents a collection of GraphNodes.
+ /// It allows for fast lookups of the closest node to a point.
+ ///
+ /// See: https://en.wikipedia.org/wiki/K-d_tree
+ /// </summary>
+ public class PointKDTree {
+ public const int LeafSize = 10;
+ public const int LeafArraySize = LeafSize*2 + 1;
+
+ Node[] tree = new Node[16];
+
+ int numNodes = 0;
+
+ readonly List<GraphNode> largeList = new List<GraphNode>();
+ readonly Stack<GraphNode[]> arrayCache = new Stack<GraphNode[]>();
+ static readonly IComparer<GraphNode>[] comparers = new IComparer<GraphNode>[] { new CompareX(), new CompareY(), new CompareZ() };
+
+ struct Node {
+ /// <summary>Nodes in this leaf node (null if not a leaf node)</summary>
+ public GraphNode[] data;
+ /// <summary>Split point along the <see cref="splitAxis"/> if not a leaf node</summary>
+ public int split;
+ /// <summary>Number of non-null entries in <see cref="data"/></summary>
+ public ushort count;
+ /// <summary>Axis to split along if not a leaf node (x=0, y=1, z=2)</summary>
+ public byte splitAxis;
+ }
+
+ // Pretty ugly with one class for each axis, but it has been verified to make the tree around 5% faster
+ class CompareX : IComparer<GraphNode> {
+ public int Compare (GraphNode lhs, GraphNode rhs) { return lhs.position.x.CompareTo(rhs.position.x); }
+ }
+
+ class CompareY : IComparer<GraphNode> {
+ public int Compare (GraphNode lhs, GraphNode rhs) { return lhs.position.y.CompareTo(rhs.position.y); }
+ }
+
+ class CompareZ : IComparer<GraphNode> {
+ public int Compare (GraphNode lhs, GraphNode rhs) { return lhs.position.z.CompareTo(rhs.position.z); }
+ }
+
+ public PointKDTree() {
+ tree[1] = new Node { data = GetOrCreateList() };
+ }
+
+ /// <summary>Add the node to the tree</summary>
+ public void Add (GraphNode node) {
+ numNodes++;
+ Add(node, 1);
+ }
+
+ /// <summary>Rebuild the tree starting with all nodes in the array between index start (inclusive) and end (exclusive)</summary>
+ public void Rebuild (GraphNode[] nodes, int start, int end) {
+ if (start < 0 || end < start || end > nodes.Length)
+ throw new System.ArgumentException();
+
+ for (int i = 0; i < tree.Length; i++) {
+ var data = tree[i].data;
+ if (data != null) {
+ for (int j = 0; j < LeafArraySize; j++) data[j] = null;
+ arrayCache.Push(data);
+ tree[i].data = null;
+ }
+ }
+
+ numNodes = end - start;
+ Build(1, new List<GraphNode>(nodes), start, end);
+ }
+
+ GraphNode[] GetOrCreateList () {
+ // Note, the lists will never become larger than this initial capacity, so possibly they should be replaced by arrays
+ return arrayCache.Count > 0 ? arrayCache.Pop() : new GraphNode[LeafArraySize];
+ }
+
+ int Size (int index) {
+ return tree[index].data != null ? tree[index].count : Size(2 * index) + Size(2 * index + 1);
+ }
+
+ void CollectAndClear (int index, List<GraphNode> buffer) {
+ var nodes = tree[index].data;
+ var count = tree[index].count;
+
+ if (nodes != null) {
+ tree[index] = new Node();
+ for (int i = 0; i < count; i++) {
+ buffer.Add(nodes[i]);
+ nodes[i] = null;
+ }
+ arrayCache.Push(nodes);
+ } else {
+ CollectAndClear(index*2, buffer);
+ CollectAndClear(index*2 + 1, buffer);
+ }
+ }
+
+ static int MaxAllowedSize (int numNodes, int depth) {
+ // Allow a node to be 2.5 times as full as it should ideally be
+ // but do not allow it to contain more than 3/4ths of the total number of nodes
+ // (important to make sure nodes near the top of the tree also get rebalanced).
+ // A node should ideally contain numNodes/(2^depth) nodes below it (^ is exponentiation, not xor)
+ return System.Math.Min(((5 * numNodes) / 2) >> depth, (3 * numNodes) / 4);
+ }
+
+ void Rebalance (int index) {
+ CollectAndClear(index, largeList);
+ Build(index, largeList, 0, largeList.Count);
+ largeList.ClearFast();
+ }
+
+ void EnsureSize (int index) {
+ if (index >= tree.Length) {
+ var newLeaves = new Node[System.Math.Max(index + 1, tree.Length*2)];
+ tree.CopyTo(newLeaves, 0);
+ tree = newLeaves;
+ }
+ }
+
+ void Build (int index, List<GraphNode> nodes, int start, int end) {
+ EnsureSize(index);
+ if (end - start <= LeafSize) {
+ var leafData = tree[index].data = GetOrCreateList();
+ tree[index].count = (ushort)(end - start);
+ for (int i = start; i < end; i++)
+ leafData[i - start] = nodes[i];
+ } else {
+ Int3 mn, mx;
+ mn = mx = nodes[start].position;
+ for (int i = start; i < end; i++) {
+ var p = nodes[i].position;
+ mn = new Int3(System.Math.Min(mn.x, p.x), System.Math.Min(mn.y, p.y), System.Math.Min(mn.z, p.z));
+ mx = new Int3(System.Math.Max(mx.x, p.x), System.Math.Max(mx.y, p.y), System.Math.Max(mx.z, p.z));
+ }
+ Int3 diff = mx - mn;
+ var axis = diff.x > diff.y ? (diff.x > diff.z ? 0 : 2) : (diff.y > diff.z ? 1 : 2);
+
+ nodes.Sort(start, end - start, comparers[axis]);
+ int mid = (start+end)/2;
+ tree[index].split = (nodes[mid-1].position[axis] + nodes[mid].position[axis] + 1)/2;
+ tree[index].splitAxis = (byte)axis;
+ Build(index*2 + 0, nodes, start, mid);
+ Build(index*2 + 1, nodes, mid, end);
+ }
+ }
+
+ void Add (GraphNode point, int index, int depth = 0) {
+ // Move down in the tree until the leaf node is found that this point is inside of
+ while (tree[index].data == null) {
+ index = 2 * index + (point.position[tree[index].splitAxis] < tree[index].split ? 0 : 1);
+ depth++;
+ }
+
+ // Add the point to the leaf node
+ tree[index].data[tree[index].count++] = point;
+
+ // Check if the leaf node is large enough that we need to do some rebalancing
+ if (tree[index].count >= LeafArraySize) {
+ int levelsUp = 0;
+
+ // Search upwards for nodes that are too large and should be rebalanced
+ // Rebalance the node above the node that had a too large size so that it can
+ // move children over to the sibling
+ while (depth - levelsUp > 0 && Size(index >> levelsUp) > MaxAllowedSize(numNodes, depth-levelsUp)) {
+ levelsUp++;
+ }
+
+ Rebalance(index >> levelsUp);
+ }
+ }
+
+ /// <summary>Closest node to the point which satisfies the constraint and is at most at the given distance</summary>
+ public GraphNode GetNearest (Int3 point, NNConstraint constraint, ref float distanceSqr) {
+ GraphNode best = null;
+ long bestSqrDist = distanceSqr < float.PositiveInfinity ? (long)(Int3.FloatPrecision * Int3.FloatPrecision * distanceSqr) : long.MaxValue;
+
+ GetNearestInternal(1, point, constraint, ref best, ref bestSqrDist);
+ distanceSqr = best != null ? Int3.PrecisionFactor*Int3.PrecisionFactor * bestSqrDist : float.PositiveInfinity;
+ return best;
+ }
+
+ void GetNearestInternal (int index, Int3 point, NNConstraint constraint, ref GraphNode best, ref long bestSqrDist) {
+ var data = tree[index].data;
+
+ if (data != null) {
+ for (int i = tree[index].count - 1; i >= 0; i--) {
+ var dist = (data[i].position - point).sqrMagnitudeLong;
+ if (dist < bestSqrDist && (constraint == null || constraint.Suitable(data[i]))) {
+ bestSqrDist = dist;
+ best = data[i];
+ }
+ }
+ } else {
+ var dist = (long)(point[tree[index].splitAxis] - tree[index].split);
+ var childIndex = 2 * index + (dist < 0 ? 0 : 1);
+ GetNearestInternal(childIndex, point, constraint, ref best, ref bestSqrDist);
+
+ // Try the other one if it is possible to find a valid node on the other side
+ if (dist*dist < bestSqrDist) {
+ // childIndex ^ 1 will flip the last bit, so if childIndex is odd, then childIndex ^ 1 will be even
+ GetNearestInternal(childIndex ^ 0x1, point, constraint, ref best, ref bestSqrDist);
+ }
+ }
+ }
+
+ /// <summary>Closest node to the point which satisfies the constraint</summary>
+ public GraphNode GetNearestConnection (Int3 point, NNConstraint constraint, long maximumSqrConnectionLength) {
+ GraphNode best = null;
+ long bestSqrDist = long.MaxValue;
+
+ // Given a found point at a distance of r world units
+ // then any node that has a connection on which a closer point lies must have a squared distance lower than
+ // d^2 < (maximumConnectionLength/2)^2 + r^2
+ // Note: (x/2)^2 = (x^2)/4
+ // Note: (x+3)/4 to round up
+ long offset = (maximumSqrConnectionLength+3)/4;
+
+ GetNearestConnectionInternal(1, point, constraint, ref best, ref bestSqrDist, offset);
+ return best;
+ }
+
+ void GetNearestConnectionInternal (int index, Int3 point, NNConstraint constraint, ref GraphNode best, ref long bestSqrDist, long distanceThresholdOffset) {
+ var data = tree[index].data;
+
+ if (data != null) {
+ var pointv3 = (UnityEngine.Vector3)point;
+ for (int i = tree[index].count - 1; i >= 0; i--) {
+ var dist = (data[i].position - point).sqrMagnitudeLong;
+ // Note: the subtraction is important. If we used an addition on the RHS instead the result might overflow as bestSqrDist starts as long.MaxValue
+ if (dist - distanceThresholdOffset < bestSqrDist && (constraint == null || constraint.Suitable(data[i]))) {
+ // This node may contains the closest connection
+ // Check all connections
+ var conns = (data[i] as PointNode).connections;
+ if (conns != null) {
+ var nodePos = (UnityEngine.Vector3)data[i].position;
+ for (int j = 0; j < conns.Length; j++) {
+ // Find the closest point on the connection, but only on this node's side of the connection
+ // This ensures that we will find the closest node with the closest connection.
+ var connectionMidpoint = ((UnityEngine.Vector3)conns[j].node.position + nodePos) * 0.5f;
+ float sqrConnectionDistance = VectorMath.SqrDistancePointSegment(nodePos, connectionMidpoint, pointv3);
+ // Convert to Int3 space
+ long sqrConnectionDistanceInt = (long)(sqrConnectionDistance*Int3.FloatPrecision*Int3.FloatPrecision);
+ if (sqrConnectionDistanceInt < bestSqrDist) {
+ bestSqrDist = sqrConnectionDistanceInt;
+ best = data[i];
+ }
+ }
+ }
+
+ // Also check if the node itself is close enough.
+ // This is important if the node has no connections at all.
+ if (dist < bestSqrDist) {
+ bestSqrDist = dist;
+ best = data[i];
+ }
+ }
+ }
+ } else {
+ var dist = (long)(point[tree[index].splitAxis] - tree[index].split);
+ var childIndex = 2 * index + (dist < 0 ? 0 : 1);
+ GetNearestConnectionInternal(childIndex, point, constraint, ref best, ref bestSqrDist, distanceThresholdOffset);
+
+ // Try the other one if it is possible to find a valid node on the other side
+ // Note: the subtraction is important. If we used an addition on the RHS instead the result might overflow as bestSqrDist starts as long.MaxValue
+ if (dist*dist - distanceThresholdOffset < bestSqrDist) {
+ // childIndex ^ 1 will flip the last bit, so if childIndex is odd, then childIndex ^ 1 will be even
+ GetNearestConnectionInternal(childIndex ^ 0x1, point, constraint, ref best, ref bestSqrDist, distanceThresholdOffset);
+ }
+ }
+ }
+
+ /// <summary>Add all nodes within a squared distance of the point to the buffer.</summary>
+ /// <param name="point">Nodes around this point will be added to the buffer.</param>
+ /// <param name="sqrRadius">squared maximum distance in Int3 space. If you are converting from world space you will need to multiply by Int3.Precision:
+ /// <code> var sqrRadius = (worldSpaceRadius * Int3.Precision) * (worldSpaceRadius * Int3.Precision); </code></param>
+ /// <param name="buffer">All nodes will be added to this list.</param>
+ public void GetInRange (Int3 point, long sqrRadius, List<GraphNode> buffer) {
+ GetInRangeInternal(1, point, sqrRadius, buffer);
+ }
+
+ void GetInRangeInternal (int index, Int3 point, long sqrRadius, List<GraphNode> buffer) {
+ var data = tree[index].data;
+
+ if (data != null) {
+ for (int i = tree[index].count - 1; i >= 0; i--) {
+ var dist = (data[i].position - point).sqrMagnitudeLong;
+ if (dist < sqrRadius) {
+ buffer.Add(data[i]);
+ }
+ }
+ } else {
+ var dist = (long)(point[tree[index].splitAxis] - tree[index].split);
+ // Pick the first child to enter based on which side of the splitting line the point is
+ var childIndex = 2 * index + (dist < 0 ? 0 : 1);
+ GetInRangeInternal(childIndex, point, sqrRadius, buffer);
+
+ // Try the other one if it is possible to find a valid node on the other side
+ if (dist*dist < sqrRadius) {
+ // childIndex ^ 1 will flip the last bit, so if childIndex is odd, then childIndex ^ 1 will be even
+ GetInRangeInternal(childIndex ^ 0x1, point, sqrRadius, buffer);
+ }
+ }
+ }
+ }
+}