using UnityEngine;
using System.Collections.Generic;
namespace Pathfinding.RVO {
using Pathfinding;
using Pathfinding.Util;
using Unity.Burst;
using Unity.Jobs;
using Unity.Mathematics;
using Unity.Collections;
using Unity.IL2CPP.CompilerServices;
using Pathfinding.Drawing;
using Pathfinding.ECS.RVO;
using static Unity.Burst.CompilerServices.Aliasing;
using Unity.Profiling;
using System.Diagnostics;
[BurstCompile(CompileSynchronously = false, FloatMode = FloatMode.Fast)]
public struct JobRVOPreprocess : IJob {
[ReadOnly]
public SimulatorBurst.AgentData agentData;
[ReadOnly]
public SimulatorBurst.AgentOutputData previousOutput;
[WriteOnly]
public SimulatorBurst.TemporaryAgentData temporaryAgentData;
public int startIndex;
public int endIndex;
public void Execute () {
for (int i = startIndex; i < endIndex; i++) {
if (!agentData.version[i].Valid) continue;
// Manually controlled overrides the agent being locked.
// If one for some reason uses them at the same time.
var locked = agentData.locked[i] & !agentData.manuallyControlled[i];
if (locked) {
temporaryAgentData.desiredTargetPointInVelocitySpace[i] = float2.zero;
temporaryAgentData.desiredVelocity[i] = float3.zero;
temporaryAgentData.currentVelocity[i] = float3.zero;
} else {
var desiredTargetPointInVelocitySpace = agentData.movementPlane[i].ToPlane(agentData.targetPoint[i] - agentData.position[i]);
temporaryAgentData.desiredTargetPointInVelocitySpace[i] = desiredTargetPointInVelocitySpace;
// Estimate our current velocity
// This is necessary because other agents need to know
// how this agent is moving to be able to avoid it
var currentVelocity = math.normalizesafe(previousOutput.targetPoint[i] - agentData.position[i]) * previousOutput.speed[i];
// Calculate the desired velocity from the point we want to reach
temporaryAgentData.desiredVelocity[i] = agentData.movementPlane[i].ToWorld(math.normalizesafe(desiredTargetPointInVelocitySpace) * agentData.desiredSpeed[i], 0);
var collisionNormal = math.normalizesafe(agentData.collisionNormal[i]);
// Check if the velocity is going into the wall
// If so: remove that component from the velocity
// Note: if the collisionNormal is zero then the dot prodct will produce a zero as well and nothing will happen.
float dot = math.dot(currentVelocity, collisionNormal);
currentVelocity -= math.min(0, dot) * collisionNormal;
temporaryAgentData.currentVelocity[i] = currentVelocity;
}
}
}
}
///
/// Inspired by StarCraft 2's avoidance of locked units.
/// See: http://www.gdcvault.com/play/1014514/AI-Navigation-It-s-Not
///
[BurstCompile(FloatMode = FloatMode.Fast)]
public struct JobHorizonAvoidancePhase1 : Pathfinding.Jobs.IJobParallelForBatched {
[ReadOnly]
public SimulatorBurst.AgentData agentData;
[ReadOnly]
public NativeArray desiredTargetPointInVelocitySpace;
[ReadOnly]
public NativeArray neighbours;
public SimulatorBurst.HorizonAgentData horizonAgentData;
public CommandBuilder draw;
public bool allowBoundsChecks { get { return true; } }
///
/// Super simple bubble sort.
/// TODO: This will be replaced by a better implementation from the Unity.Collections library when that is stable.
///
static void Sort(NativeSlice arr, NativeSlice keys) where T : struct {
bool changed = true;
while (changed) {
changed = false;
for (int i = 0; i < arr.Length - 1; i++) {
if (keys[i] > keys[i+1]) {
var tmp = keys[i];
var tmp2 = arr[i];
keys[i] = keys[i+1];
keys[i+1] = tmp;
arr[i] = arr[i+1];
arr[i+1] = tmp2;
changed = true;
}
}
}
}
/// Calculates the shortest difference between two given angles given in radians.
public static float DeltaAngle (float current, float target) {
float num = Mathf.Repeat(target - current, math.PI*2);
if (num > math.PI) {
num -= math.PI*2;
}
return num;
}
public void Execute (int startIndex, int count) {
NativeArray angles = new NativeArray(SimulatorBurst.MaxNeighbourCount*2, Allocator.Temp);
NativeArray deltas = new NativeArray(SimulatorBurst.MaxNeighbourCount*2, Allocator.Temp);
for (int i = startIndex; i < startIndex + count; i++) {
if (!agentData.version[i].Valid) continue;
if (agentData.locked[i] || agentData.manuallyControlled[i]) {
horizonAgentData.horizonSide[i] = 0;
horizonAgentData.horizonMinAngle[i] = 0;
horizonAgentData.horizonMaxAngle[i] = 0;
continue;
}
float minAngle = 0;
float maxAngle = 0;
float desiredAngle = math.atan2(desiredTargetPointInVelocitySpace[i].y, desiredTargetPointInVelocitySpace[i].x);
int eventCount = 0;
int inside = 0;
float radius = agentData.radius[i];
var position = agentData.position[i];
var movementPlane = agentData.movementPlane[i];
var agentNeighbours = neighbours.Slice(i*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
for (int j = 0; j < agentNeighbours.Length && agentNeighbours[j] != -1; j++) {
var other = agentNeighbours[j];
if (!agentData.locked[other] && !agentData.manuallyControlled[other]) continue;
var relativePosition = movementPlane.ToPlane(agentData.position[other] - position);
float dist = math.length(relativePosition);
float angle = math.atan2(relativePosition.y, relativePosition.x) - desiredAngle;
float deltaAngle;
var otherRadius = agentData.radius[other];
if (dist < radius + otherRadius) {
// Collision
deltaAngle = math.PI * 0.49f;
} else {
// One degree
const float AngleMargin = math.PI / 180f;
deltaAngle = math.asin((radius + otherRadius)/dist) + AngleMargin;
}
float aMin = DeltaAngle(0, angle - deltaAngle);
float aMax = aMin + DeltaAngle(aMin, angle + deltaAngle);
if (aMin < 0 && aMax > 0) inside++;
angles[eventCount] = aMin;
deltas[eventCount] = 1;
eventCount++;
angles[eventCount] = aMax;
deltas[eventCount] = -1;
eventCount++;
}
// If no angle range includes angle 0 then we are already done
if (inside == 0) {
horizonAgentData.horizonSide[i] = 0;
horizonAgentData.horizonMinAngle[i] = 0;
horizonAgentData.horizonMaxAngle[i] = 0;
continue;
}
// Sort the events by their angle in ascending order
Sort(deltas.Slice(0, eventCount), angles.Slice(0, eventCount));
// Find the first index for which the angle is positive
int firstPositiveIndex = 0;
for (; firstPositiveIndex < eventCount; firstPositiveIndex++) if (angles[firstPositiveIndex] > 0) break;
// Walk in the positive direction from angle 0 until the end of the group of angle ranges that include angle 0
int tmpInside = inside;
int tmpIndex = firstPositiveIndex;
for (; tmpIndex < eventCount; tmpIndex++) {
tmpInside += deltas[tmpIndex];
if (tmpInside == 0) break;
}
maxAngle = tmpIndex == eventCount ? math.PI : angles[tmpIndex];
// Walk in the negative direction from angle 0 until the end of the group of angle ranges that include angle 0
tmpInside = inside;
tmpIndex = firstPositiveIndex - 1;
for (; tmpIndex >= 0; tmpIndex--) {
tmpInside -= deltas[tmpIndex];
if (tmpInside == 0) break;
}
minAngle = tmpIndex == -1 ? -math.PI : angles[tmpIndex];
//horizonBias = -(minAngle + maxAngle);
// Indicates that a new side should be chosen. The "best" one will be chosen later.
if (horizonAgentData.horizonSide[i] == 0) horizonAgentData.horizonSide[i] = 2;
//else horizonBias = math.PI * horizonSide;
horizonAgentData.horizonMinAngle[i] = minAngle + desiredAngle;
horizonAgentData.horizonMaxAngle[i] = maxAngle + desiredAngle;
}
}
}
///
/// Inspired by StarCraft 2's avoidance of locked units.
/// See: http://www.gdcvault.com/play/1014514/AI-Navigation-It-s-Not
///
[BurstCompile(FloatMode = FloatMode.Fast)]
public struct JobHorizonAvoidancePhase2 : Pathfinding.Jobs.IJobParallelForBatched {
[ReadOnly]
public NativeArray neighbours;
[ReadOnly]
public NativeArray versions;
public NativeArray desiredVelocity;
public NativeArray desiredTargetPointInVelocitySpace;
[ReadOnly]
public NativeArray movementPlane;
public SimulatorBurst.HorizonAgentData horizonAgentData;
public bool allowBoundsChecks => false;
public void Execute (int startIndex, int count) {
for (int i = startIndex; i < startIndex + count; i++) {
if (!versions[i].Valid) continue;
// Note: Assumes this code is run synchronous (i.e not included in the double buffering part)
//offsetVelocity = (position - Position) / simulator.DeltaTime;
if (horizonAgentData.horizonSide[i] == 0) {
continue;
}
if (horizonAgentData.horizonSide[i] == 2) {
float sum = 0;
var agentNeighbours = neighbours.Slice(i*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
for (int j = 0; j < agentNeighbours.Length && agentNeighbours[j] != -1; j++) {
var other = agentNeighbours[j];
var otherHorizonBias = -(horizonAgentData.horizonMinAngle[other] + horizonAgentData.horizonMaxAngle[other]);
sum += otherHorizonBias;
}
var horizonBias = -(horizonAgentData.horizonMinAngle[i] + horizonAgentData.horizonMaxAngle[i]);
sum += horizonBias;
horizonAgentData.horizonSide[i] = sum < 0 ? -1 : 1;
}
float bestAngle = horizonAgentData.horizonSide[i] < 0 ? horizonAgentData.horizonMinAngle[i] : horizonAgentData.horizonMaxAngle[i];
float2 desiredDirection;
math.sincos(bestAngle, out desiredDirection.y, out desiredDirection.x);
desiredVelocity[i] = movementPlane[i].ToWorld(math.length(desiredVelocity[i]) * desiredDirection, 0);
desiredTargetPointInVelocitySpace[i] = math.length(desiredTargetPointInVelocitySpace[i]) * desiredDirection;
}
}
}
[BurstCompile(FloatMode = FloatMode.Fast)]
public struct JobHardCollisions : Pathfinding.Jobs.IJobParallelForBatched where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
[ReadOnly]
public SimulatorBurst.AgentData agentData;
[ReadOnly]
public NativeArray neighbours;
[WriteOnly]
public NativeArray collisionVelocityOffsets;
public float deltaTime;
public bool enabled;
///
/// How aggressively hard collisions are resolved.
/// Should be a value between 0 and 1.
///
const float CollisionStrength = 0.8f;
public bool allowBoundsChecks => false;
public void Execute (int startIndex, int count) {
if (!enabled) {
for (int i = startIndex; i < startIndex + count; i++) {
collisionVelocityOffsets[i] = float2.zero;
}
return;
}
for (int i = startIndex; i < startIndex + count; i++) {
if (!agentData.version[i].Valid || agentData.locked[i]) {
collisionVelocityOffsets[i] = float2.zero;
continue;
}
var agentNeighbours = neighbours.Slice(i*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
var radius = agentData.radius[i];
var totalOffset = float2.zero;
float totalWeight = 0;
var position = agentData.position[i];
var movementPlane = new MovementPlaneWrapper();
movementPlane.Set(agentData.movementPlane[i]);
for (int j = 0; j < agentNeighbours.Length && agentNeighbours[j] != -1; j++) {
var other = agentNeighbours[j];
var relativePosition = movementPlane.ToPlane(position - agentData.position[other]);
var dirSqrLength = math.lengthsq(relativePosition);
var combinedRadius = agentData.radius[other] + radius;
if (dirSqrLength < combinedRadius*combinedRadius && dirSqrLength > 0.00000001f) {
// Collision
var dirLength = math.sqrt(dirSqrLength);
var normalizedDir = relativePosition * (1.0f / dirLength);
// Overlap amount
var weight = combinedRadius - dirLength;
// Position offset required to make the agents not collide anymore
var offset = normalizedDir * weight;
// In a later step a weighted average will be taken so that the average offset is extracted
var weightedOffset = offset * weight;
totalOffset += weightedOffset;
totalWeight += weight;
}
}
var offsetVelocity = totalOffset * (1.0f / (0.0001f + totalWeight));
offsetVelocity *= (CollisionStrength * 0.5f) / deltaTime;
collisionVelocityOffsets[i] = offsetVelocity;
}
}
}
[BurstCompile(CompileSynchronously = false, FloatMode = FloatMode.Fast)]
public struct JobRVOCalculateNeighbours : Pathfinding.Jobs.IJobParallelForBatched where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
[ReadOnly]
public SimulatorBurst.AgentData agentData;
[ReadOnly]
public RVOQuadtreeBurst quadtree;
public NativeArray outNeighbours;
[WriteOnly]
public SimulatorBurst.AgentOutputData output;
public bool allowBoundsChecks { get { return false; } }
public void Execute (int startIndex, int count) {
NativeArray neighbourDistances = new NativeArray(SimulatorBurst.MaxNeighbourCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
for (int i = startIndex; i < startIndex + count; i++) {
if (!agentData.version[i].Valid) continue;
CalculateNeighbours(i, outNeighbours, neighbourDistances);
}
}
void CalculateNeighbours (int agentIndex, NativeArray neighbours, NativeArray neighbourDistances) {
int maxNeighbourCount = math.min(SimulatorBurst.MaxNeighbourCount, agentData.maxNeighbours[agentIndex]);
// Write the output starting at this index in the neighbours array
var outputIndex = agentIndex * SimulatorBurst.MaxNeighbourCount;
quadtree.QueryKNearest(new RVOQuadtreeBurst.QuadtreeQuery {
position = agentData.position[agentIndex],
speed = agentData.maxSpeed[agentIndex],
agentRadius = agentData.radius[agentIndex],
timeHorizon = agentData.agentTimeHorizon[agentIndex],
outputStartIndex = outputIndex,
maxCount = maxNeighbourCount,
result = neighbours,
resultDistances = neighbourDistances,
});
int numNeighbours = 0;
while (numNeighbours < maxNeighbourCount && math.isfinite(neighbourDistances[numNeighbours])) numNeighbours++;
output.numNeighbours[agentIndex] = numNeighbours;
MovementPlaneWrapper movementPlane = default;
movementPlane.Set(agentData.movementPlane[agentIndex]);
movementPlane.ToPlane(agentData.position[agentIndex], out float localElevation);
// Filter out invalid neighbours
for (int i = 0; i < numNeighbours; i++) {
int otherIndex = neighbours[outputIndex + i];
// Interval along the y axis in which the agents overlap
movementPlane.ToPlane(agentData.position[otherIndex], out float otherElevation);
float maxY = math.min(localElevation + agentData.height[agentIndex], otherElevation + agentData.height[otherIndex]);
float minY = math.max(localElevation, otherElevation);
// The agents cannot collide if they are on different y-levels.
// Also do not avoid the agent itself.
// Apply the layer masks for agents.
// Use binary OR to reduce branching.
if ((maxY < minY) | (otherIndex == agentIndex) | (((int)agentData.collidesWith[agentIndex] & (int)agentData.layer[otherIndex]) == 0)) {
numNeighbours--;
neighbours[outputIndex + i] = neighbours[outputIndex + numNeighbours];
i--;
}
}
// Add a token indicating the size of the neighbours list
if (numNeighbours < SimulatorBurst.MaxNeighbourCount) neighbours[outputIndex + numNeighbours] = -1;
}
}
///
/// Calculates if the agent has reached the end of its path and if its blocked from further progress towards it.
///
/// If many agents have the same destination they can often end up crowded around a single point.
/// It is often desirable to detect this and mark all agents around that destination as having at least
/// partially reached the end of their paths.
///
/// This job uses the following heuristics to determine this:
///
/// 1. If an agent wants to move in a particular direction, but there's another agent in the way that makes it have to reduce its velocity,
/// the other agent is considered to be "blocking" the current agent.
/// 2. If the agent is within a small distance of the destination
/// THEN it is considered to have reached the end of its path.
/// 3. If the agent is blocked by another agent,
/// AND the other agent is blocked by this agent in turn,
/// AND if the destination is between the two agents,
/// THEN the the agent is considered to have reached the end of its path.
/// 4. If the agent is blocked by another agent which has reached the end of its path,
/// AND this agent is is moving slowly
/// AND this agent cannot move furter forward than 50% of its radius.
/// THEN the agent is considered to have reached the end of its path.
///
/// Heuristics 2 and 3 are calculated initially, and then using heuristic 4 the set of agents which have reached their destinations expands outwards.
///
/// These heuristics are robust enough that they can be used even if for example the agents are stuck in a winding maze
/// and only one agent is actually able to reach the destination.
///
/// This job doesn't affect the movement of the agents by itself.
/// However, it is built with the intention that the FlowFollowingStrength parameter will be set
/// elsewhere to 1 for agents which have reached the end of their paths. This will make the agents stop gracefully
/// when the end of their paths is crowded instead of continuing to try to desperately reach the destination.
///
[BurstCompile(CompileSynchronously = false, FloatMode = FloatMode.Fast)]
public struct JobDestinationReached: IJob where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
[ReadOnly]
public SimulatorBurst.AgentData agentData;
[ReadOnly]
public SimulatorBurst.TemporaryAgentData temporaryAgentData;
[ReadOnly]
public SimulatorBurst.ObstacleData obstacleData;
public SimulatorBurst.AgentOutputData output;
public int numAgents;
public CommandBuilder draw;
private static readonly ProfilerMarker MarkerInvert = new ProfilerMarker("InvertArrows");
private static readonly ProfilerMarker MarkerAlloc = new ProfilerMarker("Alloc");
private static readonly ProfilerMarker MarkerFirstPass = new ProfilerMarker("FirstPass");
struct TempAgentData {
public bool blockedAndSlow;
public float distToEndSq;
}
public void Execute () {
MarkerAlloc.Begin();
for (int agentIndex = 0; agentIndex < numAgents; agentIndex++) {
output.effectivelyReachedDestination[agentIndex] = ReachedEndOfPath.NotReached;
}
// For each agent, store which agents it blocks
var inArrows = new NativeArray(agentData.position.Length*SimulatorBurst.MaxBlockingAgentCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
// Number of agents that each agent blocks
var inArrowCounts = new NativeArray(agentData.position.Length, Allocator.Temp, NativeArrayOptions.ClearMemory);
var que = new NativeCircularBuffer(16, Allocator.Temp);
// True for an agent if it is in the queue, or if it should never be queued again
var queued = new NativeArray(numAgents, Allocator.Temp, NativeArrayOptions.ClearMemory);
var tempData = new NativeArray(numAgents, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
MarkerAlloc.End();
MarkerInvert.Begin();
for (int agentIndex = 0; agentIndex < numAgents; agentIndex++) {
if (!agentData.version[agentIndex].Valid) continue;
for (int i = 0; i < SimulatorBurst.MaxBlockingAgentCount; i++) {
var blockingAgentIndex = output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
if (blockingAgentIndex == -1) break;
var count = inArrowCounts[blockingAgentIndex];
if (count >= SimulatorBurst.MaxBlockingAgentCount) continue;
inArrows[blockingAgentIndex*SimulatorBurst.MaxBlockingAgentCount + count] = agentIndex;
inArrowCounts[blockingAgentIndex] = count+1;
}
}
MarkerInvert.End();
MarkerFirstPass.Begin();
for (int agentIndex = 0; agentIndex < numAgents; agentIndex++) {
if (!agentData.version[agentIndex].Valid) continue;
var position = agentData.position[agentIndex];
var movementPlane = agentData.movementPlane[agentIndex];
var ourSpeed = output.speed[agentIndex];
var ourEndOfPath = agentData.endOfPath[agentIndex];
// Ignore if destination is not set
if (!math.isfinite(ourEndOfPath.x)) continue;
var distToEndSq = math.lengthsq(movementPlane.ToPlane(ourEndOfPath - position, out float endOfPathElevationDifference));
var ourHeight = agentData.height[agentIndex];
var reachedEndOfPath = false;
var flowFollowing = false;
var ourRadius = agentData.radius[agentIndex];
var forwardClearance = output.forwardClearance[agentIndex];
// Heuristic 2
if (distToEndSq < ourRadius*ourRadius*(0.5f*0.5f) && endOfPathElevationDifference < ourHeight && endOfPathElevationDifference > -ourHeight*0.5f) {
reachedEndOfPath = true;
}
var closeToBlocked = forwardClearance < ourRadius*0.5f;
var slowish = ourSpeed*ourSpeed < math.max(0.01f*0.01f, math.lengthsq(temporaryAgentData.desiredVelocity[agentIndex])*0.25f);
var blockedAndSlow = closeToBlocked && slowish;
tempData[agentIndex] = new TempAgentData {
blockedAndSlow = blockedAndSlow,
distToEndSq = distToEndSq
};
// Heuristic 3
for (int i = 0; i < SimulatorBurst.MaxBlockingAgentCount; i++) {
var blockingAgentIndex = output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
if (blockingAgentIndex == -1) break;
var otherPosition = agentData.position[blockingAgentIndex];
var distBetweenAgentsSq = math.lengthsq(movementPlane.ToPlane(position - otherPosition));
var circleRadius = (math.sqrt(distBetweenAgentsSq) + ourRadius + agentData.radius[blockingAgentIndex])*0.5f;
var endWithinCircle = math.lengthsq(movementPlane.ToPlane(ourEndOfPath - 0.5f*(position + otherPosition))) < circleRadius*circleRadius;
if (endWithinCircle) {
// Check if the other agent has an arrow pointing to this agent (i.e. it is blocked by this agent)
var loop = false;
for (int j = 0; j < SimulatorBurst.MaxBlockingAgentCount; j++) {
var arrowFromAgent = inArrows[agentIndex*SimulatorBurst.MaxBlockingAgentCount + j];
if (arrowFromAgent == -1) break;
if (arrowFromAgent == blockingAgentIndex) {
loop = true;
break;
}
}
if (loop) {
flowFollowing = true;
if (blockedAndSlow) {
reachedEndOfPath = true;
}
}
}
}
var effectivelyReached = reachedEndOfPath ? ReachedEndOfPath.Reached : (flowFollowing ? ReachedEndOfPath.ReachedSoon : ReachedEndOfPath.NotReached);
if (effectivelyReached != output.effectivelyReachedDestination[agentIndex]) {
output.effectivelyReachedDestination[agentIndex] = effectivelyReached;
if (effectivelyReached == ReachedEndOfPath.Reached) {
// Mark this agent as queued to prevent it from being added to the queue again.
queued[agentIndex] = true;
// Changing to the Reached flag may affect the calculations for other agents.
// So we iterate over all agents that may be affected and enqueue them again.
var count = inArrowCounts[agentIndex];
for (int i = 0; i < count; i++) {
var inArrow = inArrows[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
if (!queued[inArrow]) que.PushEnd(inArrow);
}
}
}
}
MarkerFirstPass.End();
int iteration = 0;
while (que.Length > 0) {
var agentIndex = que.PopStart();
iteration++;
// If we are already at the reached stage, the result can never change.
if (output.effectivelyReachedDestination[agentIndex] == ReachedEndOfPath.Reached) continue;
queued[agentIndex] = false;
var ourSpeed = output.speed[agentIndex];
var ourEndOfPath = agentData.endOfPath[agentIndex];
// Ignore if destination is not set
if (!math.isfinite(ourEndOfPath.x)) continue;
var ourPosition = agentData.position[agentIndex];
var blockedAndSlow = tempData[agentIndex].blockedAndSlow;
var distToEndSq = tempData[agentIndex].distToEndSq;
var ourRadius = agentData.radius[agentIndex];
var reachedEndOfPath = false;
var flowFollowing = false;
// Heuristic 4
for (int i = 0; i < SimulatorBurst.MaxBlockingAgentCount; i++) {
var blockingAgentIndex = output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
if (blockingAgentIndex == -1) break;
var otherEndOfPath = agentData.endOfPath[blockingAgentIndex];
var otherRadius = agentData.radius[blockingAgentIndex];
// Check if the other agent has a destination in roughly the same position as this agent.
// If we are further from the destination we tolarate larger deviations.
var endOfPathsOverlapping = math.lengthsq(otherEndOfPath - ourEndOfPath) <= distToEndSq*(0.5f*0.5f);
var otherReached = output.effectivelyReachedDestination[blockingAgentIndex] == ReachedEndOfPath.Reached;
if (otherReached && (endOfPathsOverlapping || math.lengthsq(ourEndOfPath - agentData.position[blockingAgentIndex]) < math.lengthsq(ourRadius+otherRadius))) {
var otherSpeed = output.speed[blockingAgentIndex];
flowFollowing |= math.min(ourSpeed, otherSpeed) < 0.01f;
reachedEndOfPath |= blockedAndSlow;
}
}
var effectivelyReached = reachedEndOfPath ? ReachedEndOfPath.Reached : (flowFollowing ? ReachedEndOfPath.ReachedSoon : ReachedEndOfPath.NotReached);
// We do not check for all things that are checked in the first pass. So incorporate the previous information by taking the max.
effectivelyReached = (ReachedEndOfPath)math.max((int)effectivelyReached, (int)output.effectivelyReachedDestination[agentIndex]);
if (effectivelyReached != output.effectivelyReachedDestination[agentIndex]) {
output.effectivelyReachedDestination[agentIndex] = effectivelyReached;
if (effectivelyReached == ReachedEndOfPath.Reached) {
// Mark this agent as queued to prevent it from being added to the queue again.
queued[agentIndex] = true;
// Changes to the Reached flag may affect the calculations for other agents.
// So we iterate over all agents that may be affected and enqueue them again.
var count = inArrowCounts[agentIndex];
for (int i = 0; i < count; i++) {
var inArrow = inArrows[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
if (!queued[inArrow]) que.PushEnd(inArrow);
}
}
}
}
}
}
// Note: FloatMode should not be set to Fast because that causes inaccuracies which can lead to
// agents failing to avoid walls sometimes.
[BurstCompile(CompileSynchronously = true, FloatMode = FloatMode.Default)]
public struct JobRVO : Pathfinding.Jobs.IJobParallelForBatched where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
[ReadOnly]
public SimulatorBurst.AgentData agentData;
[ReadOnly]
public SimulatorBurst.TemporaryAgentData temporaryAgentData;
[ReadOnly]
public NavmeshEdges.NavmeshBorderData navmeshEdgeData;
[WriteOnly]
public SimulatorBurst.AgentOutputData output;
public float deltaTime;
public float symmetryBreakingBias;
public float priorityMultiplier;
public bool useNavmeshAsObstacle;
public bool allowBoundsChecks { get { return true; } }
const int MaxObstacleCount = 50;
public CommandBuilder draw;
public void Execute (int startIndex, int batchSize) {
ExecuteORCA(startIndex, batchSize);
}
struct SortByKey : IComparer {
public UnsafeSpan keys;
public int Compare (int x, int y) {
return keys[x].CompareTo(keys[y]);
}
}
///
/// Sorts the array in place using insertion sort.
/// This is a stable sort.
/// See: http://en.wikipedia.org/wiki/Insertion_sort
///
/// Used only because Unity.Collections.NativeSortExtension.Sort seems to have some kind of code generation bug when using Burst 1.8.2, causing it to throw exceptions.
///
static void InsertionSort(UnsafeSpan data, U comparer) where T : unmanaged where U : IComparer {
for (int i = 1; i < data.Length; i++) {
var value = data[i];
int j = i - 1;
while (j >= 0 && comparer.Compare(data[j], value) > 0) {
data[j + 1] = data[j];
j--;
}
data[j + 1] = value;
}
}
private static readonly ProfilerMarker MarkerConvertObstacles1 = new ProfilerMarker("RVOConvertObstacles1");
private static readonly ProfilerMarker MarkerConvertObstacles2 = new ProfilerMarker("RVOConvertObstacles2");
///
/// Generates ORCA half-planes for all obstacles near the agent.
/// For more details refer to the ORCA (Optimal Reciprocal Collision Avoidance) paper.
///
/// This function takes in several arrays which are just used for temporary data. This is to avoid the overhead of allocating the arrays once for every agent.
///
void GenerateObstacleVOs (int agentIndex, NativeList adjacentObstacleIdsScratch, NativeArray adjacentObstacleVerticesScratch, NativeArray segmentDistancesScratch, NativeArray sortedVerticesScratch, NativeArray orcaLines, NativeArray orcaLineToAgent, [NoAlias] ref int numLines, [NoAlias] in MovementPlaneWrapper movementPlane, float2 optimalVelocity) {
if (!useNavmeshAsObstacle) return;
var localPosition = movementPlane.ToPlane(agentData.position[agentIndex], out var agentElevation);
var agentHeight = agentData.height[agentIndex];
var agentRadius = agentData.radius[agentIndex];
var obstacleRadius = agentRadius * 0.01f;
var inverseObstacleTimeHorizon = math.rcp(agentData.obstacleTimeHorizon[agentIndex]);
ExpectNotAliased(in agentData.collisionNormal, in agentData.position);
var hierarchicalNodeIndex = agentData.hierarchicalNodeIndex[agentIndex];
if (hierarchicalNodeIndex == -1) return;
var size = (obstacleRadius + agentRadius + agentData.obstacleTimeHorizon[agentIndex] * agentData.maxSpeed[agentIndex]) * new float3(2, 0, 2);
size.y = agentData.height[agentIndex] * 2f;
var bounds = new Bounds(new Vector3(localPosition.x, agentElevation, localPosition.y), size);
var boundingRadiusSq = math.lengthsq(bounds.extents);
adjacentObstacleIdsScratch.Clear();
var worldBounds = movementPlane.ToWorld(bounds);
navmeshEdgeData.GetObstaclesInRange(hierarchicalNodeIndex, worldBounds, adjacentObstacleIdsScratch);
#if UNITY_EDITOR
if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.Obstacles)) {
draw.PushMatrix(movementPlane.matrix);
draw.PushMatrix(new float4x4(
new float4(1, 0, 0, 0),
new float4(0, 0, -1, 0),
new float4(0, 1, 0, 0),
new float4(0, 0, 0, 1)
));
draw.WireBox(bounds, Color.blue);
draw.PopMatrix();
draw.PopMatrix();
}
#endif
// TODO: For correctness all obstacles should be added in nearest-to-farthest order.
// This loop should be split up.
for (int oi = 0; oi < adjacentObstacleIdsScratch.Length; oi++) {
MarkerConvertObstacles1.Begin();
var obstacleId = adjacentObstacleIdsScratch[oi];
var obstacleAllocations = navmeshEdgeData.obstacleData.obstacles[obstacleId];
var vertices = navmeshEdgeData.obstacleData.obstacleVertices.GetSpan(obstacleAllocations.verticesAllocation);
var groups = navmeshEdgeData.obstacleData.obstacleVertexGroups.GetSpan(obstacleAllocations.groupsAllocation);
int vertexOffset = 0;
int candidateVertexCount = 0;
for (int i = 0; i < groups.Length; i++) {
var group = groups[i];
// Check if the group does not overlap with our bounds at all
if (!math.all((group.boundsMx >= worldBounds.min) & (group.boundsMn <= worldBounds.max))) {
vertexOffset += group.vertexCount;
continue;
}
var startVertex = vertexOffset;
var endVertex = vertexOffset + group.vertexCount - 1;
if (endVertex >= adjacentObstacleVerticesScratch.Length) {
// Too many vertices. Skip remaining vertices.
break;
}
for (int vi = startVertex; vi < startVertex + group.vertexCount; vi++) {
// X coordinate is the index of the previous vertex, the y coordinate is the next vertex
adjacentObstacleVerticesScratch[vi] = new int2(vi - 1, vi + 1);
}
// UnityEngine.Assertions.Assert.AreEqual(vertexCount, endVertex + 1);
// Patch the start and end vertices to be correct.
// In a chain the last vertex doesn't start a new segment so we just make it loop back on itself.
// In a loop the last vertex connects to the first vertex.
adjacentObstacleVerticesScratch[startVertex] = new int2(group.type == ObstacleType.Loop ? endVertex : startVertex, adjacentObstacleVerticesScratch[startVertex].y);
adjacentObstacleVerticesScratch[endVertex] = new int2(adjacentObstacleVerticesScratch[endVertex].x, group.type == ObstacleType.Loop ? startVertex : endVertex);
for (int vi = 0; vi < group.vertexCount; vi++) {
var vertex = vertices[vi + vertexOffset];
int next = adjacentObstacleVerticesScratch[vi + startVertex].y;
var pos = movementPlane.ToPlane(vertex) - localPosition;
var nextPos = movementPlane.ToPlane(vertices[next]) - localPosition;
var dir = nextPos - pos;
var closestT = ClosestPointOnSegment(pos, dir / math.lengthsq(dir), float2.zero, 0, 1);
var dist = math.lengthsq(pos + dir*closestT);
segmentDistancesScratch[vi + startVertex] = dist;
if (dist <= boundingRadiusSq && candidateVertexCount < sortedVerticesScratch.Length) {
sortedVerticesScratch[candidateVertexCount] = vi + startVertex;
candidateVertexCount++;
}
}
vertexOffset += group.vertexCount;
}
MarkerConvertObstacles1.End();
MarkerConvertObstacles2.Begin();
// Sort obstacle segments by distance from the agent
InsertionSort(sortedVerticesScratch.AsUnsafeSpan().Slice(0, candidateVertexCount), new SortByKey {
keys = segmentDistancesScratch.AsUnsafeSpan().Slice(0, vertexOffset)
});
for (int i = 0; i < candidateVertexCount; i++) {
// In the unlikely event that we exceed the maximum number of obstacles, we just skip the remaining ones.
if (numLines >= MaxObstacleCount) break;
// Processing the obstacle defined by v1 and v2
//
// v0 v3
// \ /
// \ /
// v1 ========= v2
//
var v1Index = sortedVerticesScratch[i];
// If the obstacle is too far away, we can skip it.
// Since the obstacles are sorted by distance we can break here.
if (segmentDistancesScratch[v1Index] > 0.25f*size.x*size.x) break;
var v0Index = adjacentObstacleVerticesScratch[v1Index].x;
var v2Index = adjacentObstacleVerticesScratch[v1Index].y;
if (v2Index == v1Index) continue;
var v3Index = adjacentObstacleVerticesScratch[v2Index].y;
UnityEngine.Assertions.Assert.AreNotEqual(v1Index, v3Index);
UnityEngine.Assertions.Assert.AreNotEqual(v0Index, v2Index);
var v0 = vertices[v0Index];
var v1 = vertices[v1Index];
var v2 = vertices[v2Index];
var v3 = vertices[v3Index];
var v0Position = movementPlane.ToPlane(v0) - localPosition;
var v1Position = movementPlane.ToPlane(v1, out var e1) - localPosition;
var v2Position = movementPlane.ToPlane(v2, out var e2) - localPosition;
var v3Position = movementPlane.ToPlane(v3) - localPosition;
// Assume the obstacle has the same height as the agent, then check if they overlap along the elevation axis.
if (math.max(e1, e2) + agentHeight < agentElevation || math.min(e1, e2) > agentElevation + agentHeight) {
// The obstacle is not in the agent's elevation range. Ignore it.
continue;
}
var length = math.length(v2Position - v1Position);
if (length < 0.0001f) continue;
var segmentDir = (v2Position - v1Position) * math.rcp(length);
if (det(segmentDir, -v1Position) > obstacleRadius) {
// Agent is significantly on the wrong side of the segment (on the "inside"). Ignore it.
continue;
}
// Check if this velocity obstacle completely behind previously added ORCA lines.
// If so, this obstacle is redundant and we can ignore it.
// This is not just a performance optimization. Using the ORCA lines for closer
// obstacles is better since obstacles further away can add ORCA lines that
// restrict the velocity space unnecessarily. The ORCA line is more conservative than the VO.
bool alreadyCovered = false;
const float EPSILON = 0.0001f;
for (var j = 0; j < numLines; j++) {
var line = orcaLines[j];
if (
// Check if this velocity-obstacle is completely inside the previous ORCA line's infeasible half-plane region.
det(inverseObstacleTimeHorizon * v1Position - line.point, line.direction) - inverseObstacleTimeHorizon * obstacleRadius >= -EPSILON &&
det(inverseObstacleTimeHorizon * v2Position - line.point, line.direction) - inverseObstacleTimeHorizon * obstacleRadius >= -EPSILON
) {
alreadyCovered = true;
break;
}
}
if (alreadyCovered) {
continue;
}
var obstacleOptimizationVelocity = float2.zero;
var distanceAlongSegment = math.dot(obstacleOptimizationVelocity - v1Position, segmentDir);
var closestPointOnSegment = v1Position + distanceAlongSegment * segmentDir;
var distanceToLineSq = math.lengthsq(closestPointOnSegment - obstacleOptimizationVelocity);
var distanceToSegmentSq = math.lengthsq((v1Position + math.clamp(distanceAlongSegment, 0, length) * segmentDir));
var v1Convex = leftOrColinear(v1Position - v0Position, segmentDir);
var v2Convex = leftOrColinear(segmentDir, v3Position - v2Position);
if (distanceToSegmentSq < obstacleRadius*obstacleRadius) {
if (distanceAlongSegment < 0.0f) {
// Collision with left vertex, ignore if the vertex is not convex
if (v1Convex) {
orcaLineToAgent[numLines] = -1;
orcaLines[numLines++] = new ORCALine {
point = -v1Position * 0.1f,
direction = math.normalizesafe(rot90(v1Position)),
};
}
} else if (distanceAlongSegment > length) {
// Collision with right vertex
// Ignore if the vertex is not convex, or if it will be taken care of
// by the neighbour obstacle segment.
if (v2Convex && leftOrColinear(v2Position, v3Position - v2Position)) {
orcaLineToAgent[numLines] = -1;
orcaLines[numLines++] = new ORCALine {
point = -v2Position * 0.1f,
direction = math.normalizesafe(rot90(v2Position)),
};
}
} else {
// Collision with segment
orcaLineToAgent[numLines] = -1;
orcaLines[numLines++] = new ORCALine {
point = -closestPointOnSegment * 0.1f,
direction = -segmentDir,
};
}
continue;
}
// Represents rays starting points on the VO circles, going in a tangent direction away from the agent.
float2 leftLegDirection, rightLegDirection;
if ((distanceAlongSegment < 0 || distanceAlongSegment > 1) && distanceToLineSq <= obstacleRadius*obstacleRadius) {
// Obliquely viewed so that the circle around one of the vertices is all that is visible from p. p = obstacleOptimizationVelocity
// _____________________________ _ _ _ _ _ _ _ _ _ _ _ _
// _/ \_ _/ \_
// / \ / \
// | v1 | | v2 |
// \_ _/ \_ _/ p
// \_____/_________________\_____/ _ _ _ _ _ _ _ _ _ _ _ _
// Collapse segment to a single point, making sure that v0 and v3 are still the neighbouring vertices.
if (distanceAlongSegment < 0) {
// Collapse to v1
// Ignore if not convex
if (!v1Convex) continue;
v3Position = v2Position;
v2Position = v1Position;
v2Convex = v1Convex;
} else {
// Collapse to v2
if (!v2Convex) continue;
v0Position = v1Position;
v1Position = v2Position;
v1Convex = v2Convex;
}
var vertexDistSq = math.lengthsq(v1Position);
// Distance from p to the points where the legs (tangents) touch the circle around the vertex.
float leg = math.sqrt(vertexDistSq - obstacleRadius*obstacleRadius);
var posNormal = new float2(-v1Position.y, v1Position.x);
// These become normalized
leftLegDirection = (v1Position*leg + posNormal*obstacleRadius) / vertexDistSq;
rightLegDirection = (v1Position*leg - posNormal*obstacleRadius) / vertexDistSq;
} else {
// This is the common case (several valid positions of p are shown). p = obstacleOptimizationVelocity
//
// p
// _____________________________
// _/ \_ _/ \_
// / \ / \
// | v1 | | v2 |
// \_ _/ \_ _/
// \_____/_________________\_____/
//
// p p
if (v1Convex) {
var vertexDistSq = math.lengthsq(v1Position);
float leg = math.sqrt(vertexDistSq - obstacleRadius*obstacleRadius);
var posNormal = new float2(-v1Position.y, v1Position.x);
// This becomes normalized
leftLegDirection = (v1Position*leg + posNormal*obstacleRadius) / vertexDistSq;
} else {
leftLegDirection = -segmentDir;
}
if (v2Convex) {
var vertexDistSq = math.lengthsq(v2Position);
float leg = math.sqrt(vertexDistSq - obstacleRadius*obstacleRadius);
var posNormal = new float2(-v2Position.y, v2Position.x);
rightLegDirection = (v2Position*leg - posNormal*obstacleRadius) / vertexDistSq;
} else {
rightLegDirection = segmentDir;
}
}
// Legs should never point into the obstacle for legs added by convex vertices.
// The neighbouring vertex will add a better obstacle for those cases.
//
// In that case we replace the legs with the neighbouring segments, and if the closest
// point is on those segments we know we can ignore them because the
// neighbour will handle it.
//
// It's important that we don't include the case when they are colinear,
// because if v1=v0 (or v2=v3), which can happen at the end of a chain, the
// determinant will always be zero and so they will seem colinear.
//
// Note: One might think that this should apply to all vertices, not just convex ones.
// Consider this case where you might think a non-convex vertices otherwise would
// cause 'ghost' obstacles:
// ___
// | | A
// | |
// | \
// |____\ B
// <-X
//
// If X is an agent, moving to the left. It could get stuck against the segment A.
// This is because the vertex between A and B is concave, and it will generate a leg
// pointing downwards.
//
// However, this does not cause a problem in practice. Because if the horizontal segment at the bottom is added first (as it should be)
// then A and B will be discarded since they will be completely behind the ORCA line added by the horizontal segment.
bool isLeftLegForeign = false;
bool isRightLegForeign = false;
if (v1Convex && left(leftLegDirection, v0Position - v1Position)) {
// Left leg points into obstacle
leftLegDirection = v0Position - v1Position;
isLeftLegForeign = true;
}
if (v2Convex && right(rightLegDirection, v3Position - v2Position)) {
// Right leg points into obstacle
rightLegDirection = v3Position - v2Position;
isRightLegForeign = true;
}
// The velocity obstacle for this segment consists of a left leg, right leg,
// a cutoff line, and two circular arcs where the legs and the cutoff line join together.
// LeftLeg RightLeg
// \ _____________________________ /
// \ _/ \_ _/ \_ /
// \ / \ / \ /
// \| v1 | | v2 |/
// \_ _/ \_ _/
// \_____/_________________\_____/
// Cutoff Line
//
// In case only one vertex makes up the obstacle then we instead have just a left leg, right leg, and a single circular arc.
//
// LeftLeg RightLeg
// \ _____ /
// \ _/ \_ /
// \ / \ /
// \| |/
// \_ _/
// \_____/
//
// We first check if the velocity will be projected on those circular segments.
var leftCutoff = inverseObstacleTimeHorizon * v1Position;
var rightCutoff = inverseObstacleTimeHorizon * v2Position;
var cutoffDir = rightCutoff - leftCutoff;
var cutoffLength = math.lengthsq(cutoffDir);
// Projection on the cutoff line (between 0 and 1 if the projection is on the cutoff segment)
var t = cutoffLength <= 0.00001f ? 0.5f : math.dot(optimalVelocity - leftCutoff, cutoffDir)/cutoffLength;
// Negative if the closest point on the rays reprensenting the legs is before the ray starts
var tLeft = math.dot(optimalVelocity - leftCutoff, leftLegDirection);
var tRight = math.dot(optimalVelocity - rightCutoff, rightLegDirection);
// Check if the projected velocity is on the circular arcs
if ((t < 0.0f && tLeft < 0.0f) || (t > 1.0f && tRight < 0.0f) || (cutoffLength <= 0.00001f && tLeft < 0.0f && tRight < 0.0f)) {
var arcCenter = t <= 0.5f ? leftCutoff : rightCutoff;
var unitW = math.normalizesafe(optimalVelocity - arcCenter);
orcaLineToAgent[numLines] = -1;
orcaLines[numLines++] = new ORCALine {
point = arcCenter + obstacleRadius * inverseObstacleTimeHorizon * unitW,
direction = new float2(unitW.y, -unitW.x),
};
continue;
}
// If the closest point is not on the arcs, then we project it on the legs or the cutoff line and pick the closest one.
// Note that all these distances should be reduced by obstacleRadius, but we only compare the values, so this doesn't matter.
float distToCutoff = (t > 1.0f || t < 0.0f || cutoffLength < 0.0001f ? math.INFINITY : math.lengthsq(optimalVelocity - (leftCutoff + t * cutoffDir)));
float distToLeftLeg = (tLeft < 0.0f ? math.INFINITY : math.lengthsq(optimalVelocity - (leftCutoff + tLeft * leftLegDirection)));
float distToRightLeg = (tRight < 0.0f ? math.INFINITY : math.lengthsq(optimalVelocity - (rightCutoff + tRight * rightLegDirection)));
var selected = 0;
var mn = distToCutoff;
if (distToLeftLeg < mn) {
mn = distToLeftLeg;
selected = 1;
}
if (distToRightLeg < mn) {
mn = distToRightLeg;
selected = 2;
}
if (selected == 0) {
// Project on cutoff line
orcaLineToAgent[numLines] = -1;
orcaLines[numLines++] = new ORCALine {
point = leftCutoff + obstacleRadius * inverseObstacleTimeHorizon * new float2(segmentDir.y, -segmentDir.x),
direction = -segmentDir,
};
} else if (selected == 1) {
if (!isLeftLegForeign) {
orcaLineToAgent[numLines] = -1;
orcaLines[numLines++] = new ORCALine {
point = leftCutoff + obstacleRadius * inverseObstacleTimeHorizon * new float2(-leftLegDirection.y, leftLegDirection.x),
direction = leftLegDirection,
};
}
} else if (selected == 2) {
if (!isRightLegForeign) {
orcaLineToAgent[numLines] = -1;
orcaLines[numLines++] = new ORCALine {
point = rightCutoff + obstacleRadius * inverseObstacleTimeHorizon * new float2(rightLegDirection.y, -rightLegDirection.x),
direction = -rightLegDirection,
};
}
}
}
MarkerConvertObstacles2.End();
}
}
public void ExecuteORCA (int startIndex, int batchSize) {
int endIndex = startIndex + batchSize;
NativeArray orcaLines = new NativeArray(SimulatorBurst.MaxNeighbourCount + MaxObstacleCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
NativeArray scratchBuffer = new NativeArray(SimulatorBurst.MaxNeighbourCount + MaxObstacleCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
NativeArray segmentDistancesScratch = new NativeArray(SimulatorBurst.MaxObstacleVertices, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
NativeArray sortedVerticesScratch = new NativeArray(SimulatorBurst.MaxObstacleVertices, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
NativeArray adjacentObstacleVertices = new NativeArray(4 * SimulatorBurst.MaxObstacleVertices, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
NativeArray orcaLineToAgent = new NativeArray(SimulatorBurst.MaxNeighbourCount + MaxObstacleCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
NativeList adjacentObstacleIdsScratch = new NativeList(16, Allocator.Temp);
for (int agentIndex = startIndex; agentIndex < endIndex; agentIndex++) {
if (!agentData.version[agentIndex].Valid) continue;
if (agentData.manuallyControlled[agentIndex]) {
output.speed[agentIndex] = agentData.desiredSpeed[agentIndex];
output.targetPoint[agentIndex] = agentData.targetPoint[agentIndex];
output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount] = -1;
continue;
}
var position = agentData.position[agentIndex];
if (agentData.locked[agentIndex]) {
output.speed[agentIndex] = 0;
output.targetPoint[agentIndex] = position;
output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount] = -1;
continue;
}
MovementPlaneWrapper movementPlane = default;
movementPlane.Set(agentData.movementPlane[agentIndex]);
// The RVO algorithm assumes we will continue to
// move in roughly the same direction
float2 optimalVelocity = movementPlane.ToPlane(temporaryAgentData.currentVelocity[agentIndex]);
int numLines = 0;
// TODO: Obstacles are typically behind agents, so it's better to add the agent orca lines first to improve culling.
// However, the 3D optimization program requires obstacle lines to be added first. Not to mention that the culling
// is not strictly accurate for fixed obstacle since they cannot be moved backwards by the 3D linear program.
GenerateObstacleVOs(agentIndex, adjacentObstacleIdsScratch, adjacentObstacleVertices, segmentDistancesScratch, sortedVerticesScratch, orcaLines, orcaLineToAgent, ref numLines, in movementPlane, optimalVelocity);
int numFixedLines = numLines;
var neighbours = temporaryAgentData.neighbours.Slice(agentIndex*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
float agentTimeHorizon = agentData.agentTimeHorizon[agentIndex];
float inverseAgentTimeHorizon = math.rcp(agentTimeHorizon);
float priority = agentData.priority[agentIndex];
var localPosition = movementPlane.ToPlane(position);
var agentRadius = agentData.radius[agentIndex];
for (int neighbourIndex = 0; neighbourIndex < neighbours.Length; neighbourIndex++) {
int otherIndex = neighbours[neighbourIndex];
// Indicates that there are no more neighbours (see JobRVOCalculateNeighbours)
if (otherIndex == -1) break;
var otherPosition = agentData.position[otherIndex];
var relativePosition = movementPlane.ToPlane(otherPosition - position);
float combinedRadius = agentRadius + agentData.radius[otherIndex];
var otherPriority = agentData.priority[otherIndex] * priorityMultiplier;
// TODO: Remove branches to possibly vectorize
float avoidanceStrength;
if (agentData.locked[otherIndex] || agentData.manuallyControlled[otherIndex]) {
avoidanceStrength = 1;
} else if (otherPriority > 0.00001f || priority > 0.00001f) {
avoidanceStrength = otherPriority / (priority + otherPriority);
} else {
// Both this agent's priority and the other agent's priority is zero or negative
// Assume they have the same priority
avoidanceStrength = 0.5f;
}
// We assume that the other agent will continue to move with roughly the same velocity if the priorities for the agents are similar.
// If the other agent has a higher priority than this agent (avoidanceStrength > 0.5) then we will assume it will move more along its
// desired velocity. This will have the effect of other agents trying to clear a path for where a high priority agent wants to go.
// If this is not done then even high priority agents can get stuck when it is really crowded and they have had to slow down.
float2 otherOptimalVelocity = movementPlane.ToPlane(math.lerp(temporaryAgentData.currentVelocity[otherIndex], temporaryAgentData.desiredVelocity[otherIndex], math.clamp(2*avoidanceStrength - 1, 0, 1)));
if (agentData.flowFollowingStrength[otherIndex] > 0) {
// When flow following strength is 1 the component of the other agent's velocity that is in the direction of this agent is removed.
// That is, we pretend that the other agent does not move towards this agent at all.
// This will make it impossible for the other agent to "push" this agent away.
var strength = agentData.flowFollowingStrength[otherIndex] * agentData.flowFollowingStrength[agentIndex];
var relativeDir = math.normalizesafe(relativePosition);
otherOptimalVelocity -= relativeDir * (strength * math.min(0, math.dot(otherOptimalVelocity, relativeDir)));
}
var dist = math.length(relativePosition);
// Figure out an approximate time to collision. We avoid using the current velocities of the agents because that leads to oscillations,
// as the agents change their velocities, which results in a change to the time to collision, which makes them change their velocities again.
var minimumTimeToCollision = math.max(0, dist - combinedRadius) / math.max(combinedRadius, agentData.desiredSpeed[agentIndex] + agentData.desiredSpeed[otherIndex]);
// Adjust the radius to make the avoidance smoother.
// The agent will slowly start to take another agent into account instead of making a sharp turn.
float normalizedTime = minimumTimeToCollision * inverseAgentTimeHorizon;
// normalizedTime <= 0.5 => 0% effect
// normalizedTime = 1.0 => 100% effect
var factor = math.clamp((normalizedTime - 0.5f)*2.0f, 0, 1);
combinedRadius *= 1 - factor;
// Adjust the time horizon to make the agent approach another agent less conservatively.
// This makes the velocity curve closer to sqrt(1-t) instead of exp(-t) as it comes to a stop, which looks nicer.
var tempInverseTimeHorizon = 1.0f/math.max(0.1f*agentTimeHorizon, agentTimeHorizon * math.clamp(math.sqrt(2f*minimumTimeToCollision), 0, 1));
orcaLines[numLines] = new ORCALine(localPosition, relativePosition, optimalVelocity, otherOptimalVelocity, combinedRadius, 0.1f, tempInverseTimeHorizon);
orcaLineToAgent[numLines] = otherIndex;
numLines++;
#if UNITY_EDITOR
if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.AgentVOs)) {
draw.PushMatrix(math.mul(float4x4.TRS(position, quaternion.identity, 1), movementPlane.matrix));
var voCenter = math.lerp(optimalVelocity, otherOptimalVelocity, 0.5f);
DrawVO(draw, relativePosition * tempInverseTimeHorizon + otherOptimalVelocity, combinedRadius * tempInverseTimeHorizon, otherOptimalVelocity, Color.black);
draw.PopMatrix();
}
#endif
}
// Add an obstacle for the collision normal.
// This is mostly deprecated, but kept for compatibility.
var collisionNormal = math.normalizesafe(movementPlane.ToPlane(agentData.collisionNormal[agentIndex]));
if (math.any(collisionNormal != 0)) {
orcaLines[numLines] = new ORCALine {
point = float2.zero,
direction = new float2(collisionNormal.y, -collisionNormal.x),
};
orcaLineToAgent[numLines] = -1;
numLines++;
}
var desiredVelocity = movementPlane.ToPlane(temporaryAgentData.desiredVelocity[agentIndex]);
var desiredTargetPointInVelocitySpace = temporaryAgentData.desiredTargetPointInVelocitySpace[agentIndex];
var originalDesiredVelocity = desiredVelocity;
var symmetryBias = symmetryBreakingBias * (1 - agentData.flowFollowingStrength[agentIndex]);
// Bias the desired velocity to avoid symmetry issues (esp. when two agents are heading straight towards one another).
// Do not bias velocities if the agent is heading towards an obstacle (not an agent).
bool insideAnyVO = BiasDesiredVelocity(orcaLines.AsUnsafeSpan().Slice(numFixedLines, numLines - numFixedLines), ref desiredVelocity, ref desiredTargetPointInVelocitySpace, symmetryBias);
// If the velocity is outside all agent orca half-planes, do a more thorough check of all orca lines (including obstacles).
insideAnyVO = insideAnyVO || DistanceInsideVOs(orcaLines.AsUnsafeSpan().Slice(0, numLines), desiredVelocity) > 0;
#if UNITY_EDITOR
if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.ObstacleVOs)) {
draw.PushColor(new Color(1, 1, 1, 0.2f));
draw.PushMatrix(math.mul(float4x4.TRS(position, quaternion.identity, 1), movementPlane.matrix));
for (int i = 0; i < numLines; i++) {
orcaLines[i].DrawAsHalfPlane(draw, agentData.radius[agentIndex] * 5.0f, 1.0f, i >= numFixedLines ? Color.magenta : Color.Lerp(Color.magenta, Color.black, 0.5f));
}
draw.PopMatrix();
draw.PopColor();
}
#endif
if (!insideAnyVO && math.all(math.abs(temporaryAgentData.collisionVelocityOffsets[agentIndex]) < 0.001f)) {
// Desired velocity can be used directly since it was not inside any velocity obstacle.
// No need to run optimizer because this will be the global minima.
// This is also a special case in which we can set the
// calculated target point to the desired target point
// instead of calculating a point based on a calculated velocity
// which is an important difference when the agent is very close
// to the target point
// TODO: Not actually guaranteed to be global minima if desiredTargetPointInVelocitySpace.magnitude < desiredSpeed
// maybe do something different here?
#if UNITY_EDITOR
if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.DesiredVelocity)) {
draw.xy.Cross(movementPlane.ToWorld(localPosition + desiredVelocity), Color.magenta);
draw.xy.Cross(movementPlane.ToWorld(localPosition + desiredTargetPointInVelocitySpace), Color.yellow);
}
#endif
output.targetPoint[agentIndex] = position + movementPlane.ToWorld(desiredTargetPointInVelocitySpace, 0);
output.speed[agentIndex] = agentData.desiredSpeed[agentIndex];
output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount] = -1;
output.forwardClearance[agentIndex] = float.PositiveInfinity;
} else {
var maxSpeed = agentData.maxSpeed[agentIndex];
var allowedVelocityDeviationAngles = agentData.allowedVelocityDeviationAngles[agentIndex];
LinearProgram2Output lin;
if (math.all(allowedVelocityDeviationAngles == 0)) {
// Common case, the desired velocity is a point
lin = LinearProgram2D(orcaLines, numLines, maxSpeed, desiredVelocity, false);
} else {
// The desired velocity is a segment, not a point
// Rotate the desired velocity allowedVelocityDeviationAngles.x radians and allowedVelocityDeviationAngles.y radians respectively
math.sincos(allowedVelocityDeviationAngles, out float2 s, out float2 c);
var xs = desiredVelocity.x*c - desiredVelocity.y*s;
var ys = desiredVelocity.x*s + desiredVelocity.y*c;
var desiredVelocityLeft = new float2(xs.x, ys.x);
var desiredVelocityRight = new float2(xs.y, ys.y);
var desiredVelocityLeftDir = desiredVelocity - desiredVelocityLeft;
// Normalize and store length
var desiredVelocityLeftSegmentLength = math.length(desiredVelocityLeftDir);
desiredVelocityLeftDir = math.select(float2.zero, desiredVelocityLeftDir * math.rcp(desiredVelocityLeftSegmentLength), desiredVelocityLeftSegmentLength > math.FLT_MIN_NORMAL);
var desiredVelocityRightDir = desiredVelocity - desiredVelocityRight;
var desiredVelocityRightSegmentLength = math.length(desiredVelocityRightDir);
desiredVelocityRightDir = math.select(float2.zero, desiredVelocityRightDir * math.rcp(desiredVelocityRightSegmentLength), desiredVelocityRightSegmentLength > math.FLT_MIN_NORMAL);
// var tOptimal = ClosestPointOnSegment(desiredVelocityLeft, desiredVelocityDir, desiredVelocity, 0, desiredVelocitySegmentLength);
var lin1 = LinearProgram2DSegment(orcaLines, numLines, maxSpeed, desiredVelocityLeft, desiredVelocityLeftDir, 0, desiredVelocityLeftSegmentLength, 1.0f);
var lin2 = LinearProgram2DSegment(orcaLines, numLines, maxSpeed, desiredVelocityRight, desiredVelocityRightDir, 0, desiredVelocityRightSegmentLength, 1.0f);
if (lin1.firstFailedLineIndex < lin2.firstFailedLineIndex) {
lin = lin1;
} else if (lin2.firstFailedLineIndex < lin1.firstFailedLineIndex) {
lin = lin2;
} else {
lin = math.lengthsq(lin1.velocity - desiredVelocity) < math.lengthsq(lin2.velocity - desiredVelocity) ? lin1 : lin2;
}
}
float2 newVelocity;
if (lin.firstFailedLineIndex < numLines) {
newVelocity = lin.velocity;
LinearProgram3D(orcaLines, numLines, numFixedLines, lin.firstFailedLineIndex, maxSpeed, ref newVelocity, scratchBuffer);
} else {
newVelocity = lin.velocity;
}
#if UNITY_EDITOR
if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.ChosenVelocity)) {
draw.xy.Cross(position + movementPlane.ToWorld(newVelocity), Color.white);
draw.Arrow(position + movementPlane.ToWorld(desiredVelocity), position + movementPlane.ToWorld(newVelocity), Color.magenta);
}
#endif
var blockedByAgentCount = 0;
for (int i = 0; i < numLines && blockedByAgentCount < SimulatorBurst.MaxBlockingAgentCount; i++) {
if (orcaLineToAgent[i] != -1 && det(orcaLines[i].direction, orcaLines[i].point - newVelocity) >= -0.001f) {
// We are blocked by this line
output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + blockedByAgentCount] = orcaLineToAgent[i];
blockedByAgentCount++;
}
}
if (blockedByAgentCount < SimulatorBurst.MaxBlockingAgentCount) output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + blockedByAgentCount] = -1;
var collisionVelocityOffset = temporaryAgentData.collisionVelocityOffsets[agentIndex];
if (math.any(collisionVelocityOffset != 0)) {
// Make the agent move to avoid intersecting other agents (hard collisions)
newVelocity += temporaryAgentData.collisionVelocityOffsets[agentIndex];
// Adding the collision offset may have made the velocity invalid, causing it to intersect the wall-velocity-obstacles.
// We run a second optimization on only the wall-velocity-obstacles to make sure the velocity is valid.
newVelocity = LinearProgram2D(orcaLines, numFixedLines, maxSpeed, newVelocity, false).velocity;
}
output.targetPoint[agentIndex] = position + movementPlane.ToWorld(newVelocity, 0);
output.speed[agentIndex] = math.min(math.length(newVelocity), maxSpeed);
var targetDir = math.normalizesafe(movementPlane.ToPlane(agentData.targetPoint[agentIndex] - position));
var forwardClearance = CalculateForwardClearance(neighbours, movementPlane, position, agentRadius, targetDir);
output.forwardClearance[agentIndex] = forwardClearance;
if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.ForwardClearance) && forwardClearance < float.PositiveInfinity) {
draw.PushLineWidth(2);
draw.Ray(position, movementPlane.ToWorld(targetDir) * forwardClearance, Color.red);
draw.PopLineWidth();
}
}
}
}
///
/// Find the distance we can move towards our target without colliding with anything.
/// May become negative if we are currently colliding with something.
///
float CalculateForwardClearance (NativeSlice neighbours, MovementPlaneWrapper movementPlane, float3 position, float radius, float2 targetDir) {
// TODO: Take obstacles into account.
var smallestIntersectionDistance = float.PositiveInfinity;
for (int i = 0; i < neighbours.Length; i++) {
var other = neighbours[i];
if (other == -1) break;
var otherPosition = agentData.position[other];
var combinedRadius = radius + agentData.radius[other];
// Intersect the ray from our agent towards the destination and check the distance to the intersection with the other agent.
var otherDir = movementPlane.ToPlane(otherPosition - position);
// Squared cosine of the angle between otherDir and ourTargetDir
var cosAlpha = math.dot(math.normalizesafe(otherDir), targetDir);
// Check if the agent is behind us
if (cosAlpha < 0) continue;
var distToOtherSq = math.lengthsq(otherDir);
var distToClosestPointAlongRay = math.sqrt(distToOtherSq) * cosAlpha;
var discriminant = combinedRadius*combinedRadius - (distToOtherSq - distToClosestPointAlongRay*distToClosestPointAlongRay);
// Check if we have any intersection at all
if (discriminant < 0) continue;
var distToIntersection = distToClosestPointAlongRay - math.sqrt(discriminant);
smallestIntersectionDistance = math.min(smallestIntersectionDistance, distToIntersection);
}
return smallestIntersectionDistance;
}
/// True if vector2 is to the left of vector1 or if they are colinear.
static bool leftOrColinear (float2 vector1, float2 vector2) {
return det(vector1, vector2) >= 0;
}
/// True if vector2 is to the left of vector1.
static bool left (float2 vector1, float2 vector2) {
return det(vector1, vector2) > 0;
}
/// True if vector2 is to the right of vector1 or if they are colinear.
static bool rightOrColinear (float2 vector1, float2 vector2) {
return det(vector1, vector2) <= 0;
}
/// True if vector2 is to the right of vector1.
static bool right (float2 vector1, float2 vector2) {
return det(vector1, vector2) < 0;
}
///
/// Determinant of the 2x2 matrix defined by vector1 and vector2.
/// Alternatively, the Z component of the cross product of vector1 and vector2.
///
static float det (float2 vector1, float2 vector2) {
return vector1.x * vector2.y - vector1.y * vector2.x;
}
static float2 rot90 (float2 v) {
return new float2(-v.y, v.x);
}
///
/// A half-plane defined as the line splitting plane.
///
/// For ORCA purposes, the infeasible region of the half-plane is on the right side of the line.
///
struct ORCALine {
public float2 point;
public float2 direction;
public void DrawAsHalfPlane (CommandBuilder draw, float halfPlaneLength, float halfPlaneWidth, Color color) {
var normal = new float2(direction.y, -direction.x);
draw.xy.Line(point - direction*10, point + direction*10, color);
var p = point + normal*halfPlaneWidth*0.5f;
draw.SolidBox(new float3(p, 0), quaternion.RotateZ(math.atan2(direction.y, direction.x)), new float3(halfPlaneLength, halfPlaneWidth, 0.01f), new Color(0, 0, 0, 0.5f));
}
public ORCALine(float2 position, float2 relativePosition, float2 velocity, float2 otherVelocity, float combinedRadius, float timeStep, float invTimeHorizon) {
var relativeVelocity = velocity - otherVelocity;
float combinedRadiusSq = combinedRadius*combinedRadius;
float distSq = math.lengthsq(relativePosition);
if (distSq > combinedRadiusSq) {
combinedRadius *= 1.001f;
// No collision
// A velocity obstacle is built which is shaped like a truncated cone (see ORCA paper).
// The cone is truncated by an arc centered at relativePosition/timeHorizon
// with radius combinedRadius/timeHorizon.
// The cone extends in the direction of relativePosition.
// Vector from truncation arc center to relative velocity
var w = relativeVelocity - invTimeHorizon * relativePosition;
var wLengthSq = math.lengthsq(w);
float dot1 = math.dot(w, relativePosition);
if (dot1 < 0.0f && dot1*dot1 > combinedRadiusSq * wLengthSq) {
// Project on cut-off circle
float wLength = math.sqrt(wLengthSq);
var normalizedW = w / wLength;
direction = new float2(normalizedW.y, -normalizedW.x);
var u = (combinedRadius * invTimeHorizon - wLength) * normalizedW;
point = velocity + 0.5f * u;
} else {
// Project on legs
// Distance from the agent to the point where the "legs" start on the VO
float legDistance = math.sqrt(distSq - combinedRadiusSq);
if (det(relativePosition, w) > 0.0f) {
// Project on left leg
// Note: This vector is actually normalized
direction = (relativePosition * legDistance + new float2(-relativePosition.y, relativePosition.x) * combinedRadius) / distSq;
} else {
// Project on right leg
// Note: This vector is actually normalized
direction = (-relativePosition * legDistance + new float2(-relativePosition.y, relativePosition.x) * combinedRadius) / distSq;
}
float dot2 = math.dot(relativeVelocity, direction);
var u = dot2 * direction - relativeVelocity;
point = velocity + 0.5f * u;
}
} else {
float invTimeStep = math.rcp(timeStep);
var dist = math.sqrt(distSq);
var normalizedDir = math.select(0, relativePosition / dist, dist > math.FLT_MIN_NORMAL);
var u = normalizedDir * (dist - combinedRadius - 0.001f) * 0.3f * invTimeStep;
direction = math.normalizesafe(new float2(u.y, -u.x));
point = math.lerp(velocity, otherVelocity, 0.5f) + u * 0.5f;
// Original code, the above is a version which works better
// Collision
// Project on cut-off circle of timeStep
//float invTimeStep = 1.0f / timeStep;
// Vector from cutoff center to relative velocity
//float2 w = relativeVelocity - invTimeStep * relativePosition;
//float wLength = math.length(w);
//float2 unitW = w / wLength;
//direction = new float2(unitW.y, -unitW.x);
//var u = (combinedRadius * invTimeStep - wLength) * unitW;
//point = velocity + 0.5f * u;
}
}
}
///
/// Calculates how far inside the infeasible region of the ORCA half-planes the velocity is.
/// Returns 0 if the velocity is in the feasible region of all half-planes.
///
static float DistanceInsideVOs (UnsafeSpan lines, float2 velocity) {
float maxDistance = 0.0f;
for (int i = 0; i < lines.Length; i++) {
var distance = det(lines[i].direction, lines[i].point - velocity);
maxDistance = math.max(maxDistance, distance);
}
return maxDistance;
}
///
/// Bias towards the right side of agents.
/// Rotate desiredVelocity at most [value] number of radians. 1 radian ≈ 57°
/// This breaks up symmetries.
///
/// The desired velocity will only be rotated if it is inside a velocity obstacle (VO).
/// If it is inside one, it will not be rotated further than to the edge of it
///
/// The targetPointInVelocitySpace will be rotated by the same amount as the desired velocity
///
/// Returns: True if the desired velocity was inside any VO
///
static bool BiasDesiredVelocity (UnsafeSpan lines, ref float2 desiredVelocity, ref float2 targetPointInVelocitySpace, float maxBiasRadians) {
float maxDistance = DistanceInsideVOs(lines, desiredVelocity);
if (maxDistance == 0.0f) return false;
var desiredVelocityMagn = math.length(desiredVelocity);
// Avoid division by zero below
if (desiredVelocityMagn >= 0.001f) {
// Rotate the desired velocity clockwise (to the right) at most maxBiasRadians number of radians.
// We clamp the angle so that we do not rotate more than to the edge of the VO.
// Assuming maxBiasRadians is small, we can just move it instead and it will give approximately the same effect.
// See https://en.wikipedia.org/wiki/Small-angle_approximation
var angle = math.min(maxBiasRadians, maxDistance / desiredVelocityMagn);
desiredVelocity += new float2(desiredVelocity.y, -desiredVelocity.x) * angle;
targetPointInVelocitySpace += new float2(targetPointInVelocitySpace.y, -targetPointInVelocitySpace.x) * angle;
}
return true;
}
///
/// Clip a line to the feasible region of the half-plane given by the clipper.
/// The clipped line is `line.point + line.direction*tLeft` to `line.point + line.direction*tRight`.
///
/// Returns false if the line is parallel to the clipper's border.
///
static bool ClipLine (ORCALine line, ORCALine clipper, ref float tLeft, ref float tRight) {
float denominator = det(line.direction, clipper.direction);
float numerator = det(clipper.direction, line.point - clipper.point);
if (math.abs(denominator) < 0.0001f) {
// The two lines are almost parallel
return false;
}
float t = numerator / denominator;
if (denominator >= 0.0f) {
// Line i bounds the line on the right
tRight = math.min(tRight, t);
} else {
// Line i bounds the line on the left
tLeft = math.max(tLeft, t);
}
return true;
}
static bool ClipBoundary (NativeArray lines, int lineIndex, float radius, out float tLeft, out float tRight) {
var line = lines[lineIndex];
if (!VectorMath.LineCircleIntersectionFactors(line.point, line.direction, radius, out tLeft, out tRight)) {
return false;
}
// Go through all previous lines/half-planes and clip the current line against them
for (int i = 0; i < lineIndex; i++) {
float denominator = det(line.direction, lines[i].direction);
float numerator = det(lines[i].direction, line.point - lines[i].point);
if (math.abs(denominator) < 0.0001f) {
// The two lines are almost parallel
if (numerator < 0.0f) {
// This line is completely "behind" the other line. So we can ignore it.
return false;
} else continue;
}
float t = numerator / denominator;
if (denominator >= 0.0f) {
// Line i bounds the line on the right
tRight = math.min(tRight, t);
} else {
// Line i bounds the line on the left
tLeft = math.max(tLeft, t);
}
if (tLeft > tRight) {
// The line is completely outside the previous half-planes
return false;
}
}
return true;
}
static bool LinearProgram1D (NativeArray lines, int lineIndex, float radius, float2 optimalVelocity, bool directionOpt, ref float2 result) {
if (!ClipBoundary(lines, lineIndex, radius, out float tLeft, out float tRight)) return false;
var line = lines[lineIndex];
if (directionOpt) {
// Optimize direction
if (math.dot(optimalVelocity, line.direction) > 0.0f) {
// Take right extreme
result = line.point + tRight * line.direction;
} else {
// Take left extreme
result = line.point + tLeft * line.direction;
}
} else {
// Optimize closest point
float t = math.dot(line.direction, optimalVelocity - line.point);
result = line.point + math.clamp(t, tLeft, tRight) * line.direction;
}
return true;
}
struct LinearProgram2Output {
public float2 velocity;
public int firstFailedLineIndex;
}
static LinearProgram2Output LinearProgram2D (NativeArray lines, int numLines, float radius, float2 optimalVelocity, bool directionOpt) {
float2 result;
if (directionOpt) {
// Optimize direction. Note that the optimization velocity is of unit length in this case
result = optimalVelocity * radius;
} else if (math.lengthsq(optimalVelocity) > radius*radius) {
// Optimize closest point and outside circle
result = math.normalize(optimalVelocity) * radius;
} else {
// Optimize closest point and inside circle
result = optimalVelocity;
}
for (int i = 0; i < numLines; i++) {
// Check if point is in the infeasible region of the half-plane
if (det(lines[i].direction, lines[i].point - result) > 0.0f) {
// Result does not satisfy constraint i. Compute new optimal result
var tempResult = result;
if (!LinearProgram1D(lines, i, radius, optimalVelocity, directionOpt, ref result)) {
return new LinearProgram2Output {
velocity = tempResult,
firstFailedLineIndex = i,
};
}
}
}
return new LinearProgram2Output {
velocity = result,
firstFailedLineIndex = numLines,
};
}
static float ClosestPointOnSegment (float2 a, float2 dir, float2 p, float t0, float t1) {
return math.clamp(math.dot(p - a, dir), t0, t1);
}
///
/// Closest point on segment a to segment b.
/// The segments are given by infinite lines and bounded by t values. p = line.point + line.dir*t.
///
/// It is assumed that the two segments do not intersect.
///
static float2 ClosestSegmentSegmentPointNonIntersecting (ORCALine a, ORCALine b, float ta1, float ta2, float tb1, float tb2) {
// We know that the two segments do not intersect, so at least one of the closest points
// must be one of the line segment endpoints.
var ap0 = a.point + a.direction*ta1;
var ap1 = a.point + a.direction*ta2;
var bp0 = b.point + b.direction * tb1;
var bp1 = b.point + b.direction * tb2;
var t0 = ClosestPointOnSegment(a.point, a.direction, bp0, ta1, ta2);
var t1 = ClosestPointOnSegment(a.point, a.direction, bp1, ta1, ta2);
var t2 = ClosestPointOnSegment(b.point, b.direction, ap0, tb1, tb2);
var t3 = ClosestPointOnSegment(b.point, b.direction, ap1, tb1, tb2);
var c0 = a.point + a.direction * t0;
var c1 = a.point + a.direction * t1;
var c2 = b.point + b.direction * t2;
var c3 = b.point + b.direction * t3;
var d0 = math.lengthsq(c0 - bp0);
var d1 = math.lengthsq(c1 - bp1);
var d2 = math.lengthsq(c2 - ap0);
var d3 = math.lengthsq(c3 - ap1);
var result = c0;
var d = d0;
if (d1 < d) {
result = c1;
d = d1;
}
if (d2 < d) {
result = ap0;
d = d2;
}
if (d3 < d) {
result = ap1;
d = d3;
}
return result;
}
/// Like LinearProgram2D, but the optimal velocity space is a segment instead of a point, however the current result has collapsed to a point
static LinearProgram2Output LinearProgram2DCollapsedSegment (NativeArray lines, int numLines, int startLine, float radius, float2 currentResult, float2 optimalVelocityStart, float2 optimalVelocityDir, float optimalTLeft, float optimalTRight) {
for (int i = startLine; i < numLines; i++) {
// Check if point is in the infeasible region of the half-plane
if (det(lines[i].direction, lines[i].point - currentResult) > 0.0f) {
// Result does not satisfy constraint i. Compute new optimal result
if (!ClipBoundary(lines, i, radius, out float tLeft2, out float tRight2)) {
// We are partially not feasible, but no part of this constraint's boundary is in the feasible region.
// This means that there is no feasible solution at all.
return new LinearProgram2Output {
velocity = currentResult,
firstFailedLineIndex = i,
};
}
// Optimize closest point
currentResult = ClosestSegmentSegmentPointNonIntersecting(lines[i], new ORCALine {
point = optimalVelocityStart,
direction = optimalVelocityDir,
}, tLeft2, tRight2, optimalTLeft, optimalTRight);
}
}
return new LinearProgram2Output {
velocity = currentResult,
firstFailedLineIndex = numLines,
};
}
/// Like LinearProgram2D, but the optimal velocity space is a segment instead of a point
static LinearProgram2Output LinearProgram2DSegment (NativeArray lines, int numLines, float radius, float2 optimalVelocityStart, float2 optimalVelocityDir, float optimalTLeft, float optimalTRight, float optimalT) {
var hasIntersection = VectorMath.LineCircleIntersectionFactors(optimalVelocityStart, optimalVelocityDir, radius, out float resultTLeft, out float resultTRight);
resultTLeft = math.max(resultTLeft, optimalTLeft);
resultTRight = math.min(resultTRight, optimalTRight);
hasIntersection &= resultTLeft <= resultTRight;
if (!hasIntersection) {
// In case the optimal velocity segment is not inside the max velocity circle, then collapse to a single optimal velocity which
// is closest segment point to the circle
var t = math.clamp(math.dot(-optimalVelocityStart, optimalVelocityDir), optimalTLeft, optimalTRight);
var closestOnCircle = math.normalizesafe(optimalVelocityStart + optimalVelocityDir * t) * radius;
// The best point is now a single point, not a segment.
// So we can fall back to simpler code.
return LinearProgram2DCollapsedSegment(lines, numLines, 0, radius, closestOnCircle, optimalVelocityStart, optimalVelocityDir, optimalTLeft, optimalTRight);
}
for (int i = 0; i < numLines; i++) {
// Check if optimal line segment is at least partially in the infeasible region of the half-plane
var line = lines[i];
var leftInfeasible = det(line.direction, line.point - (optimalVelocityStart + optimalVelocityDir*resultTLeft)) > 0.0f;
var rightInfeasible = det(line.direction, line.point - (optimalVelocityStart + optimalVelocityDir*resultTRight)) > 0.0f;
if (leftInfeasible || rightInfeasible) {
if (!ClipBoundary(lines, i, radius, out float tLeft, out float tRight)) {
// We are partially not feasible, but no part of this constraint's boundary is in the feasible region.
// This means that there is no feasible solution at all.
return new LinearProgram2Output {
velocity = optimalVelocityStart + optimalVelocityDir * math.clamp(optimalT, resultTLeft, resultTRight),
firstFailedLineIndex = i,
};
}
// Check if the optimal line segment is completely in the infeasible region
if (leftInfeasible && rightInfeasible) {
if (math.abs(det(line.direction, optimalVelocityDir)) < 0.001f) {
// Lines are almost parallel.
// Project the optimal velocity on the boundary
var t1 = ClosestPointOnSegment(line.point, line.direction, optimalVelocityStart + optimalVelocityDir*resultTLeft, tLeft, tRight);
var t2 = ClosestPointOnSegment(line.point, line.direction, optimalVelocityStart + optimalVelocityDir*resultTRight, tLeft, tRight);
var t3 = ClosestPointOnSegment(line.point, line.direction, optimalVelocityStart + optimalVelocityDir*optimalT, tLeft, tRight);
optimalVelocityStart = line.point;
optimalVelocityDir = line.direction;
resultTLeft = t1;
resultTRight = t2;
optimalT = t3;
} else {
// Find closest point on the constraint boundary segment to the optimal velocity segment
var result = ClosestSegmentSegmentPointNonIntersecting(line, new ORCALine {
point = optimalVelocityStart,
direction = optimalVelocityDir,
}, tLeft, tRight, optimalTLeft, optimalTRight);
// The best point is now a single point, not a segment.
// So we can fall back to simpler code.
return LinearProgram2DCollapsedSegment(lines, numLines, i+1, radius, result, optimalVelocityStart, optimalVelocityDir, optimalTLeft, optimalTRight);
}
} else {
// Clip optimal velocity segment to the constraint boundary.
// If this returns false and the lines are almost parallel, then we don't do anything
// because we already know they intersect. So the two lines must be almost identical.
ClipLine(new ORCALine {
point = optimalVelocityStart,
direction = optimalVelocityDir,
}, line, ref resultTLeft, ref resultTRight);
}
}
}
var resultT = math.clamp(optimalT, resultTLeft, resultTRight);
return new LinearProgram2Output {
velocity = optimalVelocityStart + optimalVelocityDir * resultT,
firstFailedLineIndex = numLines,
};
}
///
/// Finds the velocity with the smallest maximum penetration into the given half-planes.
///
/// Assumes there are no points in the feasible region of the given half-planes.
///
/// Runs a 3-dimensional linear program, but projected down to 2D.
/// If there are no feasible regions outside all half-planes then we want to find the velocity
/// for which the maximum penetration into infeasible regions is minimized.
/// Conceptually we can solve this by taking our half-planes, and moving them outwards at a fixed speed
/// until there is exactly 1 feasible point.
/// We can formulate this in 3D space by thinking of the half-planes in 3D (velocity.x, velocity.y, penetration-depth) space, as sloped planes.
/// Moving the planes outwards then corresponds to decreasing the z coordinate.
/// In 3D space we want to find the point above all planes with the lowest z coordinate.
/// We do this by going through each plane and testing if it is possible that this plane
/// is the one with the maximum penetration.
/// If so, we know that the point will lie on the portion of that plane bounded by the intersections
/// with the other planes. We generate projected half-planes which represent the intersections with the
/// other 3D planes, and then we run a new optimization to find the point which penetrates this
/// half-plane the least.
///
/// The half-planes of all obstacles and agents.
/// The number of half-planes in lines.
/// The number of half-planes in lines which are fixed (0..numFixedLines). These will be treated as static obstacles which should be avoided at all costs.
/// The index of the first half-plane in lines for which the previous optimization failed (see \reflink{LinearProgram2Output.firstFailedLineIndex}).
/// Maximum possible speed. This represents a circular velocity obstacle.
/// Input is best velocity as output by \reflink{LinearProgram2D}. Output is the new best velocity. The velocity with the smallest maximum penetration into the given half-planes.
/// A buffer of length at least numLines to use for scratch space.
static void LinearProgram3D (NativeArray lines, int numLines, int numFixedLines, int beginLine, float radius, ref float2 result, NativeArray scratchBuffer) {
float distance = 0.0f;
NativeArray projectedLines = scratchBuffer;
NativeArray.Copy(lines, projectedLines, numFixedLines);
for (int i = beginLine; i < numLines; i++) {
// Check if #result is more than #distance units inside the infeasible region of the half-plane
if (det(lines[i].direction, lines[i].point - result) > distance) {
int numProjectedLines = numFixedLines;
for (int j = numFixedLines; j < i; j++) {
float determinant = det(lines[i].direction, lines[j].direction);
if (math.abs(determinant) < 0.001f) {
// Lines i and j are parallel
if (math.dot(lines[i].direction, lines[j].direction) > 0.0f) {
// Line i and j point in the same direction
continue;
} else {
// Line i and j point in the opposite direction
projectedLines[numProjectedLines] = new ORCALine {
point = 0.5f * (lines[i].point + lines[j].point),
direction = math.normalize(lines[j].direction - lines[i].direction),
};
numProjectedLines++;
}
} else {
projectedLines[numProjectedLines] = new ORCALine {
// The intersection between the two lines
point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction,
// The direction along which the intersection of the two 3D-planes intersect (projected onto the XY plane)
direction = math.normalize(lines[j].direction - lines[i].direction),
};
numProjectedLines++;
}
}
var lin = LinearProgram2D(projectedLines, numProjectedLines, radius, new float2(-lines[i].direction.y, lines[i].direction.x), true);
if (lin.firstFailedLineIndex < numProjectedLines) {
// This should in principle not happen. The result is by definition
// already in the feasible region of this linear program. If it fails,
// it is due to small floating point error, and the current result is
// kept.
} else {
result = lin.velocity;
}
distance = det(lines[i].direction, lines[i].point - result);
}
}
}
static void DrawVO (CommandBuilder draw, float2 circleCenter, float radius, float2 origin, Color color) {
#if UNITY_EDITOR
draw.PushColor(color);
float alpha = math.atan2((origin - circleCenter).y, (origin - circleCenter).x);
float gamma = radius/math.length(origin-circleCenter);
float delta = gamma <= 1.0f ? math.abs(math.acos(gamma)) : 0;
draw.xy.Circle(circleCenter, radius, alpha-delta, alpha+delta);
float2 p1 = new float2(math.cos(alpha-delta), math.sin(alpha-delta)) * radius;
float2 p2 = new float2(math.cos(alpha+delta), math.sin(alpha+delta)) * radius;
float2 p1t = -new float2(-p1.y, p1.x);
float2 p2t = new float2(-p2.y, p2.x);
p1 += circleCenter;
p2 += circleCenter;
draw.xy.Ray(p1, math.normalizesafe(p1t)*100);
draw.xy.Ray(p2, math.normalizesafe(p2t)*100);
draw.PopColor();
#endif
}
}
}