diff options
Diffstat (limited to 'Source/external/Box2D/Common/b2Math.h')
| -rw-r--r-- | Source/external/Box2D/Common/b2Math.h | 707 | 
1 files changed, 707 insertions, 0 deletions
diff --git a/Source/external/Box2D/Common/b2Math.h b/Source/external/Box2D/Common/b2Math.h new file mode 100644 index 0000000..7a816e5 --- /dev/null +++ b/Source/external/Box2D/Common/b2Math.h @@ -0,0 +1,707 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty.  In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_MATH_H +#define B2_MATH_H + +#include "Box2D/Common/b2Settings.h" +#include <math.h> + +/// This function is used to ensure that a floating point number is not a NaN or infinity. +inline bool b2IsValid(float32 x) +{ +	return isfinite(x); +} + +#define	b2Sqrt(x)	sqrtf(x) +#define	b2Atan2(y, x)	atan2f(y, x) + +/// A 2D column vector. +struct b2Vec2 +{ +	/// Default constructor does nothing (for performance). +	b2Vec2() {} + +	/// Construct using coordinates. +	b2Vec2(float32 xIn, float32 yIn) : x(xIn), y(yIn) {} + +	/// Set this vector to all zeros. +	void SetZero() { x = 0.0f; y = 0.0f; } + +	/// Set this vector to some specified coordinates. +	void Set(float32 x_, float32 y_) { x = x_; y = y_; } + +	/// Negate this vector. +	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } +	 +	/// Read from and indexed element. +	float32 operator () (int32 i) const +	{ +		return (&x)[i]; +	} + +	/// Write to an indexed element. +	float32& operator () (int32 i) +	{ +		return (&x)[i]; +	} + +	/// Add a vector to this vector. +	void operator += (const b2Vec2& v) +	{ +		x += v.x; y += v.y; +	} +	 +	/// Subtract a vector from this vector. +	void operator -= (const b2Vec2& v) +	{ +		x -= v.x; y -= v.y; +	} + +	/// Multiply this vector by a scalar. +	void operator *= (float32 a) +	{ +		x *= a; y *= a; +	} + +	/// Get the length of this vector (the norm). +	float32 Length() const +	{ +		return b2Sqrt(x * x + y * y); +	} + +	/// Get the length squared. For performance, use this instead of +	/// b2Vec2::Length (if possible). +	float32 LengthSquared() const +	{ +		return x * x + y * y; +	} + +	/// Convert this vector into a unit vector. Returns the length. +	float32 Normalize() +	{ +		float32 length = Length(); +		if (length < b2_epsilon) +		{ +			return 0.0f; +		} +		float32 invLength = 1.0f / length; +		x *= invLength; +		y *= invLength; + +		return length; +	} + +	/// Does this vector contain finite coordinates? +	bool IsValid() const +	{ +		return b2IsValid(x) && b2IsValid(y); +	} + +	/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other) +	b2Vec2 Skew() const +	{ +		return b2Vec2(-y, x); +	} + +	float32 x, y; +}; + +/// A 2D column vector with 3 elements. +struct b2Vec3 +{ +	/// Default constructor does nothing (for performance). +	b2Vec3() {} + +	/// Construct using coordinates. +	b2Vec3(float32 xIn, float32 yIn, float32 zIn) : x(xIn), y(yIn), z(zIn) {} + +	/// Set this vector to all zeros. +	void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; } + +	/// Set this vector to some specified coordinates. +	void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; } + +	/// Negate this vector. +	b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; } + +	/// Add a vector to this vector. +	void operator += (const b2Vec3& v) +	{ +		x += v.x; y += v.y; z += v.z; +	} + +	/// Subtract a vector from this vector. +	void operator -= (const b2Vec3& v) +	{ +		x -= v.x; y -= v.y; z -= v.z; +	} + +	/// Multiply this vector by a scalar. +	void operator *= (float32 s) +	{ +		x *= s; y *= s; z *= s; +	} + +	float32 x, y, z; +}; + +/// A 2-by-2 matrix. Stored in column-major order. +struct b2Mat22 +{ +	/// The default constructor does nothing (for performance). +	b2Mat22() {} + +	/// Construct this matrix using columns. +	b2Mat22(const b2Vec2& c1, const b2Vec2& c2) +	{ +		ex = c1; +		ey = c2; +	} + +	/// Construct this matrix using scalars. +	b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22) +	{ +		ex.x = a11; ex.y = a21; +		ey.x = a12; ey.y = a22; +	} + +	/// Initialize this matrix using columns. +	void Set(const b2Vec2& c1, const b2Vec2& c2) +	{ +		ex = c1; +		ey = c2; +	} + +	/// Set this to the identity matrix. +	void SetIdentity() +	{ +		ex.x = 1.0f; ey.x = 0.0f; +		ex.y = 0.0f; ey.y = 1.0f; +	} + +	/// Set this matrix to all zeros. +	void SetZero() +	{ +		ex.x = 0.0f; ey.x = 0.0f; +		ex.y = 0.0f; ey.y = 0.0f; +	} + +	b2Mat22 GetInverse() const +	{ +		float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y; +		b2Mat22 B; +		float32 det = a * d - b * c; +		if (det != 0.0f) +		{ +			det = 1.0f / det; +		} +		B.ex.x =  det * d;	B.ey.x = -det * b; +		B.ex.y = -det * c;	B.ey.y =  det * a; +		return B; +	} + +	/// Solve A * x = b, where b is a column vector. This is more efficient +	/// than computing the inverse in one-shot cases. +	b2Vec2 Solve(const b2Vec2& b) const +	{ +		float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; +		float32 det = a11 * a22 - a12 * a21; +		if (det != 0.0f) +		{ +			det = 1.0f / det; +		} +		b2Vec2 x; +		x.x = det * (a22 * b.x - a12 * b.y); +		x.y = det * (a11 * b.y - a21 * b.x); +		return x; +	} + +	b2Vec2 ex, ey; +}; + +/// A 3-by-3 matrix. Stored in column-major order. +struct b2Mat33 +{ +	/// The default constructor does nothing (for performance). +	b2Mat33() {} + +	/// Construct this matrix using columns. +	b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) +	{ +		ex = c1; +		ey = c2; +		ez = c3; +	} + +	/// Set this matrix to all zeros. +	void SetZero() +	{ +		ex.SetZero(); +		ey.SetZero(); +		ez.SetZero(); +	} + +	/// Solve A * x = b, where b is a column vector. This is more efficient +	/// than computing the inverse in one-shot cases. +	b2Vec3 Solve33(const b2Vec3& b) const; + +	/// Solve A * x = b, where b is a column vector. This is more efficient +	/// than computing the inverse in one-shot cases. Solve only the upper +	/// 2-by-2 matrix equation. +	b2Vec2 Solve22(const b2Vec2& b) const; + +	/// Get the inverse of this matrix as a 2-by-2. +	/// Returns the zero matrix if singular. +	void GetInverse22(b2Mat33* M) const; + +	/// Get the symmetric inverse of this matrix as a 3-by-3. +	/// Returns the zero matrix if singular. +	void GetSymInverse33(b2Mat33* M) const; + +	b2Vec3 ex, ey, ez; +}; + +/// Rotation +struct b2Rot +{ +	b2Rot() {} + +	/// Initialize from an angle in radians +	explicit b2Rot(float32 angle) +	{ +		/// TODO_ERIN optimize +		s = sinf(angle); +		c = cosf(angle); +	} + +	/// Set using an angle in radians. +	void Set(float32 angle) +	{ +		/// TODO_ERIN optimize +		s = sinf(angle); +		c = cosf(angle); +	} + +	/// Set to the identity rotation +	void SetIdentity() +	{ +		s = 0.0f; +		c = 1.0f; +	} + +	/// Get the angle in radians +	float32 GetAngle() const +	{ +		return b2Atan2(s, c); +	} + +	/// Get the x-axis +	b2Vec2 GetXAxis() const +	{ +		return b2Vec2(c, s); +	} + +	/// Get the u-axis +	b2Vec2 GetYAxis() const +	{ +		return b2Vec2(-s, c); +	} + +	/// Sine and cosine +	float32 s, c; +}; + +/// A transform contains translation and rotation. It is used to represent +/// the position and orientation of rigid frames. +struct b2Transform +{ +	/// The default constructor does nothing. +	b2Transform() {} + +	/// Initialize using a position vector and a rotation. +	b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {} + +	/// Set this to the identity transform. +	void SetIdentity() +	{ +		p.SetZero(); +		q.SetIdentity(); +	} + +	/// Set this based on the position and angle. +	void Set(const b2Vec2& position, float32 angle) +	{ +		p = position; +		q.Set(angle); +	} + +	b2Vec2 p; +	b2Rot q; +}; + +/// This describes the motion of a body/shape for TOI computation. +/// Shapes are defined with respect to the body origin, which may +/// no coincide with the center of mass. However, to support dynamics +/// we must interpolate the center of mass position. +struct b2Sweep +{ +	/// Get the interpolated transform at a specific time. +	/// @param beta is a factor in [0,1], where 0 indicates alpha0. +	void GetTransform(b2Transform* xfb, float32 beta) const; + +	/// Advance the sweep forward, yielding a new initial state. +	/// @param alpha the new initial time. +	void Advance(float32 alpha); + +	/// Normalize the angles. +	void Normalize(); + +	b2Vec2 localCenter;	///< local center of mass position +	b2Vec2 c0, c;		///< center world positions +	float32 a0, a;		///< world angles + +	/// Fraction of the current time step in the range [0,1] +	/// c0 and a0 are the positions at alpha0. +	float32 alpha0; +}; + +/// Useful constant +extern const b2Vec2 b2Vec2_zero; + +/// Perform the dot product on two vectors. +inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) +{ +	return a.x * b.x + a.y * b.y; +} + +/// Perform the cross product on two vectors. In 2D this produces a scalar. +inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) +{ +	return a.x * b.y - a.y * b.x; +} + +/// Perform the cross product on a vector and a scalar. In 2D this produces +/// a vector. +inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) +{ +	return b2Vec2(s * a.y, -s * a.x); +} + +/// Perform the cross product on a scalar and a vector. In 2D this produces +/// a vector. +inline b2Vec2 b2Cross(float32 s, const b2Vec2& a) +{ +	return b2Vec2(-s * a.y, s * a.x); +} + +/// Multiply a matrix times a vector. If a rotation matrix is provided, +/// then this transforms the vector from one frame to another. +inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) +{ +	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); +} + +/// Multiply a matrix transpose times a vector. If a rotation matrix is provided, +/// then this transforms the vector from one frame to another (inverse transform). +inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) +{ +	return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey)); +} + +/// Add two vectors component-wise. +inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) +{ +	return b2Vec2(a.x + b.x, a.y + b.y); +} + +/// Subtract two vectors component-wise. +inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) +{ +	return b2Vec2(a.x - b.x, a.y - b.y); +} + +inline b2Vec2 operator * (float32 s, const b2Vec2& a) +{ +	return b2Vec2(s * a.x, s * a.y); +} + +inline bool operator == (const b2Vec2& a, const b2Vec2& b) +{ +	return a.x == b.x && a.y == b.y; +} + +inline bool operator != (const b2Vec2& a, const b2Vec2& b) +{ +	return a.x != b.x || a.y != b.y; +} + +inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b) +{ +	b2Vec2 c = a - b; +	return c.Length(); +} + +inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) +{ +	b2Vec2 c = a - b; +	return b2Dot(c, c); +} + +inline b2Vec3 operator * (float32 s, const b2Vec3& a) +{ +	return b2Vec3(s * a.x, s * a.y, s * a.z); +} + +/// Add two vectors component-wise. +inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) +{ +	return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z); +} + +/// Subtract two vectors component-wise. +inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) +{ +	return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z); +} + +/// Perform the dot product on two vectors. +inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b) +{ +	return a.x * b.x + a.y * b.y + a.z * b.z; +} + +/// Perform the cross product on two vectors. +inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) +{ +	return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); +} + +inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) +{ +	return b2Mat22(A.ex + B.ex, A.ey + B.ey); +} + +// A * B +inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) +{ +	return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey)); +} + +// A^T * B +inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) +{ +	b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex)); +	b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey)); +	return b2Mat22(c1, c2); +} + +/// Multiply a matrix times a vector. +inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) +{ +	return v.x * A.ex + v.y * A.ey + v.z * A.ez; +} + +/// Multiply a matrix times a vector. +inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) +{ +	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); +} + +/// Multiply two rotations: q * r +inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) +{ +	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] +	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc] +	// s = qs * rc + qc * rs +	// c = qc * rc - qs * rs +	b2Rot qr; +	qr.s = q.s * r.c + q.c * r.s; +	qr.c = q.c * r.c - q.s * r.s; +	return qr; +} + +/// Transpose multiply two rotations: qT * r +inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) +{ +	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] +	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc] +	// s = qc * rs - qs * rc +	// c = qc * rc + qs * rs +	b2Rot qr; +	qr.s = q.c * r.s - q.s * r.c; +	qr.c = q.c * r.c + q.s * r.s; +	return qr; +} + +/// Rotate a vector +inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) +{ +	return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y); +} + +/// Inverse rotate a vector +inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) +{ +	return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y); +} + +inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) +{ +	float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x; +	float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y; + +	return b2Vec2(x, y); +} + +inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) +{ +	float32 px = v.x - T.p.x; +	float32 py = v.y - T.p.y; +	float32 x = (T.q.c * px + T.q.s * py); +	float32 y = (-T.q.s * px + T.q.c * py); + +	return b2Vec2(x, y); +} + +// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p +//    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p +inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) +{ +	b2Transform C; +	C.q = b2Mul(A.q, B.q); +	C.p = b2Mul(A.q, B.p) + A.p; +	return C; +} + +// v2 = A.q' * (B.q * v1 + B.p - A.p) +//    = A.q' * B.q * v1 + A.q' * (B.p - A.p) +inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) +{ +	b2Transform C; +	C.q = b2MulT(A.q, B.q); +	C.p = b2MulT(A.q, B.p - A.p); +	return C; +} + +template <typename T> +inline T b2Abs(T a) +{ +	return a > T(0) ? a : -a; +} + +inline b2Vec2 b2Abs(const b2Vec2& a) +{ +	return b2Vec2(b2Abs(a.x), b2Abs(a.y)); +} + +inline b2Mat22 b2Abs(const b2Mat22& A) +{ +	return b2Mat22(b2Abs(A.ex), b2Abs(A.ey)); +} + +template <typename T> +inline T b2Min(T a, T b) +{ +	return a < b ? a : b; +} + +inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) +{ +	return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y)); +} + +template <typename T> +inline T b2Max(T a, T b) +{ +	return a > b ? a : b; +} + +inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) +{ +	return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y)); +} + +template <typename T> +inline T b2Clamp(T a, T low, T high) +{ +	return b2Max(low, b2Min(a, high)); +} + +inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) +{ +	return b2Max(low, b2Min(a, high)); +} + +template<typename T> inline void b2Swap(T& a, T& b) +{ +	T tmp = a; +	a = b; +	b = tmp; +} + +/// "Next Largest Power of 2 +/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm +/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with +/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next +/// largest power of 2. For a 32-bit value:" +inline uint32 b2NextPowerOfTwo(uint32 x) +{ +	x |= (x >> 1); +	x |= (x >> 2); +	x |= (x >> 4); +	x |= (x >> 8); +	x |= (x >> 16); +	return x + 1; +} + +inline bool b2IsPowerOfTwo(uint32 x) +{ +	bool result = x > 0 && (x & (x - 1)) == 0; +	return result; +} + +inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const +{ +	xf->p = (1.0f - beta) * c0 + beta * c; +	float32 angle = (1.0f - beta) * a0 + beta * a; +	xf->q.Set(angle); + +	// Shift to origin +	xf->p -= b2Mul(xf->q, localCenter); +} + +inline void b2Sweep::Advance(float32 alpha) +{ +	b2Assert(alpha0 < 1.0f); +	float32 beta = (alpha - alpha0) / (1.0f - alpha0); +	c0 += beta * (c - c0); +	a0 += beta * (a - a0); +	alpha0 = alpha; +} + +/// Normalize an angle in radians to be between -pi and pi +inline void b2Sweep::Normalize() +{ +	float32 twoPi = 2.0f * b2_pi; +	float32 d =  twoPi * floorf(a0 / twoPi); +	a0 -= d; +	a -= d; +} + +#endif  | 
