summaryrefslogtreecommitdiff
path: root/Runtime/Math/FloatConversion.h
diff options
context:
space:
mode:
authorchai <chaifix@163.com>2021-10-24 13:24:13 +0800
committerchai <chaifix@163.com>2021-10-24 13:24:13 +0800
commit3239ba18797b1aa098056aa0c2a70e250a27a06c (patch)
treecb42710213cd188dd5f7c7841693c9ebe1b1915a /Runtime/Math/FloatConversion.h
parent7bf672fd0c6211909d94078b448032b1bd0916ef (diff)
* port shader
Diffstat (limited to 'Runtime/Math/FloatConversion.h')
-rw-r--r--Runtime/Math/FloatConversion.h697
1 files changed, 0 insertions, 697 deletions
diff --git a/Runtime/Math/FloatConversion.h b/Runtime/Math/FloatConversion.h
index 96a4d1d..e69de29 100644
--- a/Runtime/Math/FloatConversion.h
+++ b/Runtime/Math/FloatConversion.h
@@ -1,697 +0,0 @@
-#ifndef FLOATCONVERSION_H
-#define FLOATCONVERSION_H
-
-#include <algorithm>
-#include <cmath>
-#include <limits>
-#include <math.h>
-
-#include "Runtime/Utilities/Type.h"
-#include "Runtime/Utilities/Assert.h"
-
-#if defined(SN_TARGET_PS3)
-# include <ppu_intrinsics.h>
-#elif defined(__GNUC__) && defined(__ppc__)
-# include <ppc_intrinsics.h>
-#endif
-
-#ifndef kPI
-#define kPI 3.14159265358979323846264338327950288419716939937510F
-#endif
-
-const float kBiggestFloatSmallerThanOne = 0.99999994f;
-const double kBiggestDoubleSmallerThanOne = 0.99999999999999989;
-
-#if defined(_XBOX)
-#define __FSELF __fself
-#elif defined(SN_TARGET_PS3)
-#define __FSELF __fsels
-#endif
-
-inline float FloatMin(float a, float b)
-{
-#if defined(_XBOX) || defined(SN_TARGET_PS3)
- return __FSELF((a)-(b), b, a);
-#else
- // return std::min(a, b);
- return a < b ? a : b;
-#endif
-}
-
-inline float FloatMax(float a, float b)
-{
-#if defined(_XBOX) || defined(SN_TARGET_PS3)
- return __FSELF((a)-(b), a, b);
-#else
- //return std::max(a, b);
- return a > b ? a : b;
-#endif
-}
-
-inline float Abs(float v)
-{
-#if defined(__ppc__) && (defined(__MWERKS__) || defined(SN_TARGET_PS3))
- return __fabsf(v);
-#elif defined(_XBOX)
- return __fabs(v);
-#else
- return v < 0.0F ? -v : v;
-#endif
-}
-
-inline double Abs(double v)
-{
- return v < 0.0 ? -v : v;
-}
-
-inline int Abs(int v)
-{
- return v < 0 ? -v : v;
-}
-
-// Floor, ceil and round functions.
-//
-// When changing or implementing these functions, make sure the tests in MathTest.cpp
-// still pass.
-//
-// Floor: rounds to the largest integer smaller than or equal to the input parameter.
-// Ceil: rounds to the smallest integer larger than or equal to the input parameter.
-// Round: rounds to the nearest integer. Ties (0.5) are rounded up to the smallest integer
-// larger than or equal to the input parameter.
-// Chop/truncate: use a normal integer cast.
-//
-// Windows:
-// Casts are as fast as a straight fistp on an SSE equipped CPU. This is by far the most common
-// scenario and will result in the best code for most users. fistp will use the rounding mode set
-// in the control register (round to nearest by default), and needs fiddling to work properly.
-// This actually makes code that attempt to use fistp slower than a cast.
-// Unless we want round to nearest, in which case fistp should be the best choice, right? But
-// it is not. The default rounding mode is round to nearest, but in case of a tie (0.5), round to
-// nearest even is used. Thus 0.5 is rounded down to 0, 1.5 is rounded up to 2.
-// Conclusion - fistp is useless without stupid fiddling around that actually makes is slower than
-// an SSE cast.
-//
-// OS X Intel:
-// Needs investigating
-//
-// OS X PowerPC:
-// Needs investigating
-//
-// Xbox 360:
-// Needs investigating
-//
-// PS3:
-// Needs investigating
-//
-// iPhone:
-// Needs investigating
-//
-// Android:
-// Needs investigating
-
-
-inline int FloorfToInt(float f)
-{
- DebugAssertIf(f < INT_MIN || f > INT_MAX);
- return f >= 0 ? (int)f : (int)(f - kBiggestFloatSmallerThanOne);
-}
-
-inline UInt32 FloorfToIntPos(float f)
-{
- DebugAssertIf(f < 0 || f > UINT_MAX);
- return (UInt32)f;
-}
-
-inline float Floorf(float f)
-{
- // Use std::floor().
- // We are interested in reliable functions that do not lose precision.
- // Casting to int and back to float would not be helpful.
- return floor(f);
-}
-
-inline double Floord(double f)
-{
- // Use std::floor().
- // We are interested in reliable functions that do not lose precision.
- // Casting to int and back to float would not be helpful.
- return floor(f);
-}
-
-
-inline int CeilfToInt(float f)
-{
- DebugAssertIf(f < INT_MIN || f > INT_MAX);
- return f >= 0 ? (int)(f + kBiggestFloatSmallerThanOne) : (int)(f);
-}
-
-inline UInt32 CeilfToIntPos(float f)
-{
- DebugAssertIf(f < 0 || f > UINT_MAX);
- return (UInt32)(f + kBiggestFloatSmallerThanOne);
-}
-
-inline float Ceilf(float f)
-{
- // Use std::ceil().
- // We are interested in reliable functions that do not lose precision.
- // Casting to int and back to float would not be helpful.
- return ceil(f);
-}
-
-inline double Ceild(double f)
-{
- // Use std::ceil().
- // We are interested in reliable functions that do not lose precision.
- // Casting to int and back to float would not be helpful.
- return ceil(f);
-}
-
-
-inline int RoundfToInt(float f)
-{
- return FloorfToInt(f + 0.5F);
-}
-
-inline UInt32 RoundfToIntPos(float f)
-{
- return FloorfToIntPos(f + 0.5F);
-}
-
-inline float Roundf(float f)
-{
- return Floorf(f + 0.5F);
-}
-
-inline double Roundf(double f)
-{
- return Floord(f + 0.5);
-}
-
-
-// Fast conversion of float [0...1] to 0 ... 65535
-inline int NormalizedToWord(float f)
-{
- f = FloatMax(f, 0.0F);
- f = FloatMin(f, 1.0F);
- return RoundfToIntPos(f * 65535.0f);
-}
-
-// Fast conversion of float [0...1] to 0 ... 65535
-inline float WordToNormalized(int p)
-{
- AssertIf(p < 0 || p > 65535);
- return (float)p / 65535.0F;
-}
-
-// Fast conversion of float [0...1] to 0 ... 255
-inline int NormalizedToByte(float f)
-{
- f = FloatMax(f, 0.0F);
- f = FloatMin(f, 1.0F);
- return RoundfToIntPos(f * 255.0f);
-}
-
-// Fast conversion of float [0...1] to 0 ... 255
-inline float ByteToNormalized(int p)
-{
- AssertIf(p < 0 || p > 255);
- return (float)p / 255.0F;
-}
-
-
-// Returns float remainder for t / length
-inline float Repeat(float t, float length)
-{
- return t - Floorf(t / length) * length;
-}
-
-// Returns double remainder for t / length
-inline double RepeatD(double t, double length)
-{
- return t - floor(t / length) * length;
-}
-
-// Returns relative angle on the interval (-pi, pi]
-inline float DeltaAngleRad(float current, float target)
-{
- float delta = Repeat((target - current), 2 * kPI);
- if (delta > kPI)
- delta -= 2 * kPI;
- return delta;
-}
-
-// Returns true if the distance between f0 and f1 is smaller than epsilon
-inline bool CompareApproximately(float f0, float f1, float epsilon = 0.000001F)
-{
- float dist = (f0 - f1);
- dist = Abs(dist);
- return dist < epsilon;
-}
-
-// CopySignf () returns x with its sign changed to y's.
-inline float CopySignf(float x, float y)
-{
- union
- {
- float f;
- UInt32 i;
- } u, u0, u1;
- u0.f = x; u1.f = y;
- UInt32 a = u0.i;
- UInt32 b = u1.i;
- SInt32 mask = 1 << 31;
- UInt32 sign = b & mask;
- a &= ~mask;
- a |= sign;
-
- u.i = a;
- return u.f;
-}
-
-inline int CompareFloatRobustSignUtility(float A)
-{
- // The sign bit of a number is the high bit.
- union
- {
- float f;
- int i;
- } u;
- u.f = A;
- return (u.i) & 0x80000000;
-}
-
-inline bool CompareFloatRobust(float f0, float f1, int maxUlps = 10)
-{
- // After adjusting floats so their representations are lexicographically
- // ordered as twos-complement integers a very small positive number
- // will compare as 'close' to a very small negative number. If this is
- // not desireable, and if you are on a platform that supports
- // subnormals (which is the only place the problem can show up) then
- // you need this check.
- // The check for A == B is because zero and negative zero have different
- // signs but are equal to each other.
- if (CompareFloatRobustSignUtility(f0) != CompareFloatRobustSignUtility(f1))
- return f0 == f1;
-
- union
- {
- float f;
- int i;
- } u0, u1;
- u0.f = f0;
- u1.f = f1;
- int aInt = u0.i;
- // Make aInt lexicographically ordered as a twos-complement int
- if (aInt < 0)
- aInt = 0x80000000 - aInt;
- // Make bInt lexicographically ordered as a twos-complement int
- int bInt = u1.i;
- if (bInt < 0)
- bInt = 0x80000000 - bInt;
-
- // Now we can compare aInt and bInt to find out how far apart A and B
- // are.
- int intDiff = Abs(aInt - bInt);
- if (intDiff <= maxUlps)
- return true;
- return false;
-}
-
-// Returns the t^2
-template<class T>
-T Sqr(const T& t)
-{
- return t * t;
-}
-
-#define kDeg2Rad (2.0F * kPI / 360.0F)
-#define kRad2Deg (1.F / kDeg2Rad)
-
-inline float Deg2Rad(float deg)
-{
- // TODO : should be deg * kDeg2Rad, but can't be changed,
- // because it changes the order of operations and that affects a replay in some RegressionTests
- return deg / 360.0F * 2.0F * kPI;
-}
-
-inline float Rad2Deg(float rad)
-{
- // TODO : should be rad * kRad2Deg, but can't be changed,
- // because it changes the order of operations and that affects a replay in some RegressionTests
- return rad / 2.0F / kPI * 360.0F;
-}
-
-inline float Lerp(float from, float to, float t)
-{
- return to * t + from * (1.0F - t);
-}
-
-inline bool IsNAN(float value)
-{
-#if defined __APPLE_CC__
- return value != value;
-#elif _MSC_VER
- return _isnan(value) != 0;
-#else
- return isnan(value);
-#endif
-}
-
-inline bool IsNAN(double value)
-{
-#if defined __APPLE_CC__
- return value != value;
-#elif _MSC_VER
- return _isnan(value) != 0;
-#else
- return isnan(value);
-#endif
-}
-
-inline bool IsPlusInf(float value) { return value == std::numeric_limits<float>::infinity(); }
-inline bool IsMinusInf(float value) { return value == -std::numeric_limits<float>::infinity(); }
-
-inline bool IsFinite(const float& value)
-{
- // Returns false if value is NaN or +/- infinity
- UInt32 intval = *reinterpret_cast<const UInt32*>(&value);
- return (intval & 0x7f800000) != 0x7f800000;
-}
-
-inline bool IsFinite(const double& value)
-{
- // Returns false if value is NaN or +/- infinity
- UInt64 intval = *reinterpret_cast<const UInt64*>(&value);
- return (intval & 0x7ff0000000000000LL) != 0x7ff0000000000000LL;
-}
-
-inline float InvSqrt(float p) { return 1.0F / sqrt(p); }
-inline float Sqrt(float p) { return sqrt(p); }
-
-// - Almost highest precision sqrt
-// - Returns 0 if value is 0 or -1
-// inline float FastSqrt (float value)
-
-// - Almost highest precision inv sqrt
-// - if value == 0 or -0 it returns 0.
-// inline float FastInvSqrt (float value)
-
-// - Low precision inv sqrt approximately
-// - if value == 0 or -0 it returns nan or undefined
-// inline float FastestInvSqrt (float value)
-
-#if defined(__ppc__) || defined(SN_TARGET_PS3)
-
-#if UNITY_WII
-// Copied from <CodeWarrior>\PowerPC_EABI_Support\MSL\MSL_C\PPC_EABI\Include\math_ppc_inlines.h
-// Requires hardware floating to be enabled
-// P.S I've also profiled with function below which uses fabs(x) == 0.0F, it's two times slower than this one
-inline float FastSqrt(float x)
-{
- static const double _half = .5f;
- static const double _three = 3.0f;
-
- if (x > 0.0f)
- {
- double xd = (double)x;
- double guess = __frsqrte(xd); /* returns an approximation to */
- guess = _half * guess*(_three - guess * guess*xd); /* now have 12 sig bits */
- guess = _half * guess*(_three - guess * guess*xd); /* now have 24 sig bits */
- return (float)(xd * guess);
- }
- else if (x < 0.0)
- return NAN;
- else
- return x;
-}
-#else
-// - Accurate to 1 bit precision
-// - returns zero if x is zero
-inline float FastSqrt(float x)
-{
- const float half = 0.5;
- const float one = 1.0;
- float B, y0, y1;
-
- // This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0
- if (fabs(x) == 0.0F)
- return x;
-
- B = x;
-
-#if defined(__GNUC__) && !defined(SN_TARGET_PS3)
- y0 = __frsqrtes(B);
-#else
- y0 = __frsqrte(B);
-#endif
- // First refinement step
-
- y1 = y0 + half * y0*(one - B * y0*y0);
-
- // Second refinement step -- copy the output of the last step to the input of this step
-
- y0 = y1;
- y1 = y0 + half * y0*(one - B * y0*y0);
-
- // Get sqrt(x) from x * 1/sqrt(x)
- return x * y1;
-}
-#endif
-
-// - Accurate to 1 bit precision
-// - returns zero if f is zero
-inline float FastInvSqrt(float f)
-{
- float result;
- float estimate, estimate2;
- float oneHalf = 0.5f;
- float one = oneHalf + oneHalf;
- //Calculate a 5 bit starting estimate for the reciprocal sqrt
-#if defined(__GNUC__) && !defined(SN_TARGET_PS3)
- estimate = estimate2 = __frsqrtes(f);
-#else
- estimate = estimate2 = __frsqrte(f);
-#endif
-
- //if you require less precision, you may reduce the number of loop iterations
- estimate = estimate + oneHalf * estimate * (one - f * estimate * estimate);
- estimate = estimate + oneHalf * estimate * (one - f * estimate * estimate);
-
-#if defined(__GNUC__) && !defined(SN_TARGET_PS3)
- result = __fsels(-f, estimate2, estimate);
-#else
- result = __fsel(-f, estimate2, estimate);
-#endif
- return result;
-}
-
-// Fast inverse sqrt function
-inline float FastestInvSqrt(float value)
-{
-#if defined (__ppc__) && (defined (__MWERKS__) || defined(SN_TARGET_PS3))
- return (float)__frsqrte(value);
-#elif defined (__ppc__)
- return (float)__frsqrtes(value);
-#else
- return 1.0F / sqrtf(value);
-#endif
-}
-
-#else
-
-inline float FastSqrt(float value)
-{
- return sqrtf(value);
-}
-
-inline float FastInvSqrt(float f)
-{
- // The Newton iteration trick used in FastestInvSqrt is a bit faster on
- // Pentium4 / Windows, but lower precision. Doing two iterations is precise enough,
- // but actually a bit slower.
- if (fabs(f) == 0.0F)
- return f;
- return 1.0F / sqrtf(f);
-}
-
-inline float FastestInvSqrt(float f)
-{
- union
- {
- float f;
- int i;
- } u;
- float fhalf = 0.5f*f;
- u.f = f;
- int i = u.i;
- i = 0x5f3759df - (i >> 1);
- u.i = i;
- f = u.f;
- f = f * (1.5f - fhalf * f*f);
- // f = f*(1.5f - fhalf*f*f); // uncommenting this would be two iterations
- return f;
-}
-
-#endif
-
-inline float SqrtImpl(float f)
-{
-#if UNITY_WII || UNITY_FLASH
- return FastSqrt(f);
-#else
- return sqrt(f);
-#endif
-}
-inline float Sin(float f)
-{
- return sinf(f);
-}
-
-inline float Pow(float f, float f2)
-{
- return powf(f, f2);
-}
-
-inline float Cos(float f)
-{
- return cosf(f);
-}
-
-inline float Sign(float f)
-{
-#if defined(_XBOX)
- return __fsel(f, 1.0f, -1.0f);
-#else
- if (f < 0.0F)
- return -1.0F;
- else
- return 1.0;
-#endif
-}
-
-#if UNITY_EDITOR
-
-class FloatToHalfConverter
-{
-public:
- FloatToHalfConverter();
-
- void Convert(const float& src, UInt16& dest)
- {
- UInt32 bits = *reinterpret_cast<const UInt32*>(&src);
- UInt8 index = UInt8(bits >> 23);
- UInt32 sign = bits & 0x80000000;
- UInt32 mantissa = bits & 0x007fffff;
- dest = (sign >> 16) | m_ExponentTable[index] | (mantissa >> m_MantissaShift[index]);
- }
-
-private:
- UInt16 m_ExponentTable[256];
- UInt8 m_MantissaShift[256];
-};
-
-extern FloatToHalfConverter g_FloatToHalf;
-
-#endif // UNITY_EDITOR
-
-#if UNITY_SUPPORTS_SSE
-#include "Runtime/Math/Simd/SimdMath.h"
-
-#define SSE_CONST4(name, val) static const ALIGN16 UInt32 name[4] = { (val), (val), (val), (val) }
-#define CONST_M128I(name) *(const __m128i *)&name
-
-static ALIGN16 UInt16 source[] = { 0,0,0,0,0,0,0,0 };
-static ALIGN16 float destination[] = { 0.0,0.0,0.0,0.0 };
-
-static void HalfToFloat(UInt16 src, float& dest)
-{
- SSE_CONST4(mask_nosign, 0x7fff);
- SSE_CONST4(smallest_normal, 0x0400);
- SSE_CONST4(infinity, 0x7c00);
- SSE_CONST4(expadjust_normal, (127 - 15) << 23);
- SSE_CONST4(magic_denorm, 113 << 23);
-
- source[0] = src;
- __m128i in = _mm_loadu_si128(reinterpret_cast<const __m128i*>(source));
- __m128i mnosign = CONST_M128I(mask_nosign);
- __m128i eadjust = CONST_M128I(expadjust_normal);
- __m128i smallest = CONST_M128I(smallest_normal);
- __m128i infty = CONST_M128I(infinity);
- __m128i expmant = _mm_and_si128(mnosign, in);
- __m128i justsign = _mm_xor_si128(in, expmant);
- __m128i b_notinfnan = _mm_cmpgt_epi32(infty, expmant);
- __m128i b_isdenorm = _mm_cmpgt_epi32(smallest, expmant);
- __m128i shifted = _mm_slli_epi32(expmant, 13);
- __m128i adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust);
- __m128i adjusted = _mm_add_epi32(eadjust, shifted);
- __m128i den1 = _mm_add_epi32(shifted, CONST_M128I(magic_denorm));
- __m128i adjusted2 = _mm_add_epi32(adjusted, adj_infnan);
- __m128 den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm);
- __m128 adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm));
- __m128 adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2));
- __m128 adjusted5 = _mm_or_ps(adjusted3, adjusted4);
- __m128i sign = _mm_slli_epi32(justsign, 16);
- __m128 out = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign));
- _mm_storeu_ps(destination, out);
- dest = destination[0];
-#undef SSE_CONST4
-#undef CONST_M128I
-}
-
-#else
-
-static void HalfToFloat(UInt16 src, float& dest)
-{
- // Integer alias
- UInt32& bits = *reinterpret_cast<UInt32*>(&dest);
-
- // Based on Fabian Giesen's public domain half_to_float_fast3
- static const UInt32 magic = { 113 << 23 };
- const float& magicFloat = *reinterpret_cast<const float*>(&magic);
- static const UInt32 shiftedExp = 0x7c00 << 13; // exponent mask after shift
-
- // Mask out sign bit
- bits = src & 0x7fff;
- if (bits)
- {
- // Move exponent + mantissa to correct bits
- bits <<= 13;
- UInt32 exponent = bits & shiftedExp;
- if (exponent == 0)
- {
- // Handle denormal
- bits += magic;
- dest -= magicFloat;
- }
- else if (exponent == shiftedExp) // Inf/NaN
- bits += (255 - 31) << 23;
- else
- bits += (127 - 15) << 23;
- }
-
- // Copy sign bit
- bits |= (src & 0x8000) << 16;
-}
-
-#endif
-
-using std::cos;
-using std::pow;
-using std::atan2;
-using std::acos;
-using std::sin;
-using std::sqrt;
-using std::log;
-using std::exp;
-
-// On non-C99 platforms log2 is not available, so approximate it.
-#if UNITY_WIN || UNITY_XENON || UNITY_ANDROID || UNITY_FLASH || UNITY_WEBGL
-#define kNaturalLogarithm2 0.693147180559945309417
-#define Log2(x) (logf(x) / kNaturalLogarithm2)
-#else
-#define Log2(x) log2f(x)
-#endif
-
-
-#endif