diff options
Diffstat (limited to 'Runtime/Math')
-rw-r--r-- | Runtime/Math/FloatConversion.h | 697 | ||||
-rw-r--r-- | Runtime/Math/Rect.h | 150 | ||||
-rw-r--r-- | Runtime/Math/Vector2.cpp | 11 | ||||
-rw-r--r-- | Runtime/Math/Vector2.h | 111 |
4 files changed, 961 insertions, 8 deletions
diff --git a/Runtime/Math/FloatConversion.h b/Runtime/Math/FloatConversion.h new file mode 100644 index 0000000..e5c0f23 --- /dev/null +++ b/Runtime/Math/FloatConversion.h @@ -0,0 +1,697 @@ +#ifndef FLOATCONVERSION_H +#define FLOATCONVERSION_H + +#include <algorithm> +#include <cmath> +#include <limits> +#include <math.h> + +#include "Runtime/Utilities/Type.h" +#include "Runtime/Utilities/Assert.h" + +#if defined(SN_TARGET_PS3) +# include <ppu_intrinsics.h> +#elif defined(__GNUC__) && defined(__ppc__) +# include <ppc_intrinsics.h> +#endif + +#ifndef kPI +#define kPI 3.14159265358979323846264338327950288419716939937510F +#endif + +const float kBiggestFloatSmallerThanOne = 0.99999994f; +const double kBiggestDoubleSmallerThanOne = 0.99999999999999989; + +#if defined(_XBOX) +#define __FSELF __fself +#elif defined(SN_TARGET_PS3) +#define __FSELF __fsels +#endif + +inline float FloatMin(float a, float b) +{ +#if defined(_XBOX) || defined(SN_TARGET_PS3) + return __FSELF((a)-(b), b, a); +#else + // return std::min(a, b); + return a < b ? a : b; +#endif +} + +inline float FloatMax(float a, float b) +{ +#if defined(_XBOX) || defined(SN_TARGET_PS3) + return __FSELF((a)-(b), a, b); +#else + //return std::max(a, b); + return a > b ? a : b; +#endif +} + +inline float Abs(float v) +{ +#if defined(__ppc__) && (defined(__MWERKS__) || defined(SN_TARGET_PS3)) + return __fabsf(v); +#elif defined(_XBOX) + return __fabs(v); +#else + return v < 0.0F ? -v : v; +#endif +} + +inline double Abs(double v) +{ + return v < 0.0 ? -v : v; +} + +inline int Abs(int v) +{ + return v < 0 ? -v : v; +} + +// Floor, ceil and round functions. +// +// When changing or implementing these functions, make sure the tests in MathTest.cpp +// still pass. +// +// Floor: rounds to the largest integer smaller than or equal to the input parameter. +// Ceil: rounds to the smallest integer larger than or equal to the input parameter. +// Round: rounds to the nearest integer. Ties (0.5) are rounded up to the smallest integer +// larger than or equal to the input parameter. +// Chop/truncate: use a normal integer cast. +// +// Windows: +// Casts are as fast as a straight fistp on an SSE equipped CPU. This is by far the most common +// scenario and will result in the best code for most users. fistp will use the rounding mode set +// in the control register (round to nearest by default), and needs fiddling to work properly. +// This actually makes code that attempt to use fistp slower than a cast. +// Unless we want round to nearest, in which case fistp should be the best choice, right? But +// it is not. The default rounding mode is round to nearest, but in case of a tie (0.5), round to +// nearest even is used. Thus 0.5 is rounded down to 0, 1.5 is rounded up to 2. +// Conclusion - fistp is useless without stupid fiddling around that actually makes is slower than +// an SSE cast. +// +// OS X Intel: +// Needs investigating +// +// OS X PowerPC: +// Needs investigating +// +// Xbox 360: +// Needs investigating +// +// PS3: +// Needs investigating +// +// iPhone: +// Needs investigating +// +// Android: +// Needs investigating + + +inline int FloorfToInt(float f) +{ + DebugAssertIf(f < INT_MIN || f > INT_MAX); + return f >= 0 ? (int)f : (int)(f - kBiggestFloatSmallerThanOne); +} + +inline UInt32 FloorfToIntPos(float f) +{ + DebugAssertIf(f < 0 || f > UINT_MAX); + return (UInt32)f; +} + +inline float Floorf(float f) +{ + // Use std::floor(). + // We are interested in reliable functions that do not lose precision. + // Casting to int and back to float would not be helpful. + return floor(f); +} + +inline double Floord(double f) +{ + // Use std::floor(). + // We are interested in reliable functions that do not lose precision. + // Casting to int and back to float would not be helpful. + return floor(f); +} + + +inline int CeilfToInt(float f) +{ + DebugAssertIf(f < INT_MIN || f > INT_MAX); + return f >= 0 ? (int)(f + kBiggestFloatSmallerThanOne) : (int)(f); +} + +inline UInt32 CeilfToIntPos(float f) +{ + DebugAssertIf(f < 0 || f > UINT_MAX); + return (UInt32)(f + kBiggestFloatSmallerThanOne); +} + +inline float Ceilf(float f) +{ + // Use std::ceil(). + // We are interested in reliable functions that do not lose precision. + // Casting to int and back to float would not be helpful. + return ceil(f); +} + +inline double Ceild(double f) +{ + // Use std::ceil(). + // We are interested in reliable functions that do not lose precision. + // Casting to int and back to float would not be helpful. + return ceil(f); +} + + +inline int RoundfToInt(float f) +{ + return FloorfToInt(f + 0.5F); +} + +inline UInt32 RoundfToIntPos(float f) +{ + return FloorfToIntPos(f + 0.5F); +} + +inline float Roundf(float f) +{ + return Floorf(f + 0.5F); +} + +inline double Roundf(double f) +{ + return Floord(f + 0.5); +} + + +/// Fast conversion of float [0...1] to 0 ... 65535 +inline int NormalizedToWord(float f) +{ + f = FloatMax(f, 0.0F); + f = FloatMin(f, 1.0F); + return RoundfToIntPos(f * 65535.0f); +} + +/// Fast conversion of float [0...1] to 0 ... 65535 +inline float WordToNormalized(int p) +{ + AssertIf(p < 0 || p > 65535); + return (float)p / 65535.0F; +} + +/// Fast conversion of float [0...1] to 0 ... 255 +inline int NormalizedToByte(float f) +{ + f = FloatMax(f, 0.0F); + f = FloatMin(f, 1.0F); + return RoundfToIntPos(f * 255.0f); +} + +/// Fast conversion of float [0...1] to 0 ... 255 +inline float ByteToNormalized(int p) +{ + AssertIf(p < 0 || p > 255); + return (float)p / 255.0F; +} + + +// Returns float remainder for t / length +inline float Repeat(float t, float length) +{ + return t - Floorf(t / length) * length; +} + +// Returns double remainder for t / length +inline double RepeatD(double t, double length) +{ + return t - floor(t / length) * length; +} + +// Returns relative angle on the interval (-pi, pi] +inline float DeltaAngleRad(float current, float target) +{ + float delta = Repeat((target - current), 2 * kPI); + if (delta > kPI) + delta -= 2 * kPI; + return delta; +} + +// Returns true if the distance between f0 and f1 is smaller than epsilon +inline bool CompareApproximately(float f0, float f1, float epsilon = 0.000001F) +{ + float dist = (f0 - f1); + dist = Abs(dist); + return dist < epsilon; +} + +/// CopySignf () returns x with its sign changed to y's. +inline float CopySignf(float x, float y) +{ + union + { + float f; + UInt32 i; + } u, u0, u1; + u0.f = x; u1.f = y; + UInt32 a = u0.i; + UInt32 b = u1.i; + SInt32 mask = 1 << 31; + UInt32 sign = b & mask; + a &= ~mask; + a |= sign; + + u.i = a; + return u.f; +} + +inline int CompareFloatRobustSignUtility(float A) +{ + // The sign bit of a number is the high bit. + union + { + float f; + int i; + } u; + u.f = A; + return (u.i) & 0x80000000; +} + +inline bool CompareFloatRobust(float f0, float f1, int maxUlps = 10) +{ + // After adjusting floats so their representations are lexicographically + // ordered as twos-complement integers a very small positive number + // will compare as 'close' to a very small negative number. If this is + // not desireable, and if you are on a platform that supports + // subnormals (which is the only place the problem can show up) then + // you need this check. + // The check for A == B is because zero and negative zero have different + // signs but are equal to each other. + if (CompareFloatRobustSignUtility(f0) != CompareFloatRobustSignUtility(f1)) + return f0 == f1; + + union + { + float f; + int i; + } u0, u1; + u0.f = f0; + u1.f = f1; + int aInt = u0.i; + // Make aInt lexicographically ordered as a twos-complement int + if (aInt < 0) + aInt = 0x80000000 - aInt; + // Make bInt lexicographically ordered as a twos-complement int + int bInt = u1.i; + if (bInt < 0) + bInt = 0x80000000 - bInt; + + // Now we can compare aInt and bInt to find out how far apart A and B + // are. + int intDiff = Abs(aInt - bInt); + if (intDiff <= maxUlps) + return true; + return false; +} + +// Returns the t^2 +template<class T> +T Sqr(const T& t) +{ + return t * t; +} + +#define kDeg2Rad (2.0F * kPI / 360.0F) +#define kRad2Deg (1.F / kDeg2Rad) + +inline float Deg2Rad(float deg) +{ + // TODO : should be deg * kDeg2Rad, but can't be changed, + // because it changes the order of operations and that affects a replay in some RegressionTests + return deg / 360.0F * 2.0F * kPI; +} + +inline float Rad2Deg(float rad) +{ + // TODO : should be rad * kRad2Deg, but can't be changed, + // because it changes the order of operations and that affects a replay in some RegressionTests + return rad / 2.0F / kPI * 360.0F; +} + +inline float Lerp(float from, float to, float t) +{ + return to * t + from * (1.0F - t); +} + +inline bool IsNAN(float value) +{ +#if defined __APPLE_CC__ + return value != value; +#elif _MSC_VER + return _isnan(value) != 0; +#else + return isnan(value); +#endif +} + +inline bool IsNAN(double value) +{ +#if defined __APPLE_CC__ + return value != value; +#elif _MSC_VER + return _isnan(value) != 0; +#else + return isnan(value); +#endif +} + +inline bool IsPlusInf(float value) { return value == std::numeric_limits<float>::infinity(); } +inline bool IsMinusInf(float value) { return value == -std::numeric_limits<float>::infinity(); } + +inline bool IsFinite(const float& value) +{ + // Returns false if value is NaN or +/- infinity + UInt32 intval = *reinterpret_cast<const UInt32*>(&value); + return (intval & 0x7f800000) != 0x7f800000; +} + +inline bool IsFinite(const double& value) +{ + // Returns false if value is NaN or +/- infinity + UInt64 intval = *reinterpret_cast<const UInt64*>(&value); + return (intval & 0x7ff0000000000000LL) != 0x7ff0000000000000LL; +} + +inline float InvSqrt(float p) { return 1.0F / sqrt(p); } +inline float Sqrt(float p) { return sqrt(p); } + +/// - Almost highest precision sqrt +/// - Returns 0 if value is 0 or -1 +/// inline float FastSqrt (float value) + +/// - Almost highest precision inv sqrt +/// - if value == 0 or -0 it returns 0. +/// inline float FastInvSqrt (float value) + +/// - Low precision inv sqrt approximately +/// - if value == 0 or -0 it returns nan or undefined +/// inline float FastestInvSqrt (float value) + +#if defined(__ppc__) || defined(SN_TARGET_PS3) + +#if UNITY_WII +// Copied from <CodeWarrior>\PowerPC_EABI_Support\MSL\MSL_C\PPC_EABI\Include\math_ppc_inlines.h +// Requires hardware floating to be enabled +// P.S I've also profiled with function below which uses fabs(x) == 0.0F, it's two times slower than this one +inline float FastSqrt(float x) +{ + static const double _half = .5f; + static const double _three = 3.0f; + + if (x > 0.0f) + { + double xd = (double)x; + double guess = __frsqrte(xd); /* returns an approximation to */ + guess = _half * guess*(_three - guess * guess*xd); /* now have 12 sig bits */ + guess = _half * guess*(_three - guess * guess*xd); /* now have 24 sig bits */ + return (float)(xd * guess); + } + else if (x < 0.0) + return NAN; + else + return x; +} +#else +/// - Accurate to 1 bit precision +/// - returns zero if x is zero +inline float FastSqrt(float x) +{ + const float half = 0.5; + const float one = 1.0; + float B, y0, y1; + + // This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0 + if (fabs(x) == 0.0F) + return x; + + B = x; + +#if defined(__GNUC__) && !defined(SN_TARGET_PS3) + y0 = __frsqrtes(B); +#else + y0 = __frsqrte(B); +#endif + // First refinement step + + y1 = y0 + half * y0*(one - B * y0*y0); + + // Second refinement step -- copy the output of the last step to the input of this step + + y0 = y1; + y1 = y0 + half * y0*(one - B * y0*y0); + + // Get sqrt(x) from x * 1/sqrt(x) + return x * y1; +} +#endif + +/// - Accurate to 1 bit precision +/// - returns zero if f is zero +inline float FastInvSqrt(float f) +{ + float result; + float estimate, estimate2; + float oneHalf = 0.5f; + float one = oneHalf + oneHalf; + //Calculate a 5 bit starting estimate for the reciprocal sqrt +#if defined(__GNUC__) && !defined(SN_TARGET_PS3) + estimate = estimate2 = __frsqrtes(f); +#else + estimate = estimate2 = __frsqrte(f); +#endif + + //if you require less precision, you may reduce the number of loop iterations + estimate = estimate + oneHalf * estimate * (one - f * estimate * estimate); + estimate = estimate + oneHalf * estimate * (one - f * estimate * estimate); + +#if defined(__GNUC__) && !defined(SN_TARGET_PS3) + result = __fsels(-f, estimate2, estimate); +#else + result = __fsel(-f, estimate2, estimate); +#endif + return result; +} + +/// Fast inverse sqrt function +inline float FastestInvSqrt(float value) +{ +#if defined (__ppc__) && (defined (__MWERKS__) || defined(SN_TARGET_PS3)) + return (float)__frsqrte(value); +#elif defined (__ppc__) + return (float)__frsqrtes(value); +#else + return 1.0F / sqrtf(value); +#endif +} + +#else + +inline float FastSqrt(float value) +{ + return sqrtf(value); +} + +inline float FastInvSqrt(float f) +{ + // The Newton iteration trick used in FastestInvSqrt is a bit faster on + // Pentium4 / Windows, but lower precision. Doing two iterations is precise enough, + // but actually a bit slower. + if (fabs(f) == 0.0F) + return f; + return 1.0F / sqrtf(f); +} + +inline float FastestInvSqrt(float f) +{ + union + { + float f; + int i; + } u; + float fhalf = 0.5f*f; + u.f = f; + int i = u.i; + i = 0x5f3759df - (i >> 1); + u.i = i; + f = u.f; + f = f * (1.5f - fhalf * f*f); + // f = f*(1.5f - fhalf*f*f); // uncommenting this would be two iterations + return f; +} + +#endif + +inline float SqrtImpl(float f) +{ +#if UNITY_WII || UNITY_FLASH + return FastSqrt(f); +#else + return sqrt(f); +#endif +} +inline float Sin(float f) +{ + return sinf(f); +} + +inline float Pow(float f, float f2) +{ + return powf(f, f2); +} + +inline float Cos(float f) +{ + return cosf(f); +} + +inline float Sign(float f) +{ +#if defined(_XBOX) + return __fsel(f, 1.0f, -1.0f); +#else + if (f < 0.0F) + return -1.0F; + else + return 1.0; +#endif +} + +#if UNITY_EDITOR + +class FloatToHalfConverter +{ +public: + FloatToHalfConverter(); + + void Convert(const float& src, UInt16& dest) + { + UInt32 bits = *reinterpret_cast<const UInt32*>(&src); + UInt8 index = UInt8(bits >> 23); + UInt32 sign = bits & 0x80000000; + UInt32 mantissa = bits & 0x007fffff; + dest = (sign >> 16) | m_ExponentTable[index] | (mantissa >> m_MantissaShift[index]); + } + +private: + UInt16 m_ExponentTable[256]; + UInt8 m_MantissaShift[256]; +}; + +extern FloatToHalfConverter g_FloatToHalf; + +#endif // UNITY_EDITOR + +#if UNITY_SUPPORTS_SSE +#include "Runtime/Math/Simd/SimdMath.h" + +#define SSE_CONST4(name, val) static const ALIGN16 UInt32 name[4] = { (val), (val), (val), (val) } +#define CONST_M128I(name) *(const __m128i *)&name + +static ALIGN16 UInt16 source[] = { 0,0,0,0,0,0,0,0 }; +static ALIGN16 float destination[] = { 0.0,0.0,0.0,0.0 }; + +static void HalfToFloat(UInt16 src, float& dest) +{ + SSE_CONST4(mask_nosign, 0x7fff); + SSE_CONST4(smallest_normal, 0x0400); + SSE_CONST4(infinity, 0x7c00); + SSE_CONST4(expadjust_normal, (127 - 15) << 23); + SSE_CONST4(magic_denorm, 113 << 23); + + source[0] = src; + __m128i in = _mm_loadu_si128(reinterpret_cast<const __m128i*>(source)); + __m128i mnosign = CONST_M128I(mask_nosign); + __m128i eadjust = CONST_M128I(expadjust_normal); + __m128i smallest = CONST_M128I(smallest_normal); + __m128i infty = CONST_M128I(infinity); + __m128i expmant = _mm_and_si128(mnosign, in); + __m128i justsign = _mm_xor_si128(in, expmant); + __m128i b_notinfnan = _mm_cmpgt_epi32(infty, expmant); + __m128i b_isdenorm = _mm_cmpgt_epi32(smallest, expmant); + __m128i shifted = _mm_slli_epi32(expmant, 13); + __m128i adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust); + __m128i adjusted = _mm_add_epi32(eadjust, shifted); + __m128i den1 = _mm_add_epi32(shifted, CONST_M128I(magic_denorm)); + __m128i adjusted2 = _mm_add_epi32(adjusted, adj_infnan); + __m128 den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm); + __m128 adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm)); + __m128 adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2)); + __m128 adjusted5 = _mm_or_ps(adjusted3, adjusted4); + __m128i sign = _mm_slli_epi32(justsign, 16); + __m128 out = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign)); + _mm_storeu_ps(destination, out); + dest = destination[0]; +#undef SSE_CONST4 +#undef CONST_M128I +} + +#else + +static void HalfToFloat(UInt16 src, float& dest) +{ + // Integer alias + UInt32& bits = *reinterpret_cast<UInt32*>(&dest); + + // Based on Fabian Giesen's public domain half_to_float_fast3 + static const UInt32 magic = { 113 << 23 }; + const float& magicFloat = *reinterpret_cast<const float*>(&magic); + static const UInt32 shiftedExp = 0x7c00 << 13; // exponent mask after shift + + // Mask out sign bit + bits = src & 0x7fff; + if (bits) + { + // Move exponent + mantissa to correct bits + bits <<= 13; + UInt32 exponent = bits & shiftedExp; + if (exponent == 0) + { + // Handle denormal + bits += magic; + dest -= magicFloat; + } + else if (exponent == shiftedExp) // Inf/NaN + bits += (255 - 31) << 23; + else + bits += (127 - 15) << 23; + } + + // Copy sign bit + bits |= (src & 0x8000) << 16; +} + +#endif + +using std::cos; +using std::pow; +using std::atan2; +using std::acos; +using std::sin; +using std::sqrt; +using std::log; +using std::exp; + +// On non-C99 platforms log2 is not available, so approximate it. +#if UNITY_WIN || UNITY_XENON || UNITY_ANDROID || UNITY_FLASH || UNITY_WEBGL +#define kNaturalLogarithm2 0.693147180559945309417 +#define Log2(x) (logf(x) / kNaturalLogarithm2) +#else +#define Log2(x) log2f(x) +#endif + + +#endif diff --git a/Runtime/Math/Rect.h b/Runtime/Math/Rect.h new file mode 100644 index 0000000..3b4f16c --- /dev/null +++ b/Runtime/Math/Rect.h @@ -0,0 +1,150 @@ +#ifndef RECT_H +#define RECT_H + +#include "Vector2.h" + +/// A rectangle. +template <typename T> +class RectT +{ +public: + typedef RectT<T> RectType; + typedef float BaseType; + + T x; ///< Rectangle x coordinate. + T y; ///< Rectangle y coordinate. + T width; ///< Rectangle width. + T height; ///< Rectangle height. + + inline static const char* GetTypeString(); + inline static bool IsAnimationChannel() { return false; } + inline static bool MightContainPPtr() { return false; } + /// Create a empty rectangle. + RectT() + { + Reset(); + } + + /// Create a new rectangle. + RectT(T inX, T inY, T iWidth, T iHeight) + { + x = inX; width = iWidth; + y = inY; height = iHeight; + } + + T GetRight() const { return x + width; } + T GetBottom() const { return y + height; } + void SetLeft(T l) { T oldXMax = GetXMax(); x = l; width = oldXMax - x; } + void SetTop(T t) { T oldYMax = GetYMax(); y = t; height = oldYMax - y; } + void SetRight(T r) { width = r - x; } + void SetBottom(T b) { height = b - y; } + + + T GetXMax() const { return x + width; } + T GetYMax() const { return y + height; } + + /// Return true if rectangle is empty. + inline bool IsEmpty() const { return width <= 0 || height <= 0; } + + inline void SetPosition(const Vector2f& position) { x = position.x; y = position.y; } + inline Vector2f GetPosition() const { return Vector2f(x, y); } + + inline void SetSize(const Vector2f& size) { width = size.x; height = size.y; } + inline Vector2f GetSize() const { return Vector2f(width, height); } + /// Resets the rectangle + inline void Reset() { x = y = width = height = 0; } + + /// Sets the rectangle + inline void Set(T inX, T inY, T iWidth, T iHeight) + { + x = inX; width = iWidth; + y = inY; height = iHeight; + } + + inline void Scale(T dx, T dy) { x *= dx; width *= dx; y *= dy; height *= dy; } + + /// Set Center position of rectangle (size stays the same) + void SetCenterPos(T cx, T cy) { x = cx - width / 2; y = cy - height / 2; } + Vector2f GetCenterPos() const { return Vector2f(x + (BaseType)width / 2, y + (BaseType)height / 2); } + + /// Ensure this is inside the rect r. + void Clamp(const RectType &r) + { + T x2 = x + width; + T y2 = y + height; + T rx2 = r.x + r.width; + T ry2 = r.y + r.height; + + if (x < r.x) x = r.x; + if (x2 > rx2) x2 = rx2; + if (y < r.y) y = r.y; + if (y2 > ry2) y2 = ry2; + + width = x2 - x; + if (width < 0) width = 0; + + height = y2 - y; + if (height < 0) height = 0; + } + + /// Move rectangle by deltaX, deltaY. + inline void Move(T dX, T dY) { x += dX; y += dY; } + + /// Return the width of rectangle. + inline T Width() const { return width; } + + /// Return the height of rectangle. + inline T Height() const { return height; } + + /// Return true if a point lies within rectangle bounds. + inline bool Contains(T px, T py) const { return (px >= x) && (px < x + width) && (py >= y) && (py < y + height); } + inline bool Contains(const Vector2f& p) const { return Contains(p.x, p.y); } + /// Return true if a relative point lies within rectangle bounds. + inline bool ContainsRel(T x, T y) const + { + return (x >= 0) && (x < Width()) && (y >= 0) && (y < Height()); + } + + inline bool Intersects(const RectType& r) const + { + // Rects are disjoint if there's at least one separating axis + bool disjoint = x + width < r.x; + disjoint |= r.x + r.width < x; + disjoint |= y + height < r.y; + disjoint |= r.y + r.height < y; + return !disjoint; + } + + /// Normalize a rectangle such that xmin <= xmax and ymin <= ymax. + inline void Normalize() + { + width = std::max<T>(width, 0); + height = std::max<T>(height, 0); + } + + bool operator == (const RectType& r)const { return x == r.x && y == r.y && width == r.width && height == r.height; } + bool operator != (const RectType& r)const { return x != r.x || y != r.y || width != r.width || height != r.height; } +}; + +typedef RectT<float> Rectf; +typedef RectT<int> RectInt; + +template<> inline const char* Rectf::GetTypeString() { return "Rectf"; } +template<> inline const char* RectInt::GetTypeString() { return "RectInt"; } + +inline bool CompareApproximately(const Rectf& lhs, const Rectf& rhs) +{ + return CompareApproximately(lhs.x, rhs.x) && CompareApproximately(lhs.y, rhs.y) && + CompareApproximately(lhs.width, rhs.width) && CompareApproximately(lhs.height, rhs.height); +} + +/// Make a rect with width & height +template<typename T> +inline RectT<T> MinMaxRect(T minx, T miny, T maxx, T maxy) { return RectT<T>(minx, miny, maxx - minx, maxy - miny); } + +// RectT<float> specialization +template<> +inline bool Rectf::IsEmpty() const { return width <= 0.00001F || height <= 0.00001F; } + + +#endif diff --git a/Runtime/Math/Vector2.cpp b/Runtime/Math/Vector2.cpp index e69de29..e636362 100644 --- a/Runtime/Math/Vector2.cpp +++ b/Runtime/Math/Vector2.cpp @@ -0,0 +1,11 @@ +#include "Vector2.h" + +using namespace std; + +const float Vector2f::epsilon = 0.00001F; +const float Vector2f::infinity = numeric_limits<float>::infinity(); +const Vector2f Vector2f::infinityVec = Vector2f(numeric_limits<float>::infinity(), numeric_limits<float>::infinity()); + +const Vector2f Vector2f::zero = Vector2f(0, 0); +const Vector2f Vector2f::xAxis = Vector2f(1, 0); +const Vector2f Vector2f::yAxis = Vector2f(0, 1); diff --git a/Runtime/Math/Vector2.h b/Runtime/Math/Vector2.h index 7bf3987..01fa015 100644 --- a/Runtime/Math/Vector2.h +++ b/Runtime/Math/Vector2.h @@ -1,17 +1,112 @@ #ifndef VECTOR2_H #define VECTOR2_H -class Vector2 +#include "FloatConversion.h" + +class Vector2f { -public: - float x, y; +public: + float x, y; + + + Vector2f() : x(0.f), y(0.f) {} + Vector2f(float inX, float inY) { x = inX; y = inY; } + explicit Vector2f(const float* p) { x = p[0]; y = p[1]; } + + void Set(float inX, float inY) { x = inX; y = inY; } + + float* GetPtr() { return &x; } + const float* GetPtr()const { return &x; } + float& operator[] (int i) { DebugAssertIf(i < 0 || i > 1); return (&x)[i]; } + const float& operator[] (int i)const { DebugAssertIf(i < 0 || i > 1); return (&x)[i]; } - inline void Set(float x, float y) - { - this->x = x; - this->y = y; - } + Vector2f& operator += (const Vector2f& inV) { x += inV.x; y += inV.y; return *this; } + Vector2f& operator -= (const Vector2f& inV) { x -= inV.x; y -= inV.y; return *this; } + Vector2f& operator *= (const float s) { x *= s; y *= s; return *this; } + Vector2f& operator /= (const float s) { DebugAssertIf(CompareApproximately(s, 0.0F)); x /= s; y /= s; return *this; } + bool operator == (const Vector2f& v)const { return x == v.x && y == v.y; } + bool operator != (const Vector2f& v)const { return x != v.x || y != v.y; } + + Vector2f operator - () const { return Vector2f(-x, -y); } + + Vector2f& Scale(const Vector2f& inV) { x *= inV.x; y *= inV.y; return *this; } + + static const float epsilon; + static const float infinity; + static const Vector2f infinityVec; + static const Vector2f zero; + static const Vector2f xAxis; + static const Vector2f yAxis; }; +//inline Vector2f Scale(const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(lhs.x * rhs.x, lhs.y * rhs.y); } +// +//inline Vector2f operator + (const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(lhs.x + rhs.x, lhs.y + rhs.y); } +//inline Vector2f operator - (const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(lhs.x - rhs.x, lhs.y - rhs.y); } +//inline float Dot(const Vector2f& lhs, const Vector2f& rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; } +// +//inline float SqrMagnitude(const Vector2f& inV) { return Dot(inV, inV); } +//inline float Magnitude(const Vector2f& inV) { return SqrtImpl(Dot(inV, inV)); } +// +//inline float Angle(const Vector2f& lhs, const Vector2f& rhs) { return acos(std::min(1.0f, std::max(-1.0f, Dot(lhs, rhs) / (Magnitude(lhs) * Magnitude(rhs))))); } +// +//inline Vector2f operator * (const Vector2f& inV, float s) { return Vector2f(inV.x * s, inV.y * s); } +//inline Vector2f operator * (const float s, const Vector2f& inV) { return Vector2f(inV.x * s, inV.y * s); } +//inline Vector2f operator / (const Vector2f& inV, float s) { Vector2f temp(inV); temp /= s; return temp; } +//inline Vector2f Inverse(const Vector2f& inVec) { return Vector2f(1.0F / inVec.x, 1.0F / inVec.y); } +// +//// Normalizes a vector, asserts if the vector can be normalized +//inline Vector2f Normalize(const Vector2f& inV) { return inV / Magnitude(inV); } +//// Normalizes a vector, returns default vector if it can't be normalized +//inline Vector2f NormalizeSafe(const Vector2f& inV, const Vector2f& defaultV = Vector2f::zero); +// +//inline Vector2f Lerp(const Vector2f& from, const Vector2f& to, float t) { return to * t + from * (1.0f - t); } +// +//// Returns a vector with the smaller of every component from v0 and v1 +//inline Vector2f min(const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(std::min(lhs.x, rhs.x), std::min(lhs.y, rhs.y)); } +//// Returns a vector with the larger of every component from v0 and v1 +//inline Vector2f max(const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(std::max(lhs.x, rhs.x), std::max(lhs.y, rhs.y)); } +// +//bool CompareApproximately(const Vector2f& inV0, const Vector2f& inV1, float inMaxDist = Vector2f::epsilon); +// +//inline bool CompareApproximately(const Vector2f& inV0, const Vector2f& inV1, float inMaxDist) +//{ +// return SqrMagnitude(inV1 - inV0) < inMaxDist * inMaxDist; +//} +// +//inline bool IsNormalized(const Vector2f& vec, float epsilon = Vector2f::epsilon) +//{ +// return CompareApproximately(SqrMagnitude(vec), 1.0F, epsilon); +//} +// +///// Returns the abs of every component of the vector +//inline Vector2f Abs(const Vector2f& v) { return Vector2f(Abs(v.x), Abs(v.y)); } +// +//inline bool IsFinite(const Vector2f& f) +//{ +// return IsFinite(f.x) & IsFinite(f.y); +//} +// +//inline Vector2f NormalizeFast(const Vector2f& inV) +//{ +// float m = SqrMagnitude(inV); +// // GCC version of __frsqrte: +// // static inline double __frsqrte (double x) { +// // double y; +// // asm ( "frsqrte %0, %1" : /*OUT*/ "=f" (y) : /*IN*/ "f" (x) ); +// // return y; +// // } +// return inV * FastInvSqrt(m); +//} +// +//inline Vector2f NormalizeSafe(const Vector2f& inV, const Vector2f& defaultV) +//{ +// float mag = Magnitude(inV); +// if (mag > Vector2f::epsilon) +// return inV / Magnitude(inV); +// else +// return defaultV; +//} + #endif
\ No newline at end of file |