1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
--[[
Library for a matrix data structure and operations defined on it.
]]
_libs = _libs or {}
require('tables')
require('maths')
require('vectors')
local table, math, vector = _libs.tables, _libs.maths, _libs.vectors
matrix = {}
_libs.matrices = matrix
_meta = _meta or {}
_meta.M = _meta.M or {}
_meta.M.__index = matrix
_meta.M.__class = 'Matrix'
-- Constructor for vectors.
-- matrix.m is the row-dimension
-- matrix.n is the column-dimension
function M(t)
t.rows, t.cols = #t, #t[1]
return setmetatable(t, _meta.M)
end
-- Returns a transposed matrix.
function matrix.transpose(m)
local res = {}
for i, row in ipairs(m) do
for j, val in ipairs(row) do
res[j][i] = val
end
end
res.rows, res.cols = m.cols, m.rows
return res
end
-- Returns the identity matrix of dimension n.
function matrix.identity(n)
local res = {}
for i = 1, n do
res[i] = {}
for j = 1, n do
res[i][j] = i == j and 1 or 0
end
end
res.rows, res.cols = n, n
return setmetatable(res, _meta.M)
end
-- Returns the row and column number of the matrix.
function matrix.dimensions(m)
return m.rows, m.cols
end
-- Returns the vector of the diagonal of m.
function matrix.diag(m)
local res = {}
for i, row in ipairs(m) do
res[i] = row[i]
end
res.n = m.rows
return setmetatable(res, _meta.V)
end
-- Return a matrix scaled by a constant.
function matrix.scale(m, k)
local res = {}
for i, row in ipairs(m) do
res[i] = {}
for j, val in ipairs(row) do
res[i][j] = val*k
end
end
res.rows, res.cols = m.rows, m.cols
return setmetatable(res, _meta.M)
end
-- Returns m scaled by -1 (every value negated.
function matrix.negate(m)
return m:scale(-1)
end
_meta.M.__unm = matrix.negate
-- Returns the nth row of a matrix as a vector.
function matrix.row(m, n)
return V(m[n], n)
end
-- Returns the nth column of a matrix as a vector.
function matrix.column(m, n)
local res = {}
for i, col in ipairs(m) do
res[i] = col[n]
end
res.n = m.m
return setmetatable(res, _meta.V)
end
-- Returns the determinant of a matrix.
function matrix.det(m)
if m.rows == 2 then
return m[1][1]*m[2][2] - m[1][2]*m[2][1]
end
local acc = 0
for i, val in ipairs(m[1]) do
acc = acc + (-1)^i * m:exclude(1, i):det()
end
return acc
end
-- Returns a matrix with one row and column excluded.
function matrix.exclude(m, exrow, excol)
local res = {}
local ik = 1
local jk = 1
for i, row in ipairs(m) do
if i ~= exrow then
res[ik] = {}
for j, val in ipairs(row) do
if j ~= excol then
res[ik][jk] = val
jk = jk + 1
end
end
ik = ik + 1
end
end
end
-- Returns two matrices added.
function matrix.add(m1, m2)
local res = {}
for i, row in ipairs(m1) do
res[i] = {}
for j, val in ipairs(row) do
res[i][j] = val + m2[i][j]
end
end
res.rows, res.cols = m1.rows, m1.cols
return setmetatable(res, _meta.M)
end
_meta.M.__add = matrix.add
-- Returns m1 subtracted by m2.
function matrix.subtract(m1, m2)
local res = {}
for i, row in ipairs(m1) do
res[i] = {}
for j, val in ipairs(row) do
res[i][j] = val - m2[i][j]
end
end
res.rows, res.cols = m1.rows, m1.cols
return setmetatable(res, _meta.M)
end
_meta.M.__sub = matrix.subtract
-- Return a matrix multiplied by another matrix or vector.
function matrix.multiply(m1, m2)
local res = {}
local cols = {}
for i, col in ipairs(m2[1]) do
cols[i] = {}
end
for i, row in ipairs(m2) do
for j, val in ipairs(row) do
cols[j][i] = val
end
end
local acc
for i, row in ipairs(m1) do
res[i] = {}
for c, col in ipairs(cols) do
acc = 0
for j, val in ipairs(col) do
acc = acc + m1[i][c]*m2[j][c]
end
res[i][c] = acc
end
end
res.rows, res.cols = m1.rows, m2.cols
return setmetatable(res, _meta.M)
end
_meta.M.__mul = matrix.multiply
-- Returns an inline string representation of the matrix.
function matrix.tostring(m)
local str = '['
for i, row in ipairs(m) do
if i > 1 then
str = str..', '
end
str = str..'['
for j, val in ipairs(row) do
if j > 1 then
str = str..', '
end
str = str..tostring(val)
end
str = str..']'
end
return str..']'
end
_meta.M.__tostring = matrix.tostring
-- Returns a multiline string representation of the matrix.
function matrix.tovstring(m)
local str = ''
for i, row in ipairs(m) do
if i > 1 then
str = str..'\n'
end
for j, val in ipairs(row) do
if j > 1 then
str = str..' '
end
str = str..tostring(val)
end
end
return str
end
function matrix.vprint(m)
if log then
log(m:tovstring())
end
end
--[[
Copyright © 2013, Windower
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of Windower nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Windower BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
]]
|