summaryrefslogtreecommitdiff
path: root/Runtime/Graphics/VertexBuffer.cpp
blob: 7ea3acd7b816d93bf1a3feec704c98a3c9c12066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#include "VertexBuffer.h"
#include "../Profiling/FrameStats.h"

void SetupDefaultVertexArray(const VertexDataInfo& info);
void InvalidateVertexInputCache();

// LUTs of vertex attributes 
static const int kVertexAttrSize[VertexAttr_Count] = {
	3 * sizeof(float),	// position
	3 * sizeof(float),	// normal
	4 * sizeof(float),	// tangent
	1 * sizeof(uint32), // color
	2 * sizeof(float),	// uv
	2 * sizeof(float),	// uv2
	2 * sizeof(float),	// uv3
	2 * sizeof(float),	// uv4
};

static const int kVertexAttrDimension[VertexAttr_Count] = {
	3, // position
	3, // normal
	4, // tangent
	1, // color
	2, // uv
	2, // uv2
	2, // uv3
	2, // uv4
};

enum VertexAttrFormat
{
	VertexAttrFormat_Float = 0,   // position \ normal \ tangent \ uv0 \ uv1
	VertexAttrFormat_Float16 = 1,
	VertexAttrFormat_Color = 2,   // color
	VertexAttrFormat_Byte = 3,

	VertexAttrFormat_Count = 4
};

// map VertexAttrFormat to OpenGL type
static GLenum kGLVertexAttrFormat[VertexAttrFormat_Count] = {
	GL_FLOAT,         // VertexAttrFormat_Float
	GL_HALF_FLOAT,    // VertexAttrFormat_Float16
	GL_UNSIGNED_BYTE, // VertexAttrFormat_Color
	GL_BYTE           // VertexAttrFormat_Byte
};

static bool IsGLVertexAttrNeedNormalized(uint attr, uint format)
{
	if(attr == VertexAttr_Position)
		return false; 
	else // color and byte need to be normalized
		return format != VertexAttrFormat_Float && format != VertexAttrFormat_Float16;
}

static uint GetDefaultShaderChannelFormat(uint attr)
{
// besides color, other attributes are all composite of float values
	return attr == VertexAttr_Color ? VertexAttrFormat_Color : VertexAttrFormat_Float;
}

static uint32 GetDefaultVertexAttrSize(/*VertexAttr*/ int attr)
{
	return kVertexAttrSize[attr];
}

static uint GetDefaultVertexAttrDimension(uint attr)
{
	return kVertexAttrDimension[attr];
}

static uint GetDefaultShaderChannelDimension(uint attr)
{
	return attr == VertexAttr_Color ? 4 : GetDefaultVertexAttrDimension(attr);
}

// index is stored in unsgined short (GL_UNSIGNED_SHORT)
static const int kIndexSize = sizeof(uint16);
static GLenum kGLIndexFormat = GL_UNSIGNED_SHORT;

// Get size used for vertexAttrMask
static uint32 GetDynamicChunkStride(uint32 vertexAttrMask)
{
	uint32 stride = 0;
	for (int i = 0; i < vertexAttrMask; ++i)
	{
		if (vertexAttrMask & Mask(i))
			stride += GetDefaultVertexAttrSize(i);
	}
	return stride;
}

VertexBuffer::VertexBuffer(VertexBufferType type)
{
}

VertexBuffer::~VertexBuffer()
{
}

//------------------------------------------------------------------------------------------------------------

SharedVertexBuffer::SharedVertexBuffer()
{
}

SharedVertexBuffer::~SharedVertexBuffer()
{
}

//GetChunk
//-> ReleaseChunk
//-> DrawChunk

void SharedVertexBuffer::GetChunk(uint attrsMask, int maxVerts, int maxIndices, EPrimitive primitive, void **out_vb, void **out_ib)
{
	Assert(out_vb && out_ib);

	uint stride = GetDynamicChunkStride(attrsMask); // data size of single vertex
	GLenum usage = GL_STREAM_DRAW;
	uint vbufferSize = stride * maxVerts; 
	uint ibufferSize = kIndexSize * maxIndices;

	const bool mapVertexBuffer = vbufferSize >= DataBufferThreshold;
	const bool mapIndexBuffer = ibufferSize >= DataBufferThreshold;

	GPU::DataBuffer* vertexBuffer = mapVertexBuffer ? GPU::ClaimBuffer(vbufferSize, usage) : 0;
	GPU::DataBuffer* indexBuffer = mapIndexBuffer ? GPU::ClaimBuffer(ibufferSize, usage) : 0;

	if(vertexBuffer && vertexBuffer->GetSize() < vbufferSize)
		vertexBuffer->Restore(vbufferSize, usage);

	if(indexBuffer && indexBuffer->GetSize() < ibufferSize)
		indexBuffer->Restore(ibufferSize, usage);
	
	if(!mapVertexBuffer && m_CurVBData.size() < vbufferSize)
		m_CurVBData.resize(vbufferSize);

	if(!mapIndexBuffer && m_CurIBData.size() < ibufferSize)
		m_CurIBData.resize(ibufferSize);

	const GLenum access = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_FLUSH_EXPLICIT_BIT;

	if (vertexBuffer)
		*out_vb = vertexBuffer->MapRange(0, vbufferSize, access);
	else 
		*out_vb = &m_CurVBData[0];

	if(indexBuffer)
		*out_ib = indexBuffer->MapRange(0, ibufferSize, access); 
	else 
		*out_ib = &m_CurIBData[0];

	m_CurVB = vertexBuffer;
	m_CurIB = indexBuffer; 
	m_CurPrimitive = primitive;
	m_CurAttrMask = attrsMask;
	m_CurStride = stride;
}

void SharedVertexBuffer::ReleaseChunk(int actualVerts, int actualIndices)
{
	int actualVBufferSize = m_CurStride * actualVerts;
	int actualIBufferSize = kIndexSize * actualIndices;

	const GLenum usage = GL_STREAM_DRAW;

	if (m_CurVB)
	{
		m_CurVB->FlushMapedRange(0, actualVBufferSize);
		m_CurVB->UnMap();
	}
	else if(actualVBufferSize >= DataBufferThreshold)
	{
		m_CurVB = GPU::ClaimBuffer(actualVBufferSize, usage);
		m_CurVB->RestoreWithData(actualVBufferSize, usage, &m_CurVBData[0]);		
	}

	if (m_CurIB)
	{
		m_CurIB->FlushMapedRange(0, actualIBufferSize);
		m_CurIB->UnMap();
	}
	else if (actualIBufferSize >= DataBufferThreshold)
	{
		m_CurIB = GPU::ClaimBuffer(0, usage);
		m_CurIB->RestoreWithData(0, usage, &m_CurIBData[0]);
	}
	
	m_CurVertexCount = actualVerts;
	m_CurIndexCount = actualIndices;
}

void SharedVertexBuffer::DrawChunk()
{
	VertexDataInfo vertexArray;
	FillVertexArrayInfo(vertexArray);

	// bind vertex attributes data 
	SetupDefaultVertexArray(vertexArray);

	const void* indexPtr = m_CurIB ? 0 : (m_CurIBData.empty() ? 0 : &m_CurIBData[0]);

	if (m_CurIB)
		glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_CurIB->GetHandle());

	switch (m_CurPrimitive)
	{
		case Primitive_Triangle:
			glDrawElements(GL_TRIANGLES, m_CurIndexCount, kGLIndexFormat, indexPtr);
			g_FrameStats.AddDrawCall();
			g_FrameStats.AddTrianglesCount(m_CurIndexCount / 3);
		break; 
		case Primitive_Line:
			glDrawElements(GL_LINE, m_CurIndexCount, kGLIndexFormat, indexPtr);
			g_FrameStats.AddDrawCall();
		break; 
		case Primitive_Point:
			glDrawElements(GL_POINT, m_CurIndexCount, kGLIndexFormat, indexPtr);
			g_FrameStats.AddDrawCall();
		break;
	}
	
	if(m_CurIB)
		glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

	// End draw
	Clean();
}

void SharedVertexBuffer::FillVertexArrayInfo(VertexDataInfo& dst)
{
	const byte* basepointer = m_CurVB ? 0 : &m_CurVBData[0];
	const GLuint buffer = m_CurVB ? m_CurVB->GetHandle() : 0;
	
	int attrOffsets[VertexAttr_Count] = {0};

	{
		uint32 curOffset = 0;
		for (uint idx = 0; idx < VertexAttr_Count; ++idx)
		{
			if (m_CurAttrMask & Mask(idx))
			{
				attrOffsets[idx] = curOffset;
				curOffset += GetDefaultVertexAttrSize(idx);
			}
		}
	}

	dst.buffer = buffer;

	for (uint32 attrIdx = 0; attrIdx < VertexAttr_Count; ++attrIdx)
	{
		if (m_CurAttrMask & Mask(attrIdx))
		{
			dst.attributes[attrIdx].pointer = basepointer + attrOffsets[attrIdx];
			dst.attributes[attrIdx].componentType = GetDefaultShaderChannelFormat(attrIdx);
			dst.attributes[attrIdx].componentNum = GetDefaultShaderChannelDimension(attrIdx);
			dst.attributes[attrIdx].stride = m_CurStride;

			dst.enableMask |= Mask(attrIdx);
		}
	}
}

void SharedVertexBuffer::Clean()
{
	if (m_CurVB)
	{
		GPU::ReleaseBuffer(m_CurVB);
		m_CurVB = 0;
	}

	if (m_CurIB)
	{
		GPU::ReleaseBuffer(m_CurIB);
		m_CurIB = 0;
	}

	m_CurPrimitive = Primitive_Triangle;
	m_CurAttrMask = 0;
	m_CurStride = 0;
	m_CurVertexCount = 0;
	m_CurIndexCount = 0;

	m_CurVBData.clear();
	m_CurIBData.clear();
}

static uint32 sEnabledArrays = 0;

void SetupDefaultVertexArray(const VertexDataInfo& info)
{
	glBindBuffer(GL_ARRAY_BUFFER, info.buffer);
	
	for (int attrIdx = 0; attrIdx < VertexAttr_Count; ++attrIdx)
	{
		if (info.enableMask & Mask(attrIdx))
		{
			if (!sEnabledArrays & Mask(attrIdx))
				glEnableVertexAttribArray(attrIdx);
			int numCompo = info.attributes[attrIdx].componentNum;
			GLenum compoType = kGLVertexAttrFormat[info.attributes[attrIdx].componentType];
			bool normalized = IsGLVertexAttrNeedNormalized(attrIdx, compoType);
			uint stride = info.attributes[attrIdx].stride;
			const void* pointer = info.attributes[attrIdx].pointer;

			glVertexAttribPointer(attrIdx, numCompo, compoType, normalized ? GL_TRUE : GL_FALSE, stride, pointer);
		}
		else if(sEnabledArrays & Mask(attrIdx))
			glDisableVertexAttribArray(attrIdx);
	}
	sEnabledArrays = info.enableMask;
}

void InvalidateVertexInputCache()
{
	sEnabledArrays = 0;
	for(int attrIdx = 0; attrIdx < VertexAttr_Count; ++attrIdx)
		glDisableVertexAttribArray(attrIdx);
}