1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
#ifndef VECTOR2_H
#define VECTOR2_H
#include "FloatConversion.h"
class Vector2f
{
public:
float x, y;
Vector2f() : x(0.f), y(0.f) {}
Vector2f(float inX, float inY) { x = inX; y = inY; }
explicit Vector2f(const float* p) { x = p[0]; y = p[1]; }
void Set(float inX, float inY) { x = inX; y = inY; }
float* GetPtr() { return &x; }
const float* GetPtr()const { return &x; }
float& operator[] (int i) { DebugAssertIf(i < 0 || i > 1); return (&x)[i]; }
const float& operator[] (int i)const { DebugAssertIf(i < 0 || i > 1); return (&x)[i]; }
Vector2f& operator += (const Vector2f& inV) { x += inV.x; y += inV.y; return *this; }
Vector2f& operator -= (const Vector2f& inV) { x -= inV.x; y -= inV.y; return *this; }
Vector2f& operator *= (const float s) { x *= s; y *= s; return *this; }
Vector2f& operator /= (const float s) { DebugAssertIf(CompareApproximately(s, 0.0F)); x /= s; y /= s; return *this; }
bool operator == (const Vector2f& v)const { return x == v.x && y == v.y; }
bool operator != (const Vector2f& v)const { return x != v.x || y != v.y; }
Vector2f operator - () const { return Vector2f(-x, -y); }
Vector2f& Scale(const Vector2f& inV) { x *= inV.x; y *= inV.y; return *this; }
static const float epsilon;
static const float infinity;
static const Vector2f infinityVec;
static const Vector2f zero;
static const Vector2f xAxis;
static const Vector2f yAxis;
};
//inline Vector2f Scale(const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(lhs.x * rhs.x, lhs.y * rhs.y); }
//
//inline Vector2f operator + (const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(lhs.x + rhs.x, lhs.y + rhs.y); }
//inline Vector2f operator - (const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(lhs.x - rhs.x, lhs.y - rhs.y); }
//inline float Dot(const Vector2f& lhs, const Vector2f& rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; }
//
//inline float SqrMagnitude(const Vector2f& inV) { return Dot(inV, inV); }
//inline float Magnitude(const Vector2f& inV) { return SqrtImpl(Dot(inV, inV)); }
//
//inline float Angle(const Vector2f& lhs, const Vector2f& rhs) { return acos(std::min(1.0f, std::max(-1.0f, Dot(lhs, rhs) / (Magnitude(lhs) * Magnitude(rhs))))); }
//
//inline Vector2f operator * (const Vector2f& inV, float s) { return Vector2f(inV.x * s, inV.y * s); }
//inline Vector2f operator * (const float s, const Vector2f& inV) { return Vector2f(inV.x * s, inV.y * s); }
//inline Vector2f operator / (const Vector2f& inV, float s) { Vector2f temp(inV); temp /= s; return temp; }
//inline Vector2f Inverse(const Vector2f& inVec) { return Vector2f(1.0F / inVec.x, 1.0F / inVec.y); }
//
/// Normalizes a vector, asserts if the vector can be normalized
//inline Vector2f Normalize(const Vector2f& inV) { return inV / Magnitude(inV); }
/// Normalizes a vector, returns default vector if it can't be normalized
//inline Vector2f NormalizeSafe(const Vector2f& inV, const Vector2f& defaultV = Vector2f::zero);
//
//inline Vector2f Lerp(const Vector2f& from, const Vector2f& to, float t) { return to * t + from * (1.0f - t); }
//
/// Returns a vector with the smaller of every component from v0 and v1
//inline Vector2f min(const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(std::min(lhs.x, rhs.x), std::min(lhs.y, rhs.y)); }
/// Returns a vector with the larger of every component from v0 and v1
//inline Vector2f max(const Vector2f& lhs, const Vector2f& rhs) { return Vector2f(std::max(lhs.x, rhs.x), std::max(lhs.y, rhs.y)); }
//
//bool CompareApproximately(const Vector2f& inV0, const Vector2f& inV1, float inMaxDist = Vector2f::epsilon);
//
//inline bool CompareApproximately(const Vector2f& inV0, const Vector2f& inV1, float inMaxDist)
//{
// return SqrMagnitude(inV1 - inV0) < inMaxDist * inMaxDist;
//}
//
//inline bool IsNormalized(const Vector2f& vec, float epsilon = Vector2f::epsilon)
//{
// return CompareApproximately(SqrMagnitude(vec), 1.0F, epsilon);
//}
//
//// Returns the abs of every component of the vector
//inline Vector2f Abs(const Vector2f& v) { return Vector2f(Abs(v.x), Abs(v.y)); }
//
//inline bool IsFinite(const Vector2f& f)
//{
// return IsFinite(f.x) & IsFinite(f.y);
//}
//
//inline Vector2f NormalizeFast(const Vector2f& inV)
//{
// float m = SqrMagnitude(inV);
// // GCC version of __frsqrte:
// // static inline double __frsqrte (double x) {
// // double y;
// // asm ( "frsqrte %0, %1" : /*OUT*/ "=f" (y) : /*IN*/ "f" (x) );
// // return y;
// // }
// return inV * FastInvSqrt(m);
//}
//
//inline Vector2f NormalizeSafe(const Vector2f& inV, const Vector2f& defaultV)
//{
// float mag = Magnitude(inV);
// if (mag > Vector2f::epsilon)
// return inV / Magnitude(inV);
// else
// return defaultV;
//}
#endif
|