diff options
Diffstat (limited to 'src/3rdparty/Box2D/Collision/b2Distance.cpp')
-rw-r--r-- | src/3rdparty/Box2D/Collision/b2Distance.cpp | 737 |
1 files changed, 737 insertions, 0 deletions
diff --git a/src/3rdparty/Box2D/Collision/b2Distance.cpp b/src/3rdparty/Box2D/Collision/b2Distance.cpp new file mode 100644 index 0000000..194d747 --- /dev/null +++ b/src/3rdparty/Box2D/Collision/b2Distance.cpp @@ -0,0 +1,737 @@ +/* +* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2Distance.h" +#include "Box2D/Collision/Shapes/b2CircleShape.h" +#include "Box2D/Collision/Shapes/b2EdgeShape.h" +#include "Box2D/Collision/Shapes/b2ChainShape.h" +#include "Box2D/Collision/Shapes/b2PolygonShape.h" + +// GJK using Voronoi regions (Christer Ericson) and Barycentric coordinates. +int32 b2_gjkCalls, b2_gjkIters, b2_gjkMaxIters; + +void b2DistanceProxy::Set(const b2Shape* shape, int32 index) +{ + switch (shape->GetType()) + { + case b2Shape::e_circle: + { + const b2CircleShape* circle = static_cast<const b2CircleShape*>(shape); + m_vertices = &circle->m_p; + m_count = 1; + m_radius = circle->m_radius; + } + break; + + case b2Shape::e_polygon: + { + const b2PolygonShape* polygon = static_cast<const b2PolygonShape*>(shape); + m_vertices = polygon->m_vertices; + m_count = polygon->m_count; + m_radius = polygon->m_radius; + } + break; + + case b2Shape::e_chain: + { + const b2ChainShape* chain = static_cast<const b2ChainShape*>(shape); + b2Assert(0 <= index && index < chain->m_count); + + m_buffer[0] = chain->m_vertices[index]; + if (index + 1 < chain->m_count) + { + m_buffer[1] = chain->m_vertices[index + 1]; + } + else + { + m_buffer[1] = chain->m_vertices[0]; + } + + m_vertices = m_buffer; + m_count = 2; + m_radius = chain->m_radius; + } + break; + + case b2Shape::e_edge: + { + const b2EdgeShape* edge = static_cast<const b2EdgeShape*>(shape); + m_vertices = &edge->m_vertex1; + m_count = 2; + m_radius = edge->m_radius; + } + break; + + default: + b2Assert(false); + } +} + +void b2DistanceProxy::Set(const b2Vec2* vertices, int32 count, float32 radius) +{ + m_vertices = vertices; + m_count = count; + m_radius = radius; +} + +struct b2SimplexVertex +{ + b2Vec2 wA; // support point in proxyA + b2Vec2 wB; // support point in proxyB + b2Vec2 w; // wB - wA + float32 a; // barycentric coordinate for closest point + int32 indexA; // wA index + int32 indexB; // wB index +}; + +struct b2Simplex +{ + void ReadCache( const b2SimplexCache* cache, + const b2DistanceProxy* proxyA, const b2Transform& transformA, + const b2DistanceProxy* proxyB, const b2Transform& transformB) + { + b2Assert(cache->count <= 3); + + // Copy data from cache. + m_count = cache->count; + b2SimplexVertex* vertices = &m_v1; + for (int32 i = 0; i < m_count; ++i) + { + b2SimplexVertex* v = vertices + i; + v->indexA = cache->indexA[i]; + v->indexB = cache->indexB[i]; + b2Vec2 wALocal = proxyA->GetVertex(v->indexA); + b2Vec2 wBLocal = proxyB->GetVertex(v->indexB); + v->wA = b2Mul(transformA, wALocal); + v->wB = b2Mul(transformB, wBLocal); + v->w = v->wB - v->wA; + v->a = 0.0f; + } + + // Compute the new simplex metric, if it is substantially different than + // old metric then flush the simplex. + if (m_count > 1) + { + float32 metric1 = cache->metric; + float32 metric2 = GetMetric(); + if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < b2_epsilon) + { + // Reset the simplex. + m_count = 0; + } + } + + // If the cache is empty or invalid ... + if (m_count == 0) + { + b2SimplexVertex* v = vertices + 0; + v->indexA = 0; + v->indexB = 0; + b2Vec2 wALocal = proxyA->GetVertex(0); + b2Vec2 wBLocal = proxyB->GetVertex(0); + v->wA = b2Mul(transformA, wALocal); + v->wB = b2Mul(transformB, wBLocal); + v->w = v->wB - v->wA; + v->a = 1.0f; + m_count = 1; + } + } + + void WriteCache(b2SimplexCache* cache) const + { + cache->metric = GetMetric(); + cache->count = uint16(m_count); + const b2SimplexVertex* vertices = &m_v1; + for (int32 i = 0; i < m_count; ++i) + { + cache->indexA[i] = uint8(vertices[i].indexA); + cache->indexB[i] = uint8(vertices[i].indexB); + } + } + + b2Vec2 GetSearchDirection() const + { + switch (m_count) + { + case 1: + return -m_v1.w; + + case 2: + { + b2Vec2 e12 = m_v2.w - m_v1.w; + float32 sgn = b2Cross(e12, -m_v1.w); + if (sgn > 0.0f) + { + // Origin is left of e12. + return b2Cross(1.0f, e12); + } + else + { + // Origin is right of e12. + return b2Cross(e12, 1.0f); + } + } + + default: + b2Assert(false); + return b2Vec2_zero; + } + } + + b2Vec2 GetClosestPoint() const + { + switch (m_count) + { + case 0: + b2Assert(false); + return b2Vec2_zero; + + case 1: + return m_v1.w; + + case 2: + return m_v1.a * m_v1.w + m_v2.a * m_v2.w; + + case 3: + return b2Vec2_zero; + + default: + b2Assert(false); + return b2Vec2_zero; + } + } + + void GetWitnessPoints(b2Vec2* pA, b2Vec2* pB) const + { + switch (m_count) + { + case 0: + b2Assert(false); + break; + + case 1: + *pA = m_v1.wA; + *pB = m_v1.wB; + break; + + case 2: + *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA; + *pB = m_v1.a * m_v1.wB + m_v2.a * m_v2.wB; + break; + + case 3: + *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA + m_v3.a * m_v3.wA; + *pB = *pA; + break; + + default: + b2Assert(false); + break; + } + } + + float32 GetMetric() const + { + switch (m_count) + { + case 0: + b2Assert(false); + return 0.0f; + + case 1: + return 0.0f; + + case 2: + return b2Distance(m_v1.w, m_v2.w); + + case 3: + return b2Cross(m_v2.w - m_v1.w, m_v3.w - m_v1.w); + + default: + b2Assert(false); + return 0.0f; + } + } + + void Solve2(); + void Solve3(); + + b2SimplexVertex m_v1, m_v2, m_v3; + int32 m_count; +}; + + +// Solve a line segment using barycentric coordinates. +// +// p = a1 * w1 + a2 * w2 +// a1 + a2 = 1 +// +// The vector from the origin to the closest point on the line is +// perpendicular to the line. +// e12 = w2 - w1 +// dot(p, e) = 0 +// a1 * dot(w1, e) + a2 * dot(w2, e) = 0 +// +// 2-by-2 linear system +// [1 1 ][a1] = [1] +// [w1.e12 w2.e12][a2] = [0] +// +// Define +// d12_1 = dot(w2, e12) +// d12_2 = -dot(w1, e12) +// d12 = d12_1 + d12_2 +// +// Solution +// a1 = d12_1 / d12 +// a2 = d12_2 / d12 +void b2Simplex::Solve2() +{ + b2Vec2 w1 = m_v1.w; + b2Vec2 w2 = m_v2.w; + b2Vec2 e12 = w2 - w1; + + // w1 region + float32 d12_2 = -b2Dot(w1, e12); + if (d12_2 <= 0.0f) + { + // a2 <= 0, so we clamp it to 0 + m_v1.a = 1.0f; + m_count = 1; + return; + } + + // w2 region + float32 d12_1 = b2Dot(w2, e12); + if (d12_1 <= 0.0f) + { + // a1 <= 0, so we clamp it to 0 + m_v2.a = 1.0f; + m_count = 1; + m_v1 = m_v2; + return; + } + + // Must be in e12 region. + float32 inv_d12 = 1.0f / (d12_1 + d12_2); + m_v1.a = d12_1 * inv_d12; + m_v2.a = d12_2 * inv_d12; + m_count = 2; +} + +// Possible regions: +// - points[2] +// - edge points[0]-points[2] +// - edge points[1]-points[2] +// - inside the triangle +void b2Simplex::Solve3() +{ + b2Vec2 w1 = m_v1.w; + b2Vec2 w2 = m_v2.w; + b2Vec2 w3 = m_v3.w; + + // Edge12 + // [1 1 ][a1] = [1] + // [w1.e12 w2.e12][a2] = [0] + // a3 = 0 + b2Vec2 e12 = w2 - w1; + float32 w1e12 = b2Dot(w1, e12); + float32 w2e12 = b2Dot(w2, e12); + float32 d12_1 = w2e12; + float32 d12_2 = -w1e12; + + // Edge13 + // [1 1 ][a1] = [1] + // [w1.e13 w3.e13][a3] = [0] + // a2 = 0 + b2Vec2 e13 = w3 - w1; + float32 w1e13 = b2Dot(w1, e13); + float32 w3e13 = b2Dot(w3, e13); + float32 d13_1 = w3e13; + float32 d13_2 = -w1e13; + + // Edge23 + // [1 1 ][a2] = [1] + // [w2.e23 w3.e23][a3] = [0] + // a1 = 0 + b2Vec2 e23 = w3 - w2; + float32 w2e23 = b2Dot(w2, e23); + float32 w3e23 = b2Dot(w3, e23); + float32 d23_1 = w3e23; + float32 d23_2 = -w2e23; + + // Triangle123 + float32 n123 = b2Cross(e12, e13); + + float32 d123_1 = n123 * b2Cross(w2, w3); + float32 d123_2 = n123 * b2Cross(w3, w1); + float32 d123_3 = n123 * b2Cross(w1, w2); + + // w1 region + if (d12_2 <= 0.0f && d13_2 <= 0.0f) + { + m_v1.a = 1.0f; + m_count = 1; + return; + } + + // e12 + if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) + { + float32 inv_d12 = 1.0f / (d12_1 + d12_2); + m_v1.a = d12_1 * inv_d12; + m_v2.a = d12_2 * inv_d12; + m_count = 2; + return; + } + + // e13 + if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) + { + float32 inv_d13 = 1.0f / (d13_1 + d13_2); + m_v1.a = d13_1 * inv_d13; + m_v3.a = d13_2 * inv_d13; + m_count = 2; + m_v2 = m_v3; + return; + } + + // w2 region + if (d12_1 <= 0.0f && d23_2 <= 0.0f) + { + m_v2.a = 1.0f; + m_count = 1; + m_v1 = m_v2; + return; + } + + // w3 region + if (d13_1 <= 0.0f && d23_1 <= 0.0f) + { + m_v3.a = 1.0f; + m_count = 1; + m_v1 = m_v3; + return; + } + + // e23 + if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) + { + float32 inv_d23 = 1.0f / (d23_1 + d23_2); + m_v2.a = d23_1 * inv_d23; + m_v3.a = d23_2 * inv_d23; + m_count = 2; + m_v1 = m_v3; + return; + } + + // Must be in triangle123 + float32 inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3); + m_v1.a = d123_1 * inv_d123; + m_v2.a = d123_2 * inv_d123; + m_v3.a = d123_3 * inv_d123; + m_count = 3; +} + +void b2Distance(b2DistanceOutput* output, + b2SimplexCache* cache, + const b2DistanceInput* input) +{ + ++b2_gjkCalls; + + const b2DistanceProxy* proxyA = &input->proxyA; + const b2DistanceProxy* proxyB = &input->proxyB; + + b2Transform transformA = input->transformA; + b2Transform transformB = input->transformB; + + // Initialize the simplex. + b2Simplex simplex; + simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB); + + // Get simplex vertices as an array. + b2SimplexVertex* vertices = &simplex.m_v1; + const int32 k_maxIters = 20; + + // These store the vertices of the last simplex so that we + // can check for duplicates and prevent cycling. + int32 saveA[3], saveB[3]; + int32 saveCount = 0; + + // Main iteration loop. + int32 iter = 0; + while (iter < k_maxIters) + { + // Copy simplex so we can identify duplicates. + saveCount = simplex.m_count; + for (int32 i = 0; i < saveCount; ++i) + { + saveA[i] = vertices[i].indexA; + saveB[i] = vertices[i].indexB; + } + + switch (simplex.m_count) + { + case 1: + break; + + case 2: + simplex.Solve2(); + break; + + case 3: + simplex.Solve3(); + break; + + default: + b2Assert(false); + } + + // If we have 3 points, then the origin is in the corresponding triangle. + if (simplex.m_count == 3) + { + break; + } + + // Get search direction. + b2Vec2 d = simplex.GetSearchDirection(); + + // Ensure the search direction is numerically fit. + if (d.LengthSquared() < b2_epsilon * b2_epsilon) + { + // The origin is probably contained by a line segment + // or triangle. Thus the shapes are overlapped. + + // We can't return zero here even though there may be overlap. + // In case the simplex is a point, segment, or triangle it is difficult + // to determine if the origin is contained in the CSO or very close to it. + break; + } + + // Compute a tentative new simplex vertex using support points. + b2SimplexVertex* vertex = vertices + simplex.m_count; + vertex->indexA = proxyA->GetSupport(b2MulT(transformA.q, -d)); + vertex->wA = b2Mul(transformA, proxyA->GetVertex(vertex->indexA)); + b2Vec2 wBLocal; + vertex->indexB = proxyB->GetSupport(b2MulT(transformB.q, d)); + vertex->wB = b2Mul(transformB, proxyB->GetVertex(vertex->indexB)); + vertex->w = vertex->wB - vertex->wA; + + // Iteration count is equated to the number of support point calls. + ++iter; + ++b2_gjkIters; + + // Check for duplicate support points. This is the main termination criteria. + bool duplicate = false; + for (int32 i = 0; i < saveCount; ++i) + { + if (vertex->indexA == saveA[i] && vertex->indexB == saveB[i]) + { + duplicate = true; + break; + } + } + + // If we found a duplicate support point we must exit to avoid cycling. + if (duplicate) + { + break; + } + + // New vertex is ok and needed. + ++simplex.m_count; + } + + b2_gjkMaxIters = b2Max(b2_gjkMaxIters, iter); + + // Prepare output. + simplex.GetWitnessPoints(&output->pointA, &output->pointB); + output->distance = b2Distance(output->pointA, output->pointB); + output->iterations = iter; + + // Cache the simplex. + simplex.WriteCache(cache); + + // Apply radii if requested. + if (input->useRadii) + { + float32 rA = proxyA->m_radius; + float32 rB = proxyB->m_radius; + + if (output->distance > rA + rB && output->distance > b2_epsilon) + { + // Shapes are still no overlapped. + // Move the witness points to the outer surface. + output->distance -= rA + rB; + b2Vec2 normal = output->pointB - output->pointA; + normal.Normalize(); + output->pointA += rA * normal; + output->pointB -= rB * normal; + } + else + { + // Shapes are overlapped when radii are considered. + // Move the witness points to the middle. + b2Vec2 p = 0.5f * (output->pointA + output->pointB); + output->pointA = p; + output->pointB = p; + output->distance = 0.0f; + } + } +} + +// GJK-raycast +// Algorithm by Gino van den Bergen. +// "Smooth Mesh Contacts with GJK" in Game Physics Pearls. 2010 +bool b2ShapeCast(b2ShapeCastOutput * output, const b2ShapeCastInput * input) +{ + output->iterations = 0; + output->lambda = 1.0f; + output->normal.SetZero(); + output->point.SetZero(); + + const b2DistanceProxy* proxyA = &input->proxyA; + const b2DistanceProxy* proxyB = &input->proxyB; + + float32 radiusA = b2Max(proxyA->m_radius, b2_polygonRadius); + float32 radiusB = b2Max(proxyB->m_radius, b2_polygonRadius); + float32 radius = radiusA + radiusB; + + b2Transform xfA = input->transformA; + b2Transform xfB = input->transformB; + + b2Vec2 r = input->translationB; + b2Vec2 n(0.0f, 0.0f); + float32 lambda = 0.0f; + + // Initial simplex + b2Simplex simplex; + simplex.m_count = 0; + + // Get simplex vertices as an array. + b2SimplexVertex* vertices = &simplex.m_v1; + + // Get support point in -r direction + int32 indexA = proxyA->GetSupport(b2MulT(xfA.q, -r)); + b2Vec2 wA = b2Mul(xfA, proxyA->GetVertex(indexA)); + int32 indexB = proxyB->GetSupport(b2MulT(xfB.q, r)); + b2Vec2 wB = b2Mul(xfB, proxyB->GetVertex(indexB)); + b2Vec2 v = wA - wB; + + // Sigma is the target distance between polygons + float32 sigma = b2Max(b2_polygonRadius, radius - b2_polygonRadius); + const float32 tolerance = 0.5f * b2_linearSlop; + + // Main iteration loop. + const int32 k_maxIters = 20; + int32 iter = 0; + while (iter < k_maxIters && b2Abs(v.Length() - sigma) > tolerance) + { + b2Assert(simplex.m_count < 3); + + output->iterations += 1; + + // Support in direction -v (A - B) + indexA = proxyA->GetSupport(b2MulT(xfA.q, -v)); + wA = b2Mul(xfA, proxyA->GetVertex(indexA)); + indexB = proxyB->GetSupport(b2MulT(xfB.q, v)); + wB = b2Mul(xfB, proxyB->GetVertex(indexB)); + b2Vec2 p = wA - wB; + + // -v is a normal at p + v.Normalize(); + + // Intersect ray with plane + float32 vp = b2Dot(v, p); + float32 vr = b2Dot(v, r); + if (vp - sigma > lambda * vr) + { + if (vr <= 0.0f) + { + return false; + } + + lambda = (vp - sigma) / vr; + if (lambda > 1.0f) + { + return false; + } + + n = -v; + simplex.m_count = 0; + } + + // Reverse simplex since it works with B - A. + // Shift by lambda * r because we want the closest point to the current clip point. + // Note that the support point p is not shifted because we want the plane equation + // to be formed in unshifted space. + b2SimplexVertex* vertex = vertices + simplex.m_count; + vertex->indexA = indexB; + vertex->wA = wB + lambda * r; + vertex->indexB = indexA; + vertex->wB = wA; + vertex->w = vertex->wB - vertex->wA; + vertex->a = 1.0f; + simplex.m_count += 1; + + switch (simplex.m_count) + { + case 1: + break; + + case 2: + simplex.Solve2(); + break; + + case 3: + simplex.Solve3(); + break; + + default: + b2Assert(false); + } + + // If we have 3 points, then the origin is in the corresponding triangle. + if (simplex.m_count == 3) + { + // Overlap + return false; + } + + // Get search direction. + v = simplex.GetClosestPoint(); + + // Iteration count is equated to the number of support point calls. + ++iter; + } + + // Prepare output. + b2Vec2 pointA, pointB; + simplex.GetWitnessPoints(&pointB, &pointA); + + if (v.LengthSquared() > 0.0f) + { + n = -v; + n.Normalize(); + } + + output->point = pointA + radiusA * n; + output->normal = n; + output->lambda = lambda; + output->iterations = iter; + return true; +} |