diff options
Diffstat (limited to 'src/3rdparty/Box2D/Common/b2Math.h')
-rw-r--r-- | src/3rdparty/Box2D/Common/b2Math.h | 707 |
1 files changed, 707 insertions, 0 deletions
diff --git a/src/3rdparty/Box2D/Common/b2Math.h b/src/3rdparty/Box2D/Common/b2Math.h new file mode 100644 index 0000000..7a816e5 --- /dev/null +++ b/src/3rdparty/Box2D/Common/b2Math.h @@ -0,0 +1,707 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_MATH_H +#define B2_MATH_H + +#include "Box2D/Common/b2Settings.h" +#include <math.h> + +/// This function is used to ensure that a floating point number is not a NaN or infinity. +inline bool b2IsValid(float32 x) +{ + return isfinite(x); +} + +#define b2Sqrt(x) sqrtf(x) +#define b2Atan2(y, x) atan2f(y, x) + +/// A 2D column vector. +struct b2Vec2 +{ + /// Default constructor does nothing (for performance). + b2Vec2() {} + + /// Construct using coordinates. + b2Vec2(float32 xIn, float32 yIn) : x(xIn), y(yIn) {} + + /// Set this vector to all zeros. + void SetZero() { x = 0.0f; y = 0.0f; } + + /// Set this vector to some specified coordinates. + void Set(float32 x_, float32 y_) { x = x_; y = y_; } + + /// Negate this vector. + b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } + + /// Read from and indexed element. + float32 operator () (int32 i) const + { + return (&x)[i]; + } + + /// Write to an indexed element. + float32& operator () (int32 i) + { + return (&x)[i]; + } + + /// Add a vector to this vector. + void operator += (const b2Vec2& v) + { + x += v.x; y += v.y; + } + + /// Subtract a vector from this vector. + void operator -= (const b2Vec2& v) + { + x -= v.x; y -= v.y; + } + + /// Multiply this vector by a scalar. + void operator *= (float32 a) + { + x *= a; y *= a; + } + + /// Get the length of this vector (the norm). + float32 Length() const + { + return b2Sqrt(x * x + y * y); + } + + /// Get the length squared. For performance, use this instead of + /// b2Vec2::Length (if possible). + float32 LengthSquared() const + { + return x * x + y * y; + } + + /// Convert this vector into a unit vector. Returns the length. + float32 Normalize() + { + float32 length = Length(); + if (length < b2_epsilon) + { + return 0.0f; + } + float32 invLength = 1.0f / length; + x *= invLength; + y *= invLength; + + return length; + } + + /// Does this vector contain finite coordinates? + bool IsValid() const + { + return b2IsValid(x) && b2IsValid(y); + } + + /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other) + b2Vec2 Skew() const + { + return b2Vec2(-y, x); + } + + float32 x, y; +}; + +/// A 2D column vector with 3 elements. +struct b2Vec3 +{ + /// Default constructor does nothing (for performance). + b2Vec3() {} + + /// Construct using coordinates. + b2Vec3(float32 xIn, float32 yIn, float32 zIn) : x(xIn), y(yIn), z(zIn) {} + + /// Set this vector to all zeros. + void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; } + + /// Set this vector to some specified coordinates. + void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; } + + /// Negate this vector. + b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; } + + /// Add a vector to this vector. + void operator += (const b2Vec3& v) + { + x += v.x; y += v.y; z += v.z; + } + + /// Subtract a vector from this vector. + void operator -= (const b2Vec3& v) + { + x -= v.x; y -= v.y; z -= v.z; + } + + /// Multiply this vector by a scalar. + void operator *= (float32 s) + { + x *= s; y *= s; z *= s; + } + + float32 x, y, z; +}; + +/// A 2-by-2 matrix. Stored in column-major order. +struct b2Mat22 +{ + /// The default constructor does nothing (for performance). + b2Mat22() {} + + /// Construct this matrix using columns. + b2Mat22(const b2Vec2& c1, const b2Vec2& c2) + { + ex = c1; + ey = c2; + } + + /// Construct this matrix using scalars. + b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22) + { + ex.x = a11; ex.y = a21; + ey.x = a12; ey.y = a22; + } + + /// Initialize this matrix using columns. + void Set(const b2Vec2& c1, const b2Vec2& c2) + { + ex = c1; + ey = c2; + } + + /// Set this to the identity matrix. + void SetIdentity() + { + ex.x = 1.0f; ey.x = 0.0f; + ex.y = 0.0f; ey.y = 1.0f; + } + + /// Set this matrix to all zeros. + void SetZero() + { + ex.x = 0.0f; ey.x = 0.0f; + ex.y = 0.0f; ey.y = 0.0f; + } + + b2Mat22 GetInverse() const + { + float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y; + b2Mat22 B; + float32 det = a * d - b * c; + if (det != 0.0f) + { + det = 1.0f / det; + } + B.ex.x = det * d; B.ey.x = -det * b; + B.ex.y = -det * c; B.ey.y = det * a; + return B; + } + + /// Solve A * x = b, where b is a column vector. This is more efficient + /// than computing the inverse in one-shot cases. + b2Vec2 Solve(const b2Vec2& b) const + { + float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; + float32 det = a11 * a22 - a12 * a21; + if (det != 0.0f) + { + det = 1.0f / det; + } + b2Vec2 x; + x.x = det * (a22 * b.x - a12 * b.y); + x.y = det * (a11 * b.y - a21 * b.x); + return x; + } + + b2Vec2 ex, ey; +}; + +/// A 3-by-3 matrix. Stored in column-major order. +struct b2Mat33 +{ + /// The default constructor does nothing (for performance). + b2Mat33() {} + + /// Construct this matrix using columns. + b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) + { + ex = c1; + ey = c2; + ez = c3; + } + + /// Set this matrix to all zeros. + void SetZero() + { + ex.SetZero(); + ey.SetZero(); + ez.SetZero(); + } + + /// Solve A * x = b, where b is a column vector. This is more efficient + /// than computing the inverse in one-shot cases. + b2Vec3 Solve33(const b2Vec3& b) const; + + /// Solve A * x = b, where b is a column vector. This is more efficient + /// than computing the inverse in one-shot cases. Solve only the upper + /// 2-by-2 matrix equation. + b2Vec2 Solve22(const b2Vec2& b) const; + + /// Get the inverse of this matrix as a 2-by-2. + /// Returns the zero matrix if singular. + void GetInverse22(b2Mat33* M) const; + + /// Get the symmetric inverse of this matrix as a 3-by-3. + /// Returns the zero matrix if singular. + void GetSymInverse33(b2Mat33* M) const; + + b2Vec3 ex, ey, ez; +}; + +/// Rotation +struct b2Rot +{ + b2Rot() {} + + /// Initialize from an angle in radians + explicit b2Rot(float32 angle) + { + /// TODO_ERIN optimize + s = sinf(angle); + c = cosf(angle); + } + + /// Set using an angle in radians. + void Set(float32 angle) + { + /// TODO_ERIN optimize + s = sinf(angle); + c = cosf(angle); + } + + /// Set to the identity rotation + void SetIdentity() + { + s = 0.0f; + c = 1.0f; + } + + /// Get the angle in radians + float32 GetAngle() const + { + return b2Atan2(s, c); + } + + /// Get the x-axis + b2Vec2 GetXAxis() const + { + return b2Vec2(c, s); + } + + /// Get the u-axis + b2Vec2 GetYAxis() const + { + return b2Vec2(-s, c); + } + + /// Sine and cosine + float32 s, c; +}; + +/// A transform contains translation and rotation. It is used to represent +/// the position and orientation of rigid frames. +struct b2Transform +{ + /// The default constructor does nothing. + b2Transform() {} + + /// Initialize using a position vector and a rotation. + b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {} + + /// Set this to the identity transform. + void SetIdentity() + { + p.SetZero(); + q.SetIdentity(); + } + + /// Set this based on the position and angle. + void Set(const b2Vec2& position, float32 angle) + { + p = position; + q.Set(angle); + } + + b2Vec2 p; + b2Rot q; +}; + +/// This describes the motion of a body/shape for TOI computation. +/// Shapes are defined with respect to the body origin, which may +/// no coincide with the center of mass. However, to support dynamics +/// we must interpolate the center of mass position. +struct b2Sweep +{ + /// Get the interpolated transform at a specific time. + /// @param beta is a factor in [0,1], where 0 indicates alpha0. + void GetTransform(b2Transform* xfb, float32 beta) const; + + /// Advance the sweep forward, yielding a new initial state. + /// @param alpha the new initial time. + void Advance(float32 alpha); + + /// Normalize the angles. + void Normalize(); + + b2Vec2 localCenter; ///< local center of mass position + b2Vec2 c0, c; ///< center world positions + float32 a0, a; ///< world angles + + /// Fraction of the current time step in the range [0,1] + /// c0 and a0 are the positions at alpha0. + float32 alpha0; +}; + +/// Useful constant +extern const b2Vec2 b2Vec2_zero; + +/// Perform the dot product on two vectors. +inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) +{ + return a.x * b.x + a.y * b.y; +} + +/// Perform the cross product on two vectors. In 2D this produces a scalar. +inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) +{ + return a.x * b.y - a.y * b.x; +} + +/// Perform the cross product on a vector and a scalar. In 2D this produces +/// a vector. +inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) +{ + return b2Vec2(s * a.y, -s * a.x); +} + +/// Perform the cross product on a scalar and a vector. In 2D this produces +/// a vector. +inline b2Vec2 b2Cross(float32 s, const b2Vec2& a) +{ + return b2Vec2(-s * a.y, s * a.x); +} + +/// Multiply a matrix times a vector. If a rotation matrix is provided, +/// then this transforms the vector from one frame to another. +inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) +{ + return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); +} + +/// Multiply a matrix transpose times a vector. If a rotation matrix is provided, +/// then this transforms the vector from one frame to another (inverse transform). +inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) +{ + return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey)); +} + +/// Add two vectors component-wise. +inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) +{ + return b2Vec2(a.x + b.x, a.y + b.y); +} + +/// Subtract two vectors component-wise. +inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) +{ + return b2Vec2(a.x - b.x, a.y - b.y); +} + +inline b2Vec2 operator * (float32 s, const b2Vec2& a) +{ + return b2Vec2(s * a.x, s * a.y); +} + +inline bool operator == (const b2Vec2& a, const b2Vec2& b) +{ + return a.x == b.x && a.y == b.y; +} + +inline bool operator != (const b2Vec2& a, const b2Vec2& b) +{ + return a.x != b.x || a.y != b.y; +} + +inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b) +{ + b2Vec2 c = a - b; + return c.Length(); +} + +inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) +{ + b2Vec2 c = a - b; + return b2Dot(c, c); +} + +inline b2Vec3 operator * (float32 s, const b2Vec3& a) +{ + return b2Vec3(s * a.x, s * a.y, s * a.z); +} + +/// Add two vectors component-wise. +inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) +{ + return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z); +} + +/// Subtract two vectors component-wise. +inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) +{ + return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z); +} + +/// Perform the dot product on two vectors. +inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b) +{ + return a.x * b.x + a.y * b.y + a.z * b.z; +} + +/// Perform the cross product on two vectors. +inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) +{ + return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); +} + +inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) +{ + return b2Mat22(A.ex + B.ex, A.ey + B.ey); +} + +// A * B +inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) +{ + return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey)); +} + +// A^T * B +inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) +{ + b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex)); + b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey)); + return b2Mat22(c1, c2); +} + +/// Multiply a matrix times a vector. +inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) +{ + return v.x * A.ex + v.y * A.ey + v.z * A.ez; +} + +/// Multiply a matrix times a vector. +inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) +{ + return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); +} + +/// Multiply two rotations: q * r +inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) +{ + // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] + // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc] + // s = qs * rc + qc * rs + // c = qc * rc - qs * rs + b2Rot qr; + qr.s = q.s * r.c + q.c * r.s; + qr.c = q.c * r.c - q.s * r.s; + return qr; +} + +/// Transpose multiply two rotations: qT * r +inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) +{ + // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] + // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc] + // s = qc * rs - qs * rc + // c = qc * rc + qs * rs + b2Rot qr; + qr.s = q.c * r.s - q.s * r.c; + qr.c = q.c * r.c + q.s * r.s; + return qr; +} + +/// Rotate a vector +inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) +{ + return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y); +} + +/// Inverse rotate a vector +inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) +{ + return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y); +} + +inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) +{ + float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x; + float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y; + + return b2Vec2(x, y); +} + +inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) +{ + float32 px = v.x - T.p.x; + float32 py = v.y - T.p.y; + float32 x = (T.q.c * px + T.q.s * py); + float32 y = (-T.q.s * px + T.q.c * py); + + return b2Vec2(x, y); +} + +// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p +// = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p +inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) +{ + b2Transform C; + C.q = b2Mul(A.q, B.q); + C.p = b2Mul(A.q, B.p) + A.p; + return C; +} + +// v2 = A.q' * (B.q * v1 + B.p - A.p) +// = A.q' * B.q * v1 + A.q' * (B.p - A.p) +inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) +{ + b2Transform C; + C.q = b2MulT(A.q, B.q); + C.p = b2MulT(A.q, B.p - A.p); + return C; +} + +template <typename T> +inline T b2Abs(T a) +{ + return a > T(0) ? a : -a; +} + +inline b2Vec2 b2Abs(const b2Vec2& a) +{ + return b2Vec2(b2Abs(a.x), b2Abs(a.y)); +} + +inline b2Mat22 b2Abs(const b2Mat22& A) +{ + return b2Mat22(b2Abs(A.ex), b2Abs(A.ey)); +} + +template <typename T> +inline T b2Min(T a, T b) +{ + return a < b ? a : b; +} + +inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) +{ + return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y)); +} + +template <typename T> +inline T b2Max(T a, T b) +{ + return a > b ? a : b; +} + +inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) +{ + return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y)); +} + +template <typename T> +inline T b2Clamp(T a, T low, T high) +{ + return b2Max(low, b2Min(a, high)); +} + +inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) +{ + return b2Max(low, b2Min(a, high)); +} + +template<typename T> inline void b2Swap(T& a, T& b) +{ + T tmp = a; + a = b; + b = tmp; +} + +/// "Next Largest Power of 2 +/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm +/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with +/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next +/// largest power of 2. For a 32-bit value:" +inline uint32 b2NextPowerOfTwo(uint32 x) +{ + x |= (x >> 1); + x |= (x >> 2); + x |= (x >> 4); + x |= (x >> 8); + x |= (x >> 16); + return x + 1; +} + +inline bool b2IsPowerOfTwo(uint32 x) +{ + bool result = x > 0 && (x & (x - 1)) == 0; + return result; +} + +inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const +{ + xf->p = (1.0f - beta) * c0 + beta * c; + float32 angle = (1.0f - beta) * a0 + beta * a; + xf->q.Set(angle); + + // Shift to origin + xf->p -= b2Mul(xf->q, localCenter); +} + +inline void b2Sweep::Advance(float32 alpha) +{ + b2Assert(alpha0 < 1.0f); + float32 beta = (alpha - alpha0) / (1.0f - alpha0); + c0 += beta * (c - c0); + a0 += beta * (a - a0); + alpha0 = alpha; +} + +/// Normalize an angle in radians to be between -pi and pi +inline void b2Sweep::Normalize() +{ + float32 twoPi = 2.0f * b2_pi; + float32 d = twoPi * floorf(a0 / twoPi); + a0 -= d; + a -= d; +} + +#endif |