diff options
Diffstat (limited to 'src/3rdparty/Box2D/Dynamics/Joints/b2RevoluteJoint.cpp')
-rw-r--r-- | src/3rdparty/Box2D/Dynamics/Joints/b2RevoluteJoint.cpp | 511 |
1 files changed, 511 insertions, 0 deletions
diff --git a/src/3rdparty/Box2D/Dynamics/Joints/b2RevoluteJoint.cpp b/src/3rdparty/Box2D/Dynamics/Joints/b2RevoluteJoint.cpp new file mode 100644 index 0000000..b3f7ee5 --- /dev/null +++ b/src/3rdparty/Box2D/Dynamics/Joints/b2RevoluteJoint.cpp @@ -0,0 +1,511 @@ +/* +* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Dynamics/Joints/b2RevoluteJoint.h" +#include "Box2D/Dynamics/b2Body.h" +#include "Box2D/Dynamics/b2TimeStep.h" + +// Point-to-point constraint +// C = p2 - p1 +// Cdot = v2 - v1 +// = v2 + cross(w2, r2) - v1 - cross(w1, r1) +// J = [-I -r1_skew I r2_skew ] +// Identity used: +// w k % (rx i + ry j) = w * (-ry i + rx j) + +// Motor constraint +// Cdot = w2 - w1 +// J = [0 0 -1 0 0 1] +// K = invI1 + invI2 + +void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) +{ + bodyA = bA; + bodyB = bB; + localAnchorA = bodyA->GetLocalPoint(anchor); + localAnchorB = bodyB->GetLocalPoint(anchor); + referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); +} + +b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) +: b2Joint(def) +{ + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + m_referenceAngle = def->referenceAngle; + + m_impulse.SetZero(); + m_motorImpulse = 0.0f; + + m_lowerAngle = def->lowerAngle; + m_upperAngle = def->upperAngle; + m_maxMotorTorque = def->maxMotorTorque; + m_motorSpeed = def->motorSpeed; + m_enableLimit = def->enableLimit; + m_enableMotor = def->enableMotor; + m_limitState = e_inactiveLimit; +} + +void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + float32 aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float32 wA = data.velocities[m_indexA].w; + + float32 aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float32 wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + // J = [-I -r1_skew I r2_skew] + // [ 0 -1 0 1] + // r_skew = [-ry; rx] + + // Matlab + // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] + // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] + // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] + + float32 mA = m_invMassA, mB = m_invMassB; + float32 iA = m_invIA, iB = m_invIB; + + bool fixedRotation = (iA + iB == 0.0f); + + m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; + m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; + m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; + m_mass.ex.y = m_mass.ey.x; + m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; + m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; + m_mass.ex.z = m_mass.ez.x; + m_mass.ey.z = m_mass.ez.y; + m_mass.ez.z = iA + iB; + + m_motorMass = iA + iB; + if (m_motorMass > 0.0f) + { + m_motorMass = 1.0f / m_motorMass; + } + + if (m_enableMotor == false || fixedRotation) + { + m_motorImpulse = 0.0f; + } + + if (m_enableLimit && fixedRotation == false) + { + float32 jointAngle = aB - aA - m_referenceAngle; + if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) + { + m_limitState = e_equalLimits; + } + else if (jointAngle <= m_lowerAngle) + { + if (m_limitState != e_atLowerLimit) + { + m_impulse.z = 0.0f; + } + m_limitState = e_atLowerLimit; + } + else if (jointAngle >= m_upperAngle) + { + if (m_limitState != e_atUpperLimit) + { + m_impulse.z = 0.0f; + } + m_limitState = e_atUpperLimit; + } + else + { + m_limitState = e_inactiveLimit; + m_impulse.z = 0.0f; + } + } + else + { + m_limitState = e_inactiveLimit; + } + + if (data.step.warmStarting) + { + // Scale impulses to support a variable time step. + m_impulse *= data.step.dtRatio; + m_motorImpulse *= data.step.dtRatio; + + b2Vec2 P(m_impulse.x, m_impulse.y); + + vA -= mA * P; + wA -= iA * (b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); + + vB += mB * P; + wB += iB * (b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); + } + else + { + m_impulse.SetZero(); + m_motorImpulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float32 wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float32 wB = data.velocities[m_indexB].w; + + float32 mA = m_invMassA, mB = m_invMassB; + float32 iA = m_invIA, iB = m_invIB; + + bool fixedRotation = (iA + iB == 0.0f); + + // Solve motor constraint. + if (m_enableMotor && m_limitState != e_equalLimits && fixedRotation == false) + { + float32 Cdot = wB - wA - m_motorSpeed; + float32 impulse = -m_motorMass * Cdot; + float32 oldImpulse = m_motorImpulse; + float32 maxImpulse = data.step.dt * m_maxMotorTorque; + m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); + impulse = m_motorImpulse - oldImpulse; + + wA -= iA * impulse; + wB += iB * impulse; + } + + // Solve limit constraint. + if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) + { + b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); + float32 Cdot2 = wB - wA; + b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); + + b2Vec3 impulse = -m_mass.Solve33(Cdot); + + if (m_limitState == e_equalLimits) + { + m_impulse += impulse; + } + else if (m_limitState == e_atLowerLimit) + { + float32 newImpulse = m_impulse.z + impulse.z; + if (newImpulse < 0.0f) + { + b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); + b2Vec2 reduced = m_mass.Solve22(rhs); + impulse.x = reduced.x; + impulse.y = reduced.y; + impulse.z = -m_impulse.z; + m_impulse.x += reduced.x; + m_impulse.y += reduced.y; + m_impulse.z = 0.0f; + } + else + { + m_impulse += impulse; + } + } + else if (m_limitState == e_atUpperLimit) + { + float32 newImpulse = m_impulse.z + impulse.z; + if (newImpulse > 0.0f) + { + b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); + b2Vec2 reduced = m_mass.Solve22(rhs); + impulse.x = reduced.x; + impulse.y = reduced.y; + impulse.z = -m_impulse.z; + m_impulse.x += reduced.x; + m_impulse.y += reduced.y; + m_impulse.z = 0.0f; + } + else + { + m_impulse += impulse; + } + } + + b2Vec2 P(impulse.x, impulse.y); + + vA -= mA * P; + wA -= iA * (b2Cross(m_rA, P) + impulse.z); + + vB += mB * P; + wB += iB * (b2Cross(m_rB, P) + impulse.z); + } + else + { + // Solve point-to-point constraint + b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); + b2Vec2 impulse = m_mass.Solve22(-Cdot); + + m_impulse.x += impulse.x; + m_impulse.y += impulse.y; + + vA -= mA * impulse; + wA -= iA * b2Cross(m_rA, impulse); + + vB += mB * impulse; + wB += iB * b2Cross(m_rB, impulse); + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float32 aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float32 aB = data.positions[m_indexB].a; + + b2Rot qA(aA), qB(aB); + + float32 angularError = 0.0f; + float32 positionError = 0.0f; + + bool fixedRotation = (m_invIA + m_invIB == 0.0f); + + // Solve angular limit constraint. + if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) + { + float32 angle = aB - aA - m_referenceAngle; + float32 limitImpulse = 0.0f; + + if (m_limitState == e_equalLimits) + { + // Prevent large angular corrections + float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); + limitImpulse = -m_motorMass * C; + angularError = b2Abs(C); + } + else if (m_limitState == e_atLowerLimit) + { + float32 C = angle - m_lowerAngle; + angularError = -C; + + // Prevent large angular corrections and allow some slop. + C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); + limitImpulse = -m_motorMass * C; + } + else if (m_limitState == e_atUpperLimit) + { + float32 C = angle - m_upperAngle; + angularError = C; + + // Prevent large angular corrections and allow some slop. + C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); + limitImpulse = -m_motorMass * C; + } + + aA -= m_invIA * limitImpulse; + aB += m_invIB * limitImpulse; + } + + // Solve point-to-point constraint. + { + qA.Set(aA); + qB.Set(aB); + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + b2Vec2 C = cB + rB - cA - rA; + positionError = C.Length(); + + float32 mA = m_invMassA, mB = m_invMassB; + float32 iA = m_invIA, iB = m_invIB; + + b2Mat22 K; + K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; + K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; + K.ey.x = K.ex.y; + K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; + + b2Vec2 impulse = -K.Solve(C); + + cA -= mA * impulse; + aA -= iA * b2Cross(rA, impulse); + + cB += mB * impulse; + aB += iB * b2Cross(rB, impulse); + } + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + + return positionError <= b2_linearSlop && angularError <= b2_angularSlop; +} + +b2Vec2 b2RevoluteJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2RevoluteJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const +{ + b2Vec2 P(m_impulse.x, m_impulse.y); + return inv_dt * P; +} + +float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const +{ + return inv_dt * m_impulse.z; +} + +float32 b2RevoluteJoint::GetJointAngle() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; +} + +float32 b2RevoluteJoint::GetJointSpeed() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + return bB->m_angularVelocity - bA->m_angularVelocity; +} + +bool b2RevoluteJoint::IsMotorEnabled() const +{ + return m_enableMotor; +} + +void b2RevoluteJoint::EnableMotor(bool flag) +{ + if (flag != m_enableMotor) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableMotor = flag; + } +} + +float32 b2RevoluteJoint::GetMotorTorque(float32 inv_dt) const +{ + return inv_dt * m_motorImpulse; +} + +void b2RevoluteJoint::SetMotorSpeed(float32 speed) +{ + if (speed != m_motorSpeed) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_motorSpeed = speed; + } +} + +void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) +{ + if (torque != m_maxMotorTorque) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_maxMotorTorque = torque; + } +} + +bool b2RevoluteJoint::IsLimitEnabled() const +{ + return m_enableLimit; +} + +void b2RevoluteJoint::EnableLimit(bool flag) +{ + if (flag != m_enableLimit) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableLimit = flag; + m_impulse.z = 0.0f; + } +} + +float32 b2RevoluteJoint::GetLowerLimit() const +{ + return m_lowerAngle; +} + +float32 b2RevoluteJoint::GetUpperLimit() const +{ + return m_upperAngle; +} + +void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) +{ + b2Assert(lower <= upper); + + if (lower != m_lowerAngle || upper != m_upperAngle) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_impulse.z = 0.0f; + m_lowerAngle = lower; + m_upperAngle = upper; + } +} + +void b2RevoluteJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Log(" b2RevoluteJointDef jd;\n"); + b2Log(" jd.bodyA = bodies[%d];\n", indexA); + b2Log(" jd.bodyB = bodies[%d];\n", indexB); + b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); + b2Log(" jd.enableLimit = bool(%d);\n", m_enableLimit); + b2Log(" jd.lowerAngle = %.15lef;\n", m_lowerAngle); + b2Log(" jd.upperAngle = %.15lef;\n", m_upperAngle); + b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); + b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); + b2Log(" jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); + b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} |