1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
#include <time.h>
#include "../../math/random.h"
#include "particle_emitter.h"
#include "particle_system.h"
using namespace JinEngine::Math;
namespace JinEngine
{
namespace Graphics
{
namespace Particles
{
static const uint8 ACCURACY_4 = 4;
static const uint8 ACCURACY_5 = 5;
static const uint8 ACCURACY_6 = 6;
// Particle emitter
static RandomGenerator rng(0xEA44944);
ParticleEmitter::ParticleEmitter(ParticleSystem& ps)
: mPS(ps)
, mDef(ps.mDef.emitterDef)
, mPDef(ps.mDef.particleDef)
, mTime(0)
{
}
void ParticleEmitter::update(float dt)
{
mTime += dt;
for (;mTime >= mInterval; mTime -= mInterval)
{
emit();
// Random rate.
if (mDef.emitRateDef.enableRandom)
mInterval = rng.randf(mDef.emitRateDef.rate.random.floor, mDef.emitRateDef.rate.random.ceil, ACCURACY_5);
else
mInterval = mDef.emitRateDef.rate.rate;
}
}
void ParticleEmitter::emit()
{
Particle* p = mPS.claim();
if (p == nullptr)
return;
p->reset();
p->def = &mPDef;
// Init position.
if (mDef.positionDef.enableRandom)
{
float x = rng.randf(mDef.positionDef.position.random.floor.x(), mDef.positionDef.position.random.ceil.x(), ACCURACY_4);
float y = rng.randf(mDef.positionDef.position.random.floor.y(), mDef.positionDef.position.random.ceil.y(), ACCURACY_4);
x += mPS.mPosition.x();
y += mPS.mPosition.y();
p->transform.setPosition(x, y);
}
else
{
p->transform.setPosition(mDef.positionDef.position.position + mPS.mPosition);
}
// Init speed.
float r = 0;
if (mDef.directionDef.enableRandom)
r = rng.randf(mDef.directionDef.direction.random.floor, mDef.directionDef.direction.random.ceil, ACCURACY_4);
else
r = mDef.directionDef.direction.direction;
float f = 0;
if (mDef.forceDef.enableRandom)
f = rng.randf(mDef.forceDef.force.random.floor, mDef.forceDef.force.random.ceil, ACCURACY_4);
else
f = mDef.forceDef.force.force;
p->velocity.set(f*cos(r), f*sin(r));
if (f != 0) p->updateFlags |= Particle::UPDATE_POSITION;
// Init life time.
if (mPDef.lifeTimeDef.enableRandom)
p->lifeTime = rng.randf(mPDef.lifeTimeDef.life.random.floor, mPDef.lifeTimeDef.life.random.ceil, ACCURACY_4);
else
p->lifeTime = mPDef.lifeTimeDef.life.life;
// Init linear accelaration.
p->linearAcceleration = mPDef.linearAccelarationDef.linearAccelaration;
if(!p->linearAcceleration.isZero())
p->updateFlags |= (Particle::UPDATE_VELOCITY | Particle::UPDATE_POSITION);
// Init angular accelaration.
p->radialAcceleration = mPDef.radialAccelarationDef.radialAccelaration;
// Init Angular speed.
if (mPDef.angularSpeedDef.enableRandom)
p->angularSpeed = rng.randf(mPDef.angularSpeedDef.angularSpeed.random.floor, mPDef.angularSpeedDef.angularSpeed.random.ceil, ACCURACY_4);
else
p->angularSpeed = mPDef.angularSpeedDef.angularSpeed.angularSpeed;
if (p->angularSpeed != 0)
p->updateFlags |= Particle::UPDATE_ROTATION;
// Scale over time.
if (mPDef.scaleDef.overTime.enable)
p->updateFlags |= Particle::UPDATE_SCALE;
else
p->transform.setScale(mPDef.scaleDef.scale, mPDef.scaleDef.scale);
// Color over time.
if (mPDef.colorDef.overTime.enable)
p->updateFlags |= Particle::UPDATE_COLOR;
else
p->color = mPDef.colorDef.color;
// Sprite
if (mPDef.spritesDef.mode != SpriteMode::SINGLE)
{
p->updateFlags |= Particle::UPDATE_SPRITE;
if (mPDef.spritesDef.mode == SpriteMode::RANDOM)
p->spriteIndex = rng.rand(0, mPDef.spritesDef.sprites.size() - 1);
}
}
}
}
}
|