diff options
author | chai <chaifix@163.com> | 2019-05-11 22:54:56 +0800 |
---|---|---|
committer | chai <chaifix@163.com> | 2019-05-11 22:54:56 +0800 |
commit | 9645be0af1b1d5cb0ad5892d5464e1b23c51b550 (patch) | |
tree | 129c716bed8e93312421c3adb2f8e7c4f811602d /source/3rd-party/SDL2/src/libm |
Diffstat (limited to 'source/3rd-party/SDL2/src/libm')
22 files changed, 3065 insertions, 0 deletions
diff --git a/source/3rd-party/SDL2/src/libm/e_atan2.c b/source/3rd-party/SDL2/src/libm/e_atan2.c new file mode 100644 index 0000000..32b9725 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_atan2.c @@ -0,0 +1,134 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_atan2(y,x) + * Method : + * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). + * 2. Reduce x to positive by (if x and y are unexceptional): + * ARG (x+iy) = arctan(y/x) ... if x > 0, + * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, + * + * Special cases: + * + * ATAN2((anything), NaN ) is NaN; + * ATAN2(NAN , (anything) ) is NaN; + * ATAN2(+-0, +(anything but NaN)) is +-0 ; + * ATAN2(+-0, -(anything but NaN)) is +-pi ; + * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; + * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; + * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; + * ATAN2(+-INF,+INF ) is +-pi/4 ; + * ATAN2(+-INF,-INF ) is +-3pi/4; + * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double +tiny = 1.0e-300, +zero = 0.0, +pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ +pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ +pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ +pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ + +double attribute_hidden __ieee754_atan2(double y, double x) +{ + double z; + int32_t k,m,hx,hy,ix,iy; + u_int32_t lx,ly; + + EXTRACT_WORDS(hx,lx,x); + ix = hx&0x7fffffff; + EXTRACT_WORDS(hy,ly,y); + iy = hy&0x7fffffff; + if(((ix|((lx|-(int32_t)lx)>>31))>0x7ff00000)|| + ((iy|((ly|-(int32_t)ly)>>31))>0x7ff00000)) /* x or y is NaN */ + return x+y; + if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */ + m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ + + /* when y = 0 */ + if((iy|ly)==0) { + switch(m) { + case 0: + case 1: return y; /* atan(+-0,+anything)=+-0 */ + case 2: return pi+tiny;/* atan(+0,-anything) = pi */ + case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ + } + } + /* when x = 0 */ + if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* when x is INF */ + if(ix==0x7ff00000) { + if(iy==0x7ff00000) { + switch(m) { + case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ + case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ + case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ + case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ + } + } else { + switch(m) { + case 0: return zero ; /* atan(+...,+INF) */ + case 1: return -zero ; /* atan(-...,+INF) */ + case 2: return pi+tiny ; /* atan(+...,-INF) */ + case 3: return -pi-tiny ; /* atan(-...,-INF) */ + } + } + } + /* when y is INF */ + if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* compute y/x */ + k = (iy-ix)>>20; + if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ + else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ + else z=atan(fabs(y/x)); /* safe to do y/x */ + switch (m) { + case 0: return z ; /* atan(+,+) */ + case 1: { + u_int32_t zh; + GET_HIGH_WORD(zh,z); + SET_HIGH_WORD(z,zh ^ 0x80000000); + } + return z ; /* atan(-,+) */ + case 2: return pi-(z-pi_lo);/* atan(+,-) */ + default: /* case 3 */ + return (z-pi_lo)-pi;/* atan(-,-) */ + } +} + +/* + * wrapper atan2(y,x) + */ +#ifndef _IEEE_LIBM +double atan2(double y, double x) +{ + double z = __ieee754_atan2(y, x); + if (_LIB_VERSION == _IEEE_ || isnan(x) || isnan(y)) + return z; + if (x == 0.0 && y == 0.0) + return __kernel_standard(y,x,3); /* atan2(+-0,+-0) */ + return z; +} +#else +strong_alias(__ieee754_atan2, atan2) +#endif +libm_hidden_def(atan2) diff --git a/source/3rd-party/SDL2/src/libm/e_exp.c b/source/3rd-party/SDL2/src/libm/e_exp.c new file mode 100644 index 0000000..d8cd4a4 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_exp.c @@ -0,0 +1,187 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_exp(x) + * Returns the exponential of x. + * + * Method + * 1. Argument reduction: + * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2. + * + * Here r will be represented as r = hi-lo for better + * accuracy. + * + * 2. Approximation of exp(r) by a special rational function on + * the interval [0,0.34658]: + * Write + * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... + * We use a special Reme algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error + * of this polynomial approximation is bounded by 2**-59. In + * other words, + * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 + * (where z=r*r, and the values of P1 to P5 are listed below) + * and + * | 5 | -59 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | | + * The computation of exp(r) thus becomes + * 2*r + * exp(r) = 1 + ------- + * R - r + * r*R1(r) + * = 1 + r + ----------- (for better accuracy) + * 2 - R1(r) + * where + * 2 4 10 + * R1(r) = r - (P1*r + P2*r + ... + P5*r ). + * + * 3. Scale back to obtain exp(x): + * From step 1, we have + * exp(x) = 2^k * exp(r) + * + * Special cases: + * exp(INF) is INF, exp(NaN) is NaN; + * exp(-INF) is 0, and + * for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 7.09782712893383973096e+02 then exp(x) overflow + * if x < -7.45133219101941108420e+02 then exp(x) underflow + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double +one = 1.0, +halF[2] = {0.5,-0.5,}, +huge = 1.0e+300, +twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ +o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ +u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ +ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ + -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ +ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ + -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ +invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ + +double __ieee754_exp(double x) /* default IEEE double exp */ +{ + double y; + double hi = 0.0; + double lo = 0.0; + double c; + double t; + int32_t k=0; + int32_t xsb; + u_int32_t hx; + + GET_HIGH_WORD(hx,x); + xsb = (hx>>31)&1; /* sign bit of x */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out non-finite argument */ + if(hx >= 0x40862E42) { /* if |x|>=709.78... */ + if(hx>=0x7ff00000) { + u_int32_t lx; + GET_LOW_WORD(lx,x); + if(((hx&0xfffff)|lx)!=0) + return x+x; /* NaN */ + else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ + } + #if 1 + if(x > o_threshold) return huge*huge; /* overflow */ + #else /* !!! FIXME: check this: "huge * huge" is a compiler warning, maybe they wanted +Inf? */ + if(x > o_threshold) return INFINITY; /* overflow */ + #endif + + if(x < u_threshold) return twom1000*twom1000; /* underflow */ + } + + /* argument reduction */ + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ + hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; + } else { + k = (int32_t) (invln2*x+halF[xsb]); + t = k; + hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ + lo = t*ln2LO[0]; + } + x = hi - lo; + } + else if(hx < 0x3e300000) { /* when |x|<2**-28 */ + if(huge+x>one) return one+x;/* trigger inexact */ + } + else k = 0; + + /* x is now in primary range */ + t = x*x; + c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + if(k==0) return one-((x*c)/(c-2.0)-x); + else y = one-((lo-(x*c)/(2.0-c))-hi); + if(k >= -1021) { + u_int32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ + return y; + } else { + u_int32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ + return y*twom1000; + } +} + +/* + * wrapper exp(x) + */ +#ifndef _IEEE_LIBM +double exp(double x) +{ + static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ + static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ + + double z = __ieee754_exp(x); + if (_LIB_VERSION == _IEEE_) + return z; + if (isfinite(x)) { + if (x > o_threshold) + return __kernel_standard(x, x, 6); /* exp overflow */ + if (x < u_threshold) + return __kernel_standard(x, x, 7); /* exp underflow */ + } + return z; +} +#else +strong_alias(__ieee754_exp, exp) +#endif +libm_hidden_def(exp) diff --git a/source/3rd-party/SDL2/src/libm/e_fmod.c b/source/3rd-party/SDL2/src/libm/e_fmod.c new file mode 100644 index 0000000..fd8bacb --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_fmod.c @@ -0,0 +1,144 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __ieee754_fmod(x,y) + * Return x mod y in exact arithmetic + * Method: shift and subtract + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double one = 1.0, Zero[] = {0.0, -0.0,}; + +double attribute_hidden __ieee754_fmod(double x, double y) +{ + int32_t n,hx,hy,hz,ix,iy,sx,i; + u_int32_t lx,ly,lz; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hy,ly,y); + sx = hx&0x80000000; /* sign of x */ + hx ^=sx; /* |x| */ + hy &= 0x7fffffff; /* |y| */ + + /* purge off exception values */ + if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ + ((hy|((ly|-(int32_t)ly)>>31))>0x7ff00000)) /* or y is NaN */ + return (x*y)/(x*y); + if(hx<=hy) { + if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ + if(lx==ly) + return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/ + } + + /* determine ix = ilogb(x) */ + if(hx<0x00100000) { /* subnormal x */ + if(hx==0) { + for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; + } else { + for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; + } + } else ix = (hx>>20)-1023; + + /* determine iy = ilogb(y) */ + if(hy<0x00100000) { /* subnormal y */ + if(hy==0) { + for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; + } else { + for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; + } + } else iy = (hy>>20)-1023; + + /* set up {hx,lx}, {hy,ly} and align y to x */ + if(ix >= -1022) + hx = 0x00100000|(0x000fffff&hx); + else { /* subnormal x, shift x to normal */ + n = -1022-ix; + if(n<=31) { + hx = (hx<<n)|(lx>>(32-n)); + lx <<= n; + } else { + hx = lx<<(n-32); + lx = 0; + } + } + if(iy >= -1022) + hy = 0x00100000|(0x000fffff&hy); + else { /* subnormal y, shift y to normal */ + n = -1022-iy; + if(n<=31) { + hy = (hy<<n)|(ly>>(32-n)); + ly <<= n; + } else { + hy = ly<<(n-32); + ly = 0; + } + } + + /* fix point fmod */ + n = ix - iy; + while(n--) { + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} + else { + if((hz|lz)==0) /* return sign(x)*0 */ + return Zero[(u_int32_t)sx>>31]; + hx = hz+hz+(lz>>31); lx = lz+lz; + } + } + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz>=0) {hx=hz;lx=lz;} + + /* convert back to floating value and restore the sign */ + if((hx|lx)==0) /* return sign(x)*0 */ + return Zero[(u_int32_t)sx>>31]; + while(hx<0x00100000) { /* normalize x */ + hx = hx+hx+(lx>>31); lx = lx+lx; + iy -= 1; + } + if(iy>= -1022) { /* normalize output */ + hx = ((hx-0x00100000)|((iy+1023)<<20)); + INSERT_WORDS(x,hx|sx,lx); + } else { /* subnormal output */ + n = -1022 - iy; + if(n<=20) { + lx = (lx>>n)|((u_int32_t)hx<<(32-n)); + hx >>= n; + } else if (n<=31) { + lx = (hx<<(32-n))|(lx>>n); hx = sx; + } else { + lx = hx>>(n-32); hx = sx; + } + INSERT_WORDS(x,hx|sx,lx); + x *= one; /* create necessary signal */ + } + return x; /* exact output */ +} + +/* + * wrapper fmod(x,y) + */ +#ifndef _IEEE_LIBM +double fmod(double x, double y) +{ + double z = __ieee754_fmod(x, y); + if (_LIB_VERSION == _IEEE_ || isnan(y) || isnan(x)) + return z; + if (y == 0.0) + return __kernel_standard(x, y, 27); /* fmod(x,0) */ + return z; +} +#else +strong_alias(__ieee754_fmod, fmod) +#endif +libm_hidden_def(fmod) diff --git a/source/3rd-party/SDL2/src/libm/e_log.c b/source/3rd-party/SDL2/src/libm/e_log.c new file mode 100644 index 0000000..208df81 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_log.c @@ -0,0 +1,152 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ +/* C4723: potential divide by zero. */ +#pragma warning ( disable : 4723 ) +#endif + +/* __ieee754_log(x) + * Return the logrithm of x + * + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * 2. Approximation of log(1+f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s + * (the values of Lg1 to Lg7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lg1*s +...+Lg7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log(1+f) = f - s*(f - R) (if f is not too large) + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + * + * 3. Finally, log(x) = k*ln2 + log(1+f). + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + * Here ln2 is split into two floating point number: + * ln2_hi + ln2_lo, + * where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * log(+INF) is +INF; log(0) is -INF with signal; + * log(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double +ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ +ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ +two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +static const double zero = 0.0; + +double attribute_hidden __ieee754_log(double x) +{ + double hfsq,f,s,z,R,w,t1,t2,dk; + int32_t k,hx,i,j; + u_int32_t lx; + + EXTRACT_WORDS(hx,lx,x); + + k=0; + if (hx < 0x00100000) { /* x < 2**-1022 */ + if (((hx&0x7fffffff)|lx)==0) + return -two54/zero; /* log(+-0)=-inf */ + if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ + k -= 54; x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD(hx,x); + } + if (hx >= 0x7ff00000) return x+x; + k += (hx>>20)-1023; + hx &= 0x000fffff; + i = (hx+0x95f64)&0x100000; + SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ + k += (i>>20); + f = x-1.0; + if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ + if(f==zero) {if(k==0) return zero; else {dk=(double)k; + return dk*ln2_hi+dk*ln2_lo;} + } + R = f*f*(0.5-0.33333333333333333*f); + if(k==0) return f-R; else {dk=(double)k; + return dk*ln2_hi-((R-dk*ln2_lo)-f);} + } + s = f/(2.0+f); + dk = (double)k; + z = s*s; + i = hx-0x6147a; + w = z*z; + j = 0x6b851-hx; + t1= w*(Lg2+w*(Lg4+w*Lg6)); + t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + i |= j; + R = t2+t1; + if(i>0) { + hfsq=0.5*f*f; + if(k==0) return f-(hfsq-s*(hfsq+R)); else + return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); + } else { + if(k==0) return f-s*(f-R); else + return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); + } +} + +/* + * wrapper log(x) + */ +#ifndef _IEEE_LIBM +double log(double x) +{ + double z = __ieee754_log(x); + if (_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) + return z; + if (x == 0.0) + return __kernel_standard(x, x, 16); /* log(0) */ + return __kernel_standard(x, x, 17); /* log(x<0) */ +} +#else +strong_alias(__ieee754_log, log) +#endif +libm_hidden_def(log) diff --git a/source/3rd-party/SDL2/src/libm/e_log10.c b/source/3rd-party/SDL2/src/libm/e_log10.c new file mode 100644 index 0000000..a30ba54 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_log10.c @@ -0,0 +1,106 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ +/* C4723: potential divide by zero. */ +#pragma warning ( disable : 4723 ) +#endif + +/* __ieee754_log10(x) + * Return the base 10 logarithm of x + * + * Method : + * Let log10_2hi = leading 40 bits of log10(2) and + * log10_2lo = log10(2) - log10_2hi, + * ivln10 = 1/log(10) rounded. + * Then + * n = ilogb(x), + * if(n<0) n = n+1; + * x = scalbn(x,-n); + * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) + * + * Note 1: + * To guarantee log10(10**n)=n, where 10**n is normal, the rounding + * mode must set to Round-to-Nearest. + * Note 2: + * [1/log(10)] rounded to 53 bits has error .198 ulps; + * log10 is monotonic at all binary break points. + * + * Special cases: + * log10(x) is NaN with signal if x < 0; + * log10(+INF) is +INF with no signal; log10(0) is -INF with signal; + * log10(NaN) is that NaN with no signal; + * log10(10**N) = N for N=0,1,...,22. + * + * Constants: + * The hexadecimal values are the intended ones for the following constants. + * The decimal values may be used, provided that the compiler will convert + * from decimal to binary accurately enough to produce the hexadecimal values + * shown. + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double +two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ +ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */ +log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ +log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ + +static const double zero = 0.0; + +double attribute_hidden __ieee754_log10(double x) +{ + double y,z; + int32_t i,k,hx; + u_int32_t lx; + + EXTRACT_WORDS(hx,lx,x); + + k=0; + if (hx < 0x00100000) { /* x < 2**-1022 */ + if (((hx&0x7fffffff)|lx)==0) + return -two54/zero; /* log(+-0)=-inf */ + if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ + k -= 54; x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD(hx,x); + } + if (hx >= 0x7ff00000) return x+x; + k += (hx>>20)-1023; + i = ((u_int32_t)k&0x80000000)>>31; + hx = (hx&0x000fffff)|((0x3ff-i)<<20); + y = (double)(k+i); + SET_HIGH_WORD(x,hx); + z = y*log10_2lo + ivln10*__ieee754_log(x); + return z+y*log10_2hi; +} + +/* + * wrapper log10(X) + */ +#ifndef _IEEE_LIBM +double log10(double x) +{ + double z = __ieee754_log10(x); + if (_LIB_VERSION == _IEEE_ || isnan(x)) + return z; + if (x <= 0.0) { + if(x == 0.0) + return __kernel_standard(x, x, 18); /* log10(0) */ + return __kernel_standard(x, x, 19); /* log10(x<0) */ + } + return z; +} +#else +strong_alias(__ieee754_log10, log10) +#endif +libm_hidden_def(log10) diff --git a/source/3rd-party/SDL2/src/libm/e_pow.c b/source/3rd-party/SDL2/src/libm/e_pow.c new file mode 100644 index 0000000..cfd1dbf --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_pow.c @@ -0,0 +1,343 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_pow(x,y) return x**y + * + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 53-24 = 29 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * arithmetic, where |y'|<=0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. +-1 ** anything is 1.0 + * 2. +-1 ** +-INF is 1.0 + * 3. (anything) ** 0 is 1 + * 4. (anything) ** 1 is itself + * 5. (anything) ** NAN is NAN + * 6. NAN ** (anything except 0) is NAN + * 7. +-(|x| > 1) ** +INF is +INF + * 8. +-(|x| > 1) ** -INF is +0 + * 9. +-(|x| < 1) ** +INF is +0 + * 10 +-(|x| < 1) ** -INF is +INF + * 11. +0 ** (+anything except 0, NAN) is +0 + * 12. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 13. +0 ** (-anything except 0, NAN) is +INF + * 14. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 15. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 16. +INF ** (+anything except 0,NAN) is +INF + * 17. +INF ** (-anything except 0,NAN) is +0 + * 18. -INF ** (anything) = -0 ** (-anything) + * 19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 20. (-anything except 0 and inf) ** (non-integer) is NAN + * + * Accuracy: + * pow(x,y) returns x**y nearly rounded. In particular + * pow(integer,integer) + * always returns the correct integer provided it is + * representable. + * + * Constants : + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math_libm.h" +#include "math_private.h" + +#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ +/* C4756: overflow in constant arithmetic */ +#pragma warning ( disable : 4756 ) +#endif + +static const double +bp[] = {1.0, 1.5,}, +dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ +dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ +zero = 0.0, +one = 1.0, +two = 2.0, +two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ +huge = 1.0e300, +tiny = 1.0e-300, + /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ +L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ +L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ +L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ +L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ +L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ +L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ +lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ +lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ +lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ +ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ +cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ +cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ +cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ +ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ +ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ +ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ + +double attribute_hidden __ieee754_pow(double x, double y) +{ + double z,ax,z_h,z_l,p_h,p_l; + double y1,t1,t2,r,s,t,u,v,w; + int32_t i,j,k,yisint,n; + int32_t hx,hy,ix,iy; + u_int32_t lx,ly; + + EXTRACT_WORDS(hx,lx,x); + /* x==1: 1**y = 1 (even if y is NaN) */ + if (hx==0x3ff00000 && lx==0) { + return x; + } + ix = hx&0x7fffffff; + + EXTRACT_WORDS(hy,ly,y); + iy = hy&0x7fffffff; + + /* y==zero: x**0 = 1 */ + if((iy|ly)==0) return one; + + /* +-NaN return x+y */ + if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || + iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) + return x+y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if(hx<0) { + if(iy>=0x43400000) yisint = 2; /* even integer y */ + else if(iy>=0x3ff00000) { + k = (iy>>20)-0x3ff; /* exponent */ + if(k>20) { + j = ly>>(52-k); + if((j<<(52-k))==ly) yisint = 2-(j&1); + } else if(ly==0) { + j = iy>>(20-k); + if((j<<(20-k))==iy) yisint = 2-(j&1); + } + } + } + + /* special value of y */ + if(ly==0) { + if (iy==0x7ff00000) { /* y is +-inf */ + if (((ix-0x3ff00000)|lx)==0) + return one; /* +-1**+-inf is 1 (yes, weird rule) */ + if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ + return (hy>=0) ? y : zero; + /* (|x|<1)**-,+inf = inf,0 */ + return (hy<0) ? -y : zero; + } + if(iy==0x3ff00000) { /* y is +-1 */ + if(hy<0) return one/x; else return x; + } + if(hy==0x40000000) return x*x; /* y is 2 */ + if(hy==0x3fe00000) { /* y is 0.5 */ + if(hx>=0) /* x >= +0 */ + return __ieee754_sqrt(x); + } + } + + ax = fabs(x); + /* special value of x */ + if(lx==0) { + if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ + z = ax; /*x is +-0,+-inf,+-1*/ + if(hy<0) z = one/z; /* z = (1/|x|) */ + if(hx<0) { + if(((ix-0x3ff00000)|yisint)==0) { + z = (z-z)/(z-z); /* (-1)**non-int is NaN */ + } else if(yisint==1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + } + + /* (x<0)**(non-int) is NaN */ + if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); + + /* |y| is huge */ + if(iy>0x41e00000) { /* if |y| > 2**31 */ + if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ + if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; + if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; + } + /* over/underflow if x is not close to one */ + if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; + if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; + /* now |1-x| is tiny <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = x-1; /* t has 20 trailing zeros */ + w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); + u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ + v = t*ivln2_l-w*ivln2; + t1 = u+v; + SET_LOW_WORD(t1,0); + t2 = v-(t1-u); + } else { + double s2,s_h,s_l,t_h,t_l; + n = 0; + /* take care subnormal number */ + if(ix<0x00100000) + {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } + n += ((ix)>>20)-0x3ff; + j = ix&0x000fffff; + /* determine interval */ + ix = j|0x3ff00000; /* normalize ix */ + if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ + else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ + else {k=0;n+=1;ix -= 0x00100000;} + SET_HIGH_WORD(ax,ix); + + /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ + v = one/(ax+bp[k]); + s = u*v; + s_h = s; + SET_LOW_WORD(s_h,0); + /* t_h=ax+bp[k] High */ + t_h = zero; + SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); + t_l = ax - (t_h-bp[k]); + s_l = v*((u-s_h*t_h)-s_h*t_l); + /* compute log(ax) */ + s2 = s*s; + r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); + r += s_l*(s_h+s); + s2 = s_h*s_h; + t_h = 3.0+s2+r; + SET_LOW_WORD(t_h,0); + t_l = r-((t_h-3.0)-s2); + /* u+v = s*(1+...) */ + u = s_h*t_h; + v = s_l*t_h+t_l*s; + /* 2/(3log2)*(s+...) */ + p_h = u+v; + SET_LOW_WORD(p_h,0); + p_l = v-(p_h-u); + z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = cp_l*p_h+p_l*cp+dp_l[k]; + /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = (double)n; + t1 = (((z_h+z_l)+dp_h[k])+t); + SET_LOW_WORD(t1,0); + t2 = z_l-(((t1-t)-dp_h[k])-z_h); + } + + s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ + if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0) + s = -one;/* (-ve)**(odd int) */ + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + y1 = y; + SET_LOW_WORD(y1,0); + p_l = (y-y1)*t1+y*t2; + p_h = y1*t1; + z = p_l+p_h; + EXTRACT_WORDS(j,i,z); + if (j>=0x40900000) { /* z >= 1024 */ + if(((j-0x40900000)|i)!=0) /* if z > 1024 */ + return s*huge*huge; /* overflow */ + else { + if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ + } + } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ + if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ + return s*tiny*tiny; /* underflow */ + else { + if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ + } + } + /* + * compute 2**(p_h+p_l) + */ + i = j&0x7fffffff; + k = (i>>20)-0x3ff; + n = 0; + if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ + n = j+(0x00100000>>(k+1)); + k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ + t = zero; + SET_HIGH_WORD(t,n&~(0x000fffff>>k)); + n = ((n&0x000fffff)|0x00100000)>>(20-k); + if(j<0) n = -n; + p_h -= t; + } + t = p_l+p_h; + SET_LOW_WORD(t,0); + u = t*lg2_h; + v = (p_l-(t-p_h))*lg2+t*lg2_l; + z = u+v; + w = v-(z-u); + t = z*z; + t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + r = (z*t1)/(t1-two)-(w+z*w); + z = one-(r-z); + GET_HIGH_WORD(j,z); + j += (n<<20); + if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ + else SET_HIGH_WORD(z,j); + return s*z; +} + +/* + * wrapper pow(x,y) return x**y + */ +#ifndef _IEEE_LIBM +double pow(double x, double y) +{ + double z = __ieee754_pow(x, y); + if (_LIB_VERSION == _IEEE_|| isnan(y)) + return z; + if (isnan(x)) { + if (y == 0.0) + return __kernel_standard(x, y, 42); /* pow(NaN,0.0) */ + return z; + } + if (x == 0.0) { + if (y == 0.0) + return __kernel_standard(x, y, 20); /* pow(0.0,0.0) */ + if (isfinite(y) && y < 0.0) + return __kernel_standard(x,y,23); /* pow(0.0,negative) */ + return z; + } + if (!isfinite(z)) { + if (isfinite(x) && isfinite(y)) { + if (isnan(z)) + return __kernel_standard(x, y, 24); /* pow neg**non-int */ + return __kernel_standard(x, y, 21); /* pow overflow */ + } + } + if (z == 0.0 && isfinite(x) && isfinite(y)) + return __kernel_standard(x, y, 22); /* pow underflow */ + return z; +} +#else +strong_alias(__ieee754_pow, pow) +#endif +libm_hidden_def(pow) diff --git a/source/3rd-party/SDL2/src/libm/e_rem_pio2.c b/source/3rd-party/SDL2/src/libm/e_rem_pio2.c new file mode 100644 index 0000000..5e055d6 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_rem_pio2.c @@ -0,0 +1,161 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_rem_pio2(x,y) + * + * return the remainder of x rem pi/2 in y[0]+y[1] + * use __kernel_rem_pio2() + */ + +#include "math_libm.h" +#include "math_private.h" + +/* + * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi + */ +static const int32_t two_over_pi[] = { +0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, +0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, +0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, +0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, +0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, +0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, +0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, +0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, +0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, +0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, +0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, +}; + +static const int32_t npio2_hw[] = { +0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, +0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, +0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, +0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, +0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, +0x404858EB, 0x404921FB, +}; + +/* + * invpio2: 53 bits of 2/pi + * pio2_1: first 33 bit of pi/2 + * pio2_1t: pi/2 - pio2_1 + * pio2_2: second 33 bit of pi/2 + * pio2_2t: pi/2 - (pio2_1+pio2_2) + * pio2_3: third 33 bit of pi/2 + * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) + */ + +static const double +zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ +half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ +invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ +pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ +pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ +pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ +pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ +pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ +pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ + +int32_t attribute_hidden __ieee754_rem_pio2(double x, double *y) +{ + double z=0.0,w,t,r,fn; + double tx[3]; + int32_t e0,i,j,nx,n,ix,hx; + u_int32_t low; + + GET_HIGH_WORD(hx,x); /* high word of x */ + ix = hx&0x7fffffff; + if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ + {y[0] = x; y[1] = 0; return 0;} + if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ + if(hx>0) { + z = x - pio2_1; + if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ + y[0] = z - pio2_1t; + y[1] = (z-y[0])-pio2_1t; + } else { /* near pi/2, use 33+33+53 bit pi */ + z -= pio2_2; + y[0] = z - pio2_2t; + y[1] = (z-y[0])-pio2_2t; + } + return 1; + } else { /* negative x */ + z = x + pio2_1; + if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ + y[0] = z + pio2_1t; + y[1] = (z-y[0])+pio2_1t; + } else { /* near pi/2, use 33+33+53 bit pi */ + z += pio2_2; + y[0] = z + pio2_2t; + y[1] = (z-y[0])+pio2_2t; + } + return -1; + } + } + if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ + t = fabs(x); + n = (int32_t) (t*invpio2+half); + fn = (double)n; + r = t-fn*pio2_1; + w = fn*pio2_1t; /* 1st round good to 85 bit */ + if(n<32&&ix!=npio2_hw[n-1]) { + y[0] = r-w; /* quick check no cancellation */ + } else { + u_int32_t high; + j = ix>>20; + y[0] = r-w; + GET_HIGH_WORD(high,y[0]); + i = j-((high>>20)&0x7ff); + if(i>16) { /* 2nd iteration needed, good to 118 */ + t = r; + w = fn*pio2_2; + r = t-w; + w = fn*pio2_2t-((t-r)-w); + y[0] = r-w; + GET_HIGH_WORD(high,y[0]); + i = j-((high>>20)&0x7ff); + if(i>49) { /* 3rd iteration need, 151 bits acc */ + t = r; /* will cover all possible cases */ + w = fn*pio2_3; + r = t-w; + w = fn*pio2_3t-((t-r)-w); + y[0] = r-w; + } + } + } + y[1] = (r-y[0])-w; + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + else return n; + } + /* + * all other (large) arguments + */ + if(ix>=0x7ff00000) { /* x is inf or NaN */ + y[0]=y[1]=x-x; return 0; + } + /* set z = scalbn(|x|,ilogb(x)-23) */ + GET_LOW_WORD(low,x); + SET_LOW_WORD(z,low); + e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */ + SET_HIGH_WORD(z, ix - ((int32_t)(e0<<20))); + for(i=0;i<2;i++) { + tx[i] = (double)((int32_t)(z)); + z = (z-tx[i])*two24; + } + tx[2] = z; + nx = 3; + while((nx > 0) && tx[nx-1]==zero) nx--; /* skip zero term */ + n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + return n; +} diff --git a/source/3rd-party/SDL2/src/libm/e_sqrt.c b/source/3rd-party/SDL2/src/libm/e_sqrt.c new file mode 100644 index 0000000..39c83e1 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/e_sqrt.c @@ -0,0 +1,457 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_sqrt(x) + * Return correctly rounded sqrt. + * ------------------------------------------ + * | Use the hardware sqrt if you have one | + * ------------------------------------------ + * Method: + * Bit by bit method using integer arithmetic. (Slow, but portable) + * 1. Normalization + * Scale x to y in [1,4) with even powers of 2: + * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then + * sqrt(x) = 2^k * sqrt(y) + * 2. Bit by bit computation + * Let q = sqrt(y) truncated to i bit after binary point (q = 1), + * i 0 + * i+1 2 + * s = 2*q , and y = 2 * ( y - q ). (1) + * i i i i + * + * To compute q from q , one checks whether + * i+1 i + * + * -(i+1) 2 + * (q + 2 ) <= y. (2) + * i + * -(i+1) + * If (2) is false, then q = q ; otherwise q = q + 2 . + * i+1 i i+1 i + * + * With some algebric manipulation, it is not difficult to see + * that (2) is equivalent to + * -(i+1) + * s + 2 <= y (3) + * i i + * + * The advantage of (3) is that s and y can be computed by + * i i + * the following recurrence formula: + * if (3) is false + * + * s = s , y = y ; (4) + * i+1 i i+1 i + * + * otherwise, + * -i -(i+1) + * s = s + 2 , y = y - s - 2 (5) + * i+1 i i+1 i i + * + * One may easily use induction to prove (4) and (5). + * Note. Since the left hand side of (3) contain only i+2 bits, + * it does not necessary to do a full (53-bit) comparison + * in (3). + * 3. Final rounding + * After generating the 53 bits result, we compute one more bit. + * Together with the remainder, we can decide whether the + * result is exact, bigger than 1/2ulp, or less than 1/2ulp + * (it will never equal to 1/2ulp). + * The rounding mode can be detected by checking whether + * huge + tiny is equal to huge, and whether huge - tiny is + * equal to huge for some floating point number "huge" and "tiny". + * + * Special cases: + * sqrt(+-0) = +-0 ... exact + * sqrt(inf) = inf + * sqrt(-ve) = NaN ... with invalid signal + * sqrt(NaN) = NaN ... with invalid signal for signaling NaN + * + * Other methods : see the appended file at the end of the program below. + *--------------- + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double one = 1.0, tiny = 1.0e-300; + +double attribute_hidden __ieee754_sqrt(double x) +{ + double z; + int32_t sign = (int)0x80000000; + int32_t ix0,s0,q,m,t,i; + u_int32_t r,t1,s1,ix1,q1; + + EXTRACT_WORDS(ix0,ix1,x); + + /* take care of Inf and NaN */ + if((ix0&0x7ff00000)==0x7ff00000) { + return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf + sqrt(-inf)=sNaN */ + } + /* take care of zero */ + if(ix0<=0) { + if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ + else if(ix0<0) + return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ + } + /* normalize x */ + m = (ix0>>20); + if(m==0) { /* subnormal x */ + while(ix0==0) { + m -= 21; + ix0 |= (ix1>>11); ix1 <<= 21; + } + for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; + m -= i-1; + ix0 |= (ix1>>(32-i)); + ix1 <<= i; + } + m -= 1023; /* unbias exponent */ + ix0 = (ix0&0x000fffff)|0x00100000; + if(m&1){ /* odd m, double x to make it even */ + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + } + m >>= 1; /* m = [m/2] */ + + /* generate sqrt(x) bit by bit */ + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ + r = 0x00200000; /* r = moving bit from right to left */ + + while(r!=0) { + t = s0+r; + if(t<=ix0) { + s0 = t+r; + ix0 -= t; + q += r; + } + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + r>>=1; + } + + r = sign; + while(r!=0) { + t1 = s1+r; + t = s0; + if((t<ix0)||((t==ix0)&&(t1<=ix1))) { + s1 = t1+r; + if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; + ix0 -= t; + if (ix1 < t1) ix0 -= 1; + ix1 -= t1; + q1 += r; + } + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + r>>=1; + } + + /* use floating add to find out rounding direction */ + if((ix0|ix1)!=0) { + z = one-tiny; /* trigger inexact flag */ + if (z>=one) { + z = one+tiny; + if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;} + else if (z>one) { + if (q1==(u_int32_t)0xfffffffe) q+=1; + q1+=2; + } else + q1 += (q1&1); + } + } + ix0 = (q>>1)+0x3fe00000; + ix1 = q1>>1; + if ((q&1)==1) ix1 |= sign; + ix0 += (m <<20); + INSERT_WORDS(z,ix0,ix1); + return z; +} + +/* + * wrapper sqrt(x) + */ +#ifndef _IEEE_LIBM +double sqrt(double x) +{ + double z = __ieee754_sqrt(x); + if (_LIB_VERSION == _IEEE_ || isnan(x)) + return z; + if (x < 0.0) + return __kernel_standard(x, x, 26); /* sqrt(negative) */ + return z; +} +#else +strong_alias(__ieee754_sqrt, sqrt) +#endif +libm_hidden_def(sqrt) + + +/* +Other methods (use floating-point arithmetic) +------------- +(This is a copy of a drafted paper by Prof W. Kahan +and K.C. Ng, written in May, 1986) + + Two algorithms are given here to implement sqrt(x) + (IEEE double precision arithmetic) in software. + Both supply sqrt(x) correctly rounded. The first algorithm (in + Section A) uses newton iterations and involves four divisions. + The second one uses reciproot iterations to avoid division, but + requires more multiplications. Both algorithms need the ability + to chop results of arithmetic operations instead of round them, + and the INEXACT flag to indicate when an arithmetic operation + is executed exactly with no roundoff error, all part of the + standard (IEEE 754-1985). The ability to perform shift, add, + subtract and logical AND operations upon 32-bit words is needed + too, though not part of the standard. + +A. sqrt(x) by Newton Iteration + + (1) Initial approximation + + Let x0 and x1 be the leading and the trailing 32-bit words of + a floating point number x (in IEEE double format) respectively + + 1 11 52 ...widths + ------------------------------------------------------ + x: |s| e | f | + ------------------------------------------------------ + msb lsb msb lsb ...order + + + ------------------------ ------------------------ + x0: |s| e | f1 | x1: | f2 | + ------------------------ ------------------------ + + By performing shifts and subtracts on x0 and x1 (both regarded + as integers), we obtain an 8-bit approximation of sqrt(x) as + follows. + + k := (x0>>1) + 0x1ff80000; + y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits + Here k is a 32-bit integer and T1[] is an integer array containing + correction terms. Now magically the floating value of y (y's + leading 32-bit word is y0, the value of its trailing word is 0) + approximates sqrt(x) to almost 8-bit. + + Value of T1: + static int T1[32]= { + 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, + 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, + 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, + 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; + + (2) Iterative refinement + + Apply Heron's rule three times to y, we have y approximates + sqrt(x) to within 1 ulp (Unit in the Last Place): + + y := (y+x/y)/2 ... almost 17 sig. bits + y := (y+x/y)/2 ... almost 35 sig. bits + y := y-(y-x/y)/2 ... within 1 ulp + + + Remark 1. + Another way to improve y to within 1 ulp is: + + y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) + y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) + + 2 + (x-y )*y + y := y + 2* ---------- ...within 1 ulp + 2 + 3y + x + + + This formula has one division fewer than the one above; however, + it requires more multiplications and additions. Also x must be + scaled in advance to avoid spurious overflow in evaluating the + expression 3y*y+x. Hence it is not recommended uless division + is slow. If division is very slow, then one should use the + reciproot algorithm given in section B. + + (3) Final adjustment + + By twiddling y's last bit it is possible to force y to be + correctly rounded according to the prevailing rounding mode + as follows. Let r and i be copies of the rounding mode and + inexact flag before entering the square root program. Also we + use the expression y+-ulp for the next representable floating + numbers (up and down) of y. Note that y+-ulp = either fixed + point y+-1, or multiply y by nextafter(1,+-inf) in chopped + mode. + + I := FALSE; ... reset INEXACT flag I + R := RZ; ... set rounding mode to round-toward-zero + z := x/y; ... chopped quotient, possibly inexact + If(not I) then { ... if the quotient is exact + if(z=y) { + I := i; ... restore inexact flag + R := r; ... restore rounded mode + return sqrt(x):=y. + } else { + z := z - ulp; ... special rounding + } + } + i := TRUE; ... sqrt(x) is inexact + If (r=RN) then z=z+ulp ... rounded-to-nearest + If (r=RP) then { ... round-toward-+inf + y = y+ulp; z=z+ulp; + } + y := y+z; ... chopped sum + y0:=y0-0x00100000; ... y := y/2 is correctly rounded. + I := i; ... restore inexact flag + R := r; ... restore rounded mode + return sqrt(x):=y. + + (4) Special cases + + Square root of +inf, +-0, or NaN is itself; + Square root of a negative number is NaN with invalid signal. + + +B. sqrt(x) by Reciproot Iteration + + (1) Initial approximation + + Let x0 and x1 be the leading and the trailing 32-bit words of + a floating point number x (in IEEE double format) respectively + (see section A). By performing shifs and subtracts on x0 and y0, + we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. + + k := 0x5fe80000 - (x0>>1); + y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits + + Here k is a 32-bit integer and T2[] is an integer array + containing correction terms. Now magically the floating + value of y (y's leading 32-bit word is y0, the value of + its trailing word y1 is set to zero) approximates 1/sqrt(x) + to almost 7.8-bit. + + Value of T2: + static int T2[64]= { + 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, + 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, + 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, + 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, + 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, + 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, + 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, + 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; + + (2) Iterative refinement + + Apply Reciproot iteration three times to y and multiply the + result by x to get an approximation z that matches sqrt(x) + to about 1 ulp. To be exact, we will have + -1ulp < sqrt(x)-z<1.0625ulp. + + ... set rounding mode to Round-to-nearest + y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) + y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) + ... special arrangement for better accuracy + z := x*y ... 29 bits to sqrt(x), with z*y<1 + z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) + + Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that + (a) the term z*y in the final iteration is always less than 1; + (b) the error in the final result is biased upward so that + -1 ulp < sqrt(x) - z < 1.0625 ulp + instead of |sqrt(x)-z|<1.03125ulp. + + (3) Final adjustment + + By twiddling y's last bit it is possible to force y to be + correctly rounded according to the prevailing rounding mode + as follows. Let r and i be copies of the rounding mode and + inexact flag before entering the square root program. Also we + use the expression y+-ulp for the next representable floating + numbers (up and down) of y. Note that y+-ulp = either fixed + point y+-1, or multiply y by nextafter(1,+-inf) in chopped + mode. + + R := RZ; ... set rounding mode to round-toward-zero + switch(r) { + case RN: ... round-to-nearest + if(x<= z*(z-ulp)...chopped) z = z - ulp; else + if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; + break; + case RZ:case RM: ... round-to-zero or round-to--inf + R:=RP; ... reset rounding mod to round-to-+inf + if(x<z*z ... rounded up) z = z - ulp; else + if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; + break; + case RP: ... round-to-+inf + if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else + if(x>z*z ...chopped) z = z+ulp; + break; + } + + Remark 3. The above comparisons can be done in fixed point. For + example, to compare x and w=z*z chopped, it suffices to compare + x1 and w1 (the trailing parts of x and w), regarding them as + two's complement integers. + + ...Is z an exact square root? + To determine whether z is an exact square root of x, let z1 be the + trailing part of z, and also let x0 and x1 be the leading and + trailing parts of x. + + If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 + I := 1; ... Raise Inexact flag: z is not exact + else { + j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 + k := z1 >> 26; ... get z's 25-th and 26-th + fraction bits + I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); + } + R:= r ... restore rounded mode + return sqrt(x):=z. + + If multiplication is cheaper then the foregoing red tape, the + Inexact flag can be evaluated by + + I := i; + I := (z*z!=x) or I. + + Note that z*z can overwrite I; this value must be sensed if it is + True. + + Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be + zero. + + -------------------- + z1: | f2 | + -------------------- + bit 31 bit 0 + + Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd + or even of logb(x) have the following relations: + + ------------------------------------------------- + bit 27,26 of z1 bit 1,0 of x1 logb(x) + ------------------------------------------------- + 00 00 odd and even + 01 01 even + 10 10 odd + 10 00 even + 11 01 even + ------------------------------------------------- + + (4) Special cases (see (4) of Section A). + + */ diff --git a/source/3rd-party/SDL2/src/libm/k_cos.c b/source/3rd-party/SDL2/src/libm/k_cos.c new file mode 100644 index 0000000..e1326fa --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/k_cos.c @@ -0,0 +1,82 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __kernel_cos( x, y ) + * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * + * Algorithm + * 1. Since cos(-x) = cos(x), we need only to consider positive x. + * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. + * 3. cos(x) is approximated by a polynomial of degree 14 on + * [0,pi/4] + * 4 14 + * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x + * where the remez error is + * + * | 2 4 6 8 10 12 14 | -58 + * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 + * | | + * + * 4 6 8 10 12 14 + * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then + * cos(x) = 1 - x*x/2 + r + * since cos(x+y) ~ cos(x) - sin(x)*y + * ~ cos(x) - x*y, + * a correction term is necessary in cos(x) and hence + * cos(x+y) = 1 - (x*x/2 - (r - x*y)) + * For better accuracy when x > 0.3, let qx = |x|/4 with + * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. + * Then + * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). + * Note that 1-qx and (x*x/2-qx) is EXACT here, and the + * magnitude of the latter is at least a quarter of x*x/2, + * thus, reducing the rounding error in the subtraction. + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ +C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ +C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ +C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ +C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ +C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ + +double attribute_hidden __kernel_cos(double x, double y) +{ + double a,hz,z,r,qx; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; /* ix = |x|'s high word*/ + if(ix<0x3e400000) { /* if x < 2**27 */ + if(((int)x)==0) return one; /* generate inexact */ + } + z = x*x; + r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); + if(ix < 0x3FD33333) /* if |x| < 0.3 */ + return one - (0.5*z - (z*r - x*y)); + else { + if(ix > 0x3fe90000) { /* x > 0.78125 */ + qx = 0.28125; + } else { + INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ + } + hz = 0.5*z-qx; + a = one-qx; + return a - (hz - (z*r-x*y)); + } +} diff --git a/source/3rd-party/SDL2/src/libm/k_rem_pio2.c b/source/3rd-party/SDL2/src/libm/k_rem_pio2.c new file mode 100644 index 0000000..393db54 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/k_rem_pio2.c @@ -0,0 +1,317 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) + * double x[],y[]; int e0,nx,prec; int ipio2[]; + * + * __kernel_rem_pio2 return the last three digits of N with + * y = x - N*pi/2 + * so that |y| < pi/2. + * + * The method is to compute the integer (mod 8) and fraction parts of + * (2/pi)*x without doing the full multiplication. In general we + * skip the part of the product that are known to be a huge integer ( + * more accurately, = 0 mod 8 ). Thus the number of operations are + * independent of the exponent of the input. + * + * (2/pi) is represented by an array of 24-bit integers in ipio2[]. + * + * Input parameters: + * x[] The input value (must be positive) is broken into nx + * pieces of 24-bit integers in double precision format. + * x[i] will be the i-th 24 bit of x. The scaled exponent + * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 + * match x's up to 24 bits. + * + * Example of breaking a double positive z into x[0]+x[1]+x[2]: + * e0 = ilogb(z)-23 + * z = scalbn(z,-e0) + * for i = 0,1,2 + * x[i] = floor(z) + * z = (z-x[i])*2**24 + * + * + * y[] ouput result in an array of double precision numbers. + * The dimension of y[] is: + * 24-bit precision 1 + * 53-bit precision 2 + * 64-bit precision 2 + * 113-bit precision 3 + * The actual value is the sum of them. Thus for 113-bit + * precison, one may have to do something like: + * + * long double t,w,r_head, r_tail; + * t = (long double)y[2] + (long double)y[1]; + * w = (long double)y[0]; + * r_head = t+w; + * r_tail = w - (r_head - t); + * + * e0 The exponent of x[0] + * + * nx dimension of x[] + * + * prec an integer indicating the precision: + * 0 24 bits (single) + * 1 53 bits (double) + * 2 64 bits (extended) + * 3 113 bits (quad) + * + * ipio2[] + * integer array, contains the (24*i)-th to (24*i+23)-th + * bit of 2/pi after binary point. The corresponding + * floating value is + * + * ipio2[i] * 2^(-24(i+1)). + * + * External function: + * double scalbn(), floor(); + * + * + * Here is the description of some local variables: + * + * jk jk+1 is the initial number of terms of ipio2[] needed + * in the computation. The recommended value is 2,3,4, + * 6 for single, double, extended,and quad. + * + * jz local integer variable indicating the number of + * terms of ipio2[] used. + * + * jx nx - 1 + * + * jv index for pointing to the suitable ipio2[] for the + * computation. In general, we want + * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 + * is an integer. Thus + * e0-3-24*jv >= 0 or (e0-3)/24 >= jv + * Hence jv = max(0,(e0-3)/24). + * + * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. + * + * q[] double array with integral value, representing the + * 24-bits chunk of the product of x and 2/pi. + * + * q0 the corresponding exponent of q[0]. Note that the + * exponent for q[i] would be q0-24*i. + * + * PIo2[] double precision array, obtained by cutting pi/2 + * into 24 bits chunks. + * + * f[] ipio2[] in floating point + * + * iq[] integer array by breaking up q[] in 24-bits chunk. + * + * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] + * + * ih integer. If >0 it indicates q[] is >= 0.5, hence + * it also indicates the *sign* of the result. + * + */ + + +/* + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math_libm.h" +#include "math_private.h" + +#include "SDL_assert.h" + +static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ + +static const double PIo2[] = { + 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ + 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ + 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ + 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ + 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ + 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ + 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ + 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ +}; + +static const double +zero = 0.0, +one = 1.0, +two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ +twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ + +int32_t attribute_hidden __kernel_rem_pio2(double *x, double *y, int e0, int nx, const unsigned int prec, const int32_t *ipio2) +{ + int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; + double z,fw,f[20],fq[20],q[20]; + + if (nx < 1) { + return 0; + } + + /* initialize jk*/ + SDL_assert(prec < SDL_arraysize(init_jk)); + jk = init_jk[prec]; + SDL_assert(jk > 0); + jp = jk; + + /* determine jx,jv,q0, note that 3>q0 */ + jx = nx-1; + jv = (e0-3)/24; if(jv<0) jv=0; + q0 = e0-24*(jv+1); + + /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ + j = jv-jx; m = jx+jk; + for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; + if ((m+1) < SDL_arraysize(f)) { + SDL_memset(&f[m+1], 0, sizeof (f) - ((m+1) * sizeof (f[0]))); + } + + /* compute q[0],q[1],...q[jk] */ + for (i=0;i<=jk;i++) { + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; + q[i] = fw; + } + + jz = jk; +recompute: + /* distill q[] into iq[] reversingly */ + for(i=0,j=jz,z=q[jz];j>0;i++,j--) { + fw = (double)((int32_t)(twon24* z)); + iq[i] = (int32_t)(z-two24*fw); + z = q[j-1]+fw; + } + if (jz < SDL_arraysize(iq)) { + SDL_memset(&iq[jz], 0, sizeof (q) - (jz * sizeof (iq[0]))); + } + + /* compute n */ + z = scalbn(z,q0); /* actual value of z */ + z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ + n = (int32_t) z; + z -= (double)n; + ih = 0; + if(q0>0) { /* need iq[jz-1] to determine n */ + i = (iq[jz-1]>>(24-q0)); n += i; + iq[jz-1] -= i<<(24-q0); + ih = iq[jz-1]>>(23-q0); + } + else if(q0==0) ih = iq[jz-1]>>23; + else if(z>=0.5) ih=2; + + if(ih>0) { /* q > 0.5 */ + n += 1; carry = 0; + for(i=0;i<jz ;i++) { /* compute 1-q */ + j = iq[i]; + if(carry==0) { + if(j!=0) { + carry = 1; iq[i] = 0x1000000- j; + } + } else iq[i] = 0xffffff - j; + } + if(q0>0) { /* rare case: chance is 1 in 12 */ + switch(q0) { + case 1: + iq[jz-1] &= 0x7fffff; break; + case 2: + iq[jz-1] &= 0x3fffff; break; + } + } + if(ih==2) { + z = one - z; + if(carry!=0) z -= scalbn(one,q0); + } + } + + /* check if recomputation is needed */ + if(z==zero) { + j = 0; + for (i=jz-1;i>=jk;i--) j |= iq[i]; + if(j==0) { /* need recomputation */ + for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ + + for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ + f[jx+i] = (double) ipio2[jv+i]; + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; + q[i] = fw; + } + jz += k; + goto recompute; + } + } + + /* chop off zero terms */ + if(z==0.0) { + jz -= 1; q0 -= 24; + SDL_assert(jz >= 0); + while(iq[jz]==0) { jz--; SDL_assert(jz >= 0); q0-=24;} + } else { /* break z into 24-bit if necessary */ + z = scalbn(z,-q0); + if(z>=two24) { + fw = (double)((int32_t)(twon24*z)); + iq[jz] = (int32_t)(z-two24*fw); + jz += 1; q0 += 24; + iq[jz] = (int32_t) fw; + } else iq[jz] = (int32_t) z ; + } + + /* convert integer "bit" chunk to floating-point value */ + fw = scalbn(one,q0); + for(i=jz;i>=0;i--) { + q[i] = fw*(double)iq[i]; fw*=twon24; + } + + /* compute PIo2[0,...,jp]*q[jz,...,0] */ + for(i=jz;i>=0;i--) { + for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; + fq[jz-i] = fw; + } + if ((jz+1) < SDL_arraysize(f)) { + SDL_memset(&fq[jz+1], 0, sizeof (fq) - ((jz+1) * sizeof (fq[0]))); + } + + /* compress fq[] into y[] */ + switch(prec) { + case 0: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + break; + case 1: + case 2: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + fw = fq[0]-fw; + for (i=1;i<=jz;i++) fw += fq[i]; + y[1] = (ih==0)? fw: -fw; + break; + case 3: /* painful */ + for (i=jz;i>0;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (i=jz;i>1;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; + if(ih==0) { + y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; + } else { + y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; + } + } + return n&7; +} diff --git a/source/3rd-party/SDL2/src/libm/k_sin.c b/source/3rd-party/SDL2/src/libm/k_sin.c new file mode 100644 index 0000000..3520d6b --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/k_sin.c @@ -0,0 +1,65 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __kernel_sin( x, y, iy) + * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). + * + * Algorithm + * 1. Since sin(-x) = -sin(x), we need only to consider positive x. + * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. + * 3. sin(x) is approximated by a polynomial of degree 13 on + * [0,pi/4] + * 3 13 + * sin(x) ~ x + S1*x + ... + S6*x + * where + * + * |sin(x) 2 4 6 8 10 12 | -58 + * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 + * | x | + * + * 4. sin(x+y) = sin(x) + sin'(x')*y + * ~ sin(x) + (1-x*x/2)*y + * For better accuracy, let + * 3 2 2 2 2 + * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) + * then 3 2 + * sin(x) = x + (S1*x + (x *(r-y/2)+y)) + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double +half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ +S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ +S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ +S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ +S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ +S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ + +double attribute_hidden __kernel_sin(double x, double y, int iy) +{ + double z,r,v; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; /* high word of x */ + if(ix<0x3e400000) /* |x| < 2**-27 */ + {if((int)x==0) return x;} /* generate inexact */ + z = x*x; + v = z*x; + r = S2+z*(S3+z*(S4+z*(S5+z*S6))); + if(iy==0) return x+v*(S1+z*r); + else return x-((z*(half*y-v*r)-y)-v*S1); +} diff --git a/source/3rd-party/SDL2/src/libm/k_tan.c b/source/3rd-party/SDL2/src/libm/k_tan.c new file mode 100644 index 0000000..47b4e3d --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/k_tan.c @@ -0,0 +1,118 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __kernel_tan( x, y, k ) + * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input k indicates whether tan (if k=1) or + * -1/tan (if k= -1) is returned. + * + * Algorithm + * 1. Since tan(-x) = -tan(x), we need only to consider positive x. + * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. + * 3. tan(x) is approximated by a odd polynomial of degree 27 on + * [0,0.67434] + * 3 27 + * tan(x) ~ x + T1*x + ... + T13*x + * where + * + * |tan(x) 2 4 26 | -59.2 + * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 + * | x | + * + * Note: tan(x+y) = tan(x) + tan'(x)*y + * ~ tan(x) + (1+x*x)*y + * Therefore, for better accuracy in computing tan(x+y), let + * 3 2 2 2 2 + * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) + * then + * 3 2 + * tan(x+y) = x + (T1*x + (x *(r+y)+y)) + * + * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then + * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) + * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ +pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ +T[] = { + 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ + 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ + 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ + 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ + 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ + 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ + 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ + 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ + 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ + 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ + 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ + -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ + 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ +}; + +double attribute_hidden __kernel_tan(double x, double y, int iy) +{ + double z,r,v,w,s; + int32_t ix,hx; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; /* high word of |x| */ + if(ix<0x3e300000) /* x < 2**-28 */ + {if((int)x==0) { /* generate inexact */ + u_int32_t low; + GET_LOW_WORD(low,x); + if(((ix|low)|(iy+1))==0) return one/fabs(x); + else return (iy==1)? x: -one/x; + } + } + if(ix>=0x3FE59428) { /* |x|>=0.6744 */ + if(hx<0) {x = -x; y = -y;} + z = pio4-x; + w = pio4lo-y; + x = z+w; y = 0.0; + } + z = x*x; + w = z*z; + /* Break x^5*(T[1]+x^2*T[2]+...) into + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) + */ + r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); + v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); + s = z*x; + r = y + z*(s*(r+v)+y); + r += T[0]*s; + w = x+r; + if(ix>=0x3FE59428) { + v = (double)iy; + return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); + } + if(iy==1) return w; + else { /* if allow error up to 2 ulp, + simply return -1.0/(x+r) here */ + /* compute -1.0/(x+r) accurately */ + double a,t; + z = w; + SET_LOW_WORD(z,0); + v = r-(z - x); /* z+v = r+x */ + t = a = -1.0/w; /* a = -1.0/w */ + SET_LOW_WORD(t,0); + s = 1.0+t*z; + return t+a*(s+t*v); + } +} diff --git a/source/3rd-party/SDL2/src/libm/math_libm.h b/source/3rd-party/SDL2/src/libm/math_libm.h new file mode 100644 index 0000000..3c751c5 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/math_libm.h @@ -0,0 +1,47 @@ +/* + Simple DirectMedia Layer + Copyright (C) 1997-2018 Sam Lantinga <slouken@libsdl.org> + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef math_libm_h_ +#define math_libm_h_ + +#include "../SDL_internal.h" + +/* Math routines from uClibc: http://www.uclibc.org */ + +double SDL_uclibc_atan(double x); +double SDL_uclibc_atan2(double y, double x); +double SDL_uclibc_copysign(double x, double y); +double SDL_uclibc_cos(double x); +double SDL_uclibc_exp(double x); +double SDL_uclibc_fabs(double x); +double SDL_uclibc_floor(double x); +double SDL_uclibc_fmod(double x, double y); +double SDL_uclibc_log(double x); +double SDL_uclibc_log10(double x); +double SDL_uclibc_pow(double x, double y); +double SDL_uclibc_scalbn(double x, int n); +double SDL_uclibc_sin(double x); +double SDL_uclibc_sqrt(double x); +double SDL_uclibc_tan(double x); + +#endif /* math_libm_h_ */ + +/* vi: set ts=4 sw=4 expandtab: */ diff --git a/source/3rd-party/SDL2/src/libm/math_private.h b/source/3rd-party/SDL2/src/libm/math_private.h new file mode 100644 index 0000000..d0ef66a --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/math_private.h @@ -0,0 +1,227 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * from: @(#)fdlibm.h 5.1 93/09/24 + * $Id: math_private.h,v 1.3 2004/02/09 07:10:38 andersen Exp $ + */ + +#ifndef _MATH_PRIVATE_H_ +#define _MATH_PRIVATE_H_ + +/* #include <endian.h> */ +#include "SDL_endian.h" +/* #include <sys/types.h> */ + +#define _IEEE_LIBM +#define attribute_hidden +#define libm_hidden_proto(x) +#define libm_hidden_def(x) +#define strong_alias(x, y) + +#ifndef __HAIKU__ /* already defined in a system header. */ +typedef unsigned int u_int32_t; +#endif + +#define atan SDL_uclibc_atan +#define __ieee754_atan2 SDL_uclibc_atan2 +#define copysign SDL_uclibc_copysign +#define cos SDL_uclibc_cos +#define __ieee754_exp SDL_uclibc_exp +#define fabs SDL_uclibc_fabs +#define floor SDL_uclibc_floor +#define __ieee754_fmod SDL_uclibc_fmod +#define __ieee754_log SDL_uclibc_log +#define __ieee754_log10 SDL_uclibc_log10 +#define __ieee754_pow SDL_uclibc_pow +#define scalbln SDL_uclibc_scalbln +#define scalbn SDL_uclibc_scalbn +#define sin SDL_uclibc_sin +#define __ieee754_sqrt SDL_uclibc_sqrt +#define tan SDL_uclibc_tan + +/* The original fdlibm code used statements like: + n0 = ((*(int*)&one)>>29)^1; * index of high word * + ix0 = *(n0+(int*)&x); * high word of x * + ix1 = *((1-n0)+(int*)&x); * low word of x * + to dig two 32 bit words out of the 64 bit IEEE floating point + value. That is non-ANSI, and, moreover, the gcc instruction + scheduler gets it wrong. We instead use the following macros. + Unlike the original code, we determine the endianness at compile + time, not at run time; I don't see much benefit to selecting + endianness at run time. */ + +/* A union which permits us to convert between a double and two 32 bit + ints. */ + +/* + * Math on arm is special: + * For FPA, float words are always big-endian. + * For VFP, floats words follow the memory system mode. + */ + +#if (SDL_BYTEORDER == SDL_BIG_ENDIAN) + +typedef union +{ + double value; + struct + { + u_int32_t msw; + u_int32_t lsw; + } parts; +} ieee_double_shape_type; + +#else + +typedef union +{ + double value; + struct + { + u_int32_t lsw; + u_int32_t msw; + } parts; +} ieee_double_shape_type; + +#endif + +/* Get two 32 bit ints from a double. */ + +#define EXTRACT_WORDS(ix0,ix1,d) \ +do { \ + ieee_double_shape_type ew_u; \ + ew_u.value = (d); \ + (ix0) = ew_u.parts.msw; \ + (ix1) = ew_u.parts.lsw; \ +} while (0) + +/* Get the more significant 32 bit int from a double. */ + +#define GET_HIGH_WORD(i,d) \ +do { \ + ieee_double_shape_type gh_u; \ + gh_u.value = (d); \ + (i) = gh_u.parts.msw; \ +} while (0) + +/* Get the less significant 32 bit int from a double. */ + +#define GET_LOW_WORD(i,d) \ +do { \ + ieee_double_shape_type gl_u; \ + gl_u.value = (d); \ + (i) = gl_u.parts.lsw; \ +} while (0) + +/* Set a double from two 32 bit ints. */ + +#define INSERT_WORDS(d,ix0,ix1) \ +do { \ + ieee_double_shape_type iw_u; \ + iw_u.parts.msw = (ix0); \ + iw_u.parts.lsw = (ix1); \ + (d) = iw_u.value; \ +} while (0) + +/* Set the more significant 32 bits of a double from an int. */ + +#define SET_HIGH_WORD(d,v) \ +do { \ + ieee_double_shape_type sh_u; \ + sh_u.value = (d); \ + sh_u.parts.msw = (v); \ + (d) = sh_u.value; \ +} while (0) + +/* Set the less significant 32 bits of a double from an int. */ + +#define SET_LOW_WORD(d,v) \ +do { \ + ieee_double_shape_type sl_u; \ + sl_u.value = (d); \ + sl_u.parts.lsw = (v); \ + (d) = sl_u.value; \ +} while (0) + +/* A union which permits us to convert between a float and a 32 bit + int. */ + +typedef union +{ + float value; + u_int32_t word; +} ieee_float_shape_type; + +/* Get a 32 bit int from a float. */ + +#define GET_FLOAT_WORD(i,d) \ +do { \ + ieee_float_shape_type gf_u; \ + gf_u.value = (d); \ + (i) = gf_u.word; \ +} while (0) + +/* Set a float from a 32 bit int. */ + +#define SET_FLOAT_WORD(d,i) \ +do { \ + ieee_float_shape_type sf_u; \ + sf_u.word = (i); \ + (d) = sf_u.value; \ +} while (0) + +/* ieee style elementary functions */ +extern double +__ieee754_sqrt(double) + attribute_hidden; + extern double __ieee754_acos(double) attribute_hidden; + extern double __ieee754_acosh(double) attribute_hidden; + extern double __ieee754_log(double) attribute_hidden; + extern double __ieee754_atanh(double) attribute_hidden; + extern double __ieee754_asin(double) attribute_hidden; + extern double __ieee754_atan2(double, double) attribute_hidden; + extern double __ieee754_exp(double) attribute_hidden; + extern double __ieee754_cosh(double) attribute_hidden; + extern double __ieee754_fmod(double, double) attribute_hidden; + extern double __ieee754_pow(double, double) attribute_hidden; + extern double __ieee754_lgamma_r(double, int *) attribute_hidden; + extern double __ieee754_gamma_r(double, int *) attribute_hidden; + extern double __ieee754_lgamma(double) attribute_hidden; + extern double __ieee754_gamma(double) attribute_hidden; + extern double __ieee754_log10(double) attribute_hidden; + extern double __ieee754_sinh(double) attribute_hidden; + extern double __ieee754_hypot(double, double) attribute_hidden; + extern double __ieee754_j0(double) attribute_hidden; + extern double __ieee754_j1(double) attribute_hidden; + extern double __ieee754_y0(double) attribute_hidden; + extern double __ieee754_y1(double) attribute_hidden; + extern double __ieee754_jn(int, double) attribute_hidden; + extern double __ieee754_yn(int, double) attribute_hidden; + extern double __ieee754_remainder(double, double) attribute_hidden; + extern int32_t __ieee754_rem_pio2(double, double *) attribute_hidden; +#if defined(_SCALB_INT) + extern double __ieee754_scalb(double, int) attribute_hidden; +#else + extern double __ieee754_scalb(double, double) attribute_hidden; +#endif + +/* fdlibm kernel function */ +#ifndef _IEEE_LIBM + extern double __kernel_standard(double, double, int) attribute_hidden; +#endif + extern double __kernel_sin(double, double, int) attribute_hidden; + extern double __kernel_cos(double, double) attribute_hidden; + extern double __kernel_tan(double, double, int) attribute_hidden; + extern int32_t __kernel_rem_pio2(double *, double *, int, int, const unsigned int, + const int32_t *) attribute_hidden; + +#endif /* _MATH_PRIVATE_H_ */ diff --git a/source/3rd-party/SDL2/src/libm/s_atan.c b/source/3rd-party/SDL2/src/libm/s_atan.c new file mode 100644 index 0000000..f664f0e --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_atan.c @@ -0,0 +1,114 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* atan(x) + * Method + * 1. Reduce x to positive by atan(x) = -atan(-x). + * 2. According to the integer k=4t+0.25 chopped, t=x, the argument + * is further reduced to one of the following intervals and the + * arctangent of t is evaluated by the corresponding formula: + * + * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) + * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) + * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) + * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) + * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math_libm.h" +#include "math_private.h" + +static const double atanhi[] = { + 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ + 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ + 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ + 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ +}; + +static const double atanlo[] = { + 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ + 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ + 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ + 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ +}; + +static const double aT[] = { + 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ + -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ + 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ + -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ + 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ + -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ + 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ + -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ + 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ + -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ + 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ +}; + +static const double +one = 1.0, +huge = 1.0e300; + +double atan(double x) +{ + double w,s1,s2,z; + int32_t ix,hx,id; + + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x44100000) { /* if |x| >= 2^66 */ + u_int32_t low; + GET_LOW_WORD(low,x); + if(ix>0x7ff00000|| + (ix==0x7ff00000&&(low!=0))) + return x+x; /* NaN */ + if(hx>0) return atanhi[3]+atanlo[3]; + else return -atanhi[3]-atanlo[3]; + } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ + if (ix < 0x3e200000) { /* |x| < 2^-29 */ + if(huge+x>one) return x; /* raise inexact */ + } + id = -1; + } else { + x = fabs(x); + if (ix < 0x3ff30000) { /* |x| < 1.1875 */ + if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ + id = 0; x = (2.0*x-one)/(2.0+x); + } else { /* 11/16<=|x|< 19/16 */ + id = 1; x = (x-one)/(x+one); + } + } else { + if (ix < 0x40038000) { /* |x| < 2.4375 */ + id = 2; x = (x-1.5)/(one+1.5*x); + } else { /* 2.4375 <= |x| < 2^66 */ + id = 3; x = -1.0/x; + } + }} + /* end of argument reduction */ + z = x*x; + w = z*z; + /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ + s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); + s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); + if (id<0) return x - x*(s1+s2); + else { + z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); + return (hx<0)? -z:z; + } +} +libm_hidden_def(atan) diff --git a/source/3rd-party/SDL2/src/libm/s_copysign.c b/source/3rd-party/SDL2/src/libm/s_copysign.c new file mode 100644 index 0000000..a2f275b --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_copysign.c @@ -0,0 +1,29 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * copysign(double x, double y) + * copysign(x,y) returns a value with the magnitude of x and + * with the sign bit of y. + */ + +#include "math_libm.h" +#include "math_private.h" + +double copysign(double x, double y) +{ + u_int32_t hx,hy; + GET_HIGH_WORD(hx,x); + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000)); + return x; +} +libm_hidden_def(copysign) diff --git a/source/3rd-party/SDL2/src/libm/s_cos.c b/source/3rd-party/SDL2/src/libm/s_cos.c new file mode 100644 index 0000000..5540260 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_cos.c @@ -0,0 +1,73 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* cos(x) + * Return cosine function of x. + * + * kernel function: + * __kernel_sin ... sine function on [-pi/4,pi/4] + * __kernel_cos ... cosine function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include "math_libm.h" +#include "math_private.h" + +double cos(double x) +{ + double y[2],z=0.0; + int32_t n, ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_cos(x,z); + + /* cos(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + switch(n&3) { + case 0: return __kernel_cos(y[0],y[1]); + case 1: return -__kernel_sin(y[0],y[1],1); + case 2: return -__kernel_cos(y[0],y[1]); + default: + return __kernel_sin(y[0],y[1],1); + } + } +} +libm_hidden_def(cos) diff --git a/source/3rd-party/SDL2/src/libm/s_fabs.c b/source/3rd-party/SDL2/src/libm/s_fabs.c new file mode 100644 index 0000000..9ee943c --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_fabs.c @@ -0,0 +1,29 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * fabs(x) returns the absolute value of x. + */ + +/*#include <features.h>*/ +/* Prevent math.h from defining a colliding inline */ +#undef __USE_EXTERN_INLINES +#include "math_libm.h" +#include "math_private.h" + +double fabs(double x) +{ + u_int32_t high; + GET_HIGH_WORD(high,x); + SET_HIGH_WORD(x,high&0x7fffffff); + return x; +} +libm_hidden_def(fabs) diff --git a/source/3rd-party/SDL2/src/libm/s_floor.c b/source/3rd-party/SDL2/src/libm/s_floor.c new file mode 100644 index 0000000..3f9a5ce --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_floor.c @@ -0,0 +1,71 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * floor(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to floor(x). + */ + +/*#include <features.h>*/ +/* Prevent math.h from defining a colliding inline */ +#undef __USE_EXTERN_INLINES +#include "math_libm.h" +#include "math_private.h" + +static const double huge = 1.0e300; + +double floor(double x) +{ + int32_t i0,i1,j0; + u_int32_t i,j; + EXTRACT_WORDS(i0,i1,x); + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0>=0) {i0=i1=0;} + else if(((i0&0x7fffffff)|i1)!=0) + { i0=0xbff00000;i1=0;} + } + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) i0 += (0x00100000)>>j0; + i0 &= (~i); i1=0; + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((u_int32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) { + if(j0==20) i0+=1; + else { + j = i1+(1<<(52-j0)); + if(j<(u_int32_t)i1) i0 +=1 ; /* got a carry */ + i1=j; + } + } + i1 &= (~i); + } + } + INSERT_WORDS(x,i0,i1); + return x; +} +libm_hidden_def(floor) diff --git a/source/3rd-party/SDL2/src/libm/s_scalbn.c b/source/3rd-party/SDL2/src/libm/s_scalbn.c new file mode 100644 index 0000000..6bb7192 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_scalbn.c @@ -0,0 +1,69 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * scalbln(double x, long n) + * scalbln(x,n) returns x * 2**n computed by exponent + * manipulation rather than by actually performing an + * exponentiation or a multiplication. + */ + +#include "math_libm.h" +#include "math_private.h" +#include <limits.h> + +static const double +two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ +twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ +huge = 1.0e+300, +tiny = 1.0e-300; + +double scalbln(double x, long n) +{ + int32_t k, hx, lx; + + EXTRACT_WORDS(hx, lx, x); + k = (hx & 0x7ff00000) >> 20; /* extract exponent */ + if (k == 0) { /* 0 or subnormal x */ + if ((lx | (hx & 0x7fffffff)) == 0) + return x; /* +-0 */ + x *= two54; + GET_HIGH_WORD(hx, x); + k = ((hx & 0x7ff00000) >> 20) - 54; + } + if (k == 0x7ff) + return x + x; /* NaN or Inf */ + k = k + n; + if (k > 0x7fe) + return huge * copysign(huge, x); /* overflow */ + if (n < -50000) + return tiny * copysign(tiny, x); /* underflow */ + if (k > 0) { /* normal result */ + SET_HIGH_WORD(x, (hx & 0x800fffff) | (k << 20)); + return x; + } + if (k <= -54) { + if (n > 50000) /* in case integer overflow in n+k */ + return huge * copysign(huge, x); /* overflow */ + return tiny * copysign(tiny, x); /* underflow */ + } + k += 54; /* subnormal result */ + SET_HIGH_WORD(x, (hx & 0x800fffff) | (k << 20)); + return x * twom54; +} +libm_hidden_def(scalbln) + + +double scalbn(double x, int n) +{ + return scalbln(x, n); +} +libm_hidden_def(scalbn) diff --git a/source/3rd-party/SDL2/src/libm/s_sin.c b/source/3rd-party/SDL2/src/libm/s_sin.c new file mode 100644 index 0000000..b3cd7a0 --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_sin.c @@ -0,0 +1,73 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* sin(x) + * Return sine function of x. + * + * kernel function: + * __kernel_sin ... sine function on [-pi/4,pi/4] + * __kernel_cos ... cose function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include "math_libm.h" +#include "math_private.h" + +double sin(double x) +{ + double y[2],z=0.0; + int32_t n, ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); + + /* sin(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + switch(n&3) { + case 0: return __kernel_sin(y[0],y[1],1); + case 1: return __kernel_cos(y[0],y[1]); + case 2: return -__kernel_sin(y[0],y[1],1); + default: + return -__kernel_cos(y[0],y[1]); + } + } +} +libm_hidden_def(sin) diff --git a/source/3rd-party/SDL2/src/libm/s_tan.c b/source/3rd-party/SDL2/src/libm/s_tan.c new file mode 100644 index 0000000..18c8f5b --- /dev/null +++ b/source/3rd-party/SDL2/src/libm/s_tan.c @@ -0,0 +1,67 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* tan(x) + * Return tangent function of x. + * + * kernel function: + * __kernel_tan ... tangent function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include "math_libm.h" +#include "math_private.h" + +double tan(double x) +{ + double y[2],z=0.0; + int32_t n, ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); + + /* tan(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; /* NaN */ + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even + -1 -- n odd */ + } +} +libm_hidden_def(tan) |