summaryrefslogtreecommitdiff
path: root/source/3rd-party/SDL2/src/video/SDL_RLEaccel.c
diff options
context:
space:
mode:
authorchai <chaifix@163.com>2019-05-11 22:54:56 +0800
committerchai <chaifix@163.com>2019-05-11 22:54:56 +0800
commit9645be0af1b1d5cb0ad5892d5464e1b23c51b550 (patch)
tree129c716bed8e93312421c3adb2f8e7c4f811602d /source/3rd-party/SDL2/src/video/SDL_RLEaccel.c
Diffstat (limited to 'source/3rd-party/SDL2/src/video/SDL_RLEaccel.c')
-rw-r--r--source/3rd-party/SDL2/src/video/SDL_RLEaccel.c1581
1 files changed, 1581 insertions, 0 deletions
diff --git a/source/3rd-party/SDL2/src/video/SDL_RLEaccel.c b/source/3rd-party/SDL2/src/video/SDL_RLEaccel.c
new file mode 100644
index 0000000..661cb1f
--- /dev/null
+++ b/source/3rd-party/SDL2/src/video/SDL_RLEaccel.c
@@ -0,0 +1,1581 @@
+/*
+ Simple DirectMedia Layer
+ Copyright (C) 1997-2018 Sam Lantinga <slouken@libsdl.org>
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the authors be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+*/
+#include "../SDL_internal.h"
+
+/*
+ * RLE encoding for software colorkey and alpha-channel acceleration
+ *
+ * Original version by Sam Lantinga
+ *
+ * Mattias Engdegård (Yorick): Rewrite. New encoding format, encoder and
+ * decoder. Added per-surface alpha blitter. Added per-pixel alpha
+ * format, encoder and blitter.
+ *
+ * Many thanks to Xark and johns for hints, benchmarks and useful comments
+ * leading to this code.
+ *
+ * Welcome to Macro Mayhem.
+ */
+
+/*
+ * The encoding translates the image data to a stream of segments of the form
+ *
+ * <skip> <run> <data>
+ *
+ * where <skip> is the number of transparent pixels to skip,
+ * <run> is the number of opaque pixels to blit,
+ * and <data> are the pixels themselves.
+ *
+ * This basic structure is used both for colorkeyed surfaces, used for simple
+ * binary transparency and for per-surface alpha blending, and for surfaces
+ * with per-pixel alpha. The details differ, however:
+ *
+ * Encoding of colorkeyed surfaces:
+ *
+ * Encoded pixels always have the same format as the target surface.
+ * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth
+ * where they are 16 bit. This makes the pixel data aligned at all times.
+ * Segments never wrap around from one scan line to the next.
+ *
+ * The end of the sequence is marked by a zero <skip>,<run> pair at the *
+ * beginning of a line.
+ *
+ * Encoding of surfaces with per-pixel alpha:
+ *
+ * The sequence begins with a struct RLEDestFormat describing the target
+ * pixel format, to provide reliable un-encoding.
+ *
+ * Each scan line is encoded twice: First all completely opaque pixels,
+ * encoded in the target format as described above, and then all
+ * partially transparent (translucent) pixels (where 1 <= alpha <= 254),
+ * in the following 32-bit format:
+ *
+ * For 32-bit targets, each pixel has the target RGB format but with
+ * the alpha value occupying the highest 8 bits. The <skip> and <run>
+ * counts are 16 bit.
+ *
+ * For 16-bit targets, each pixel has the target RGB format, but with
+ * the middle component (usually green) shifted 16 steps to the left,
+ * and the hole filled with the 5 most significant bits of the alpha value.
+ * i.e. if the target has the format rrrrrggggggbbbbb,
+ * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb.
+ * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit
+ * for the translucent lines. Two padding bytes may be inserted
+ * before each translucent line to keep them 32-bit aligned.
+ *
+ * The end of the sequence is marked by a zero <skip>,<run> pair at the
+ * beginning of an opaque line.
+ */
+
+#include "SDL_video.h"
+#include "SDL_sysvideo.h"
+#include "SDL_blit.h"
+#include "SDL_RLEaccel_c.h"
+
+#ifndef MIN
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#endif
+
+#define PIXEL_COPY(to, from, len, bpp) \
+ SDL_memcpy(to, from, (size_t)(len) * (bpp))
+
+/*
+ * Various colorkey blit methods, for opaque and per-surface alpha
+ */
+
+#define OPAQUE_BLIT(to, from, length, bpp, alpha) \
+ PIXEL_COPY(to, from, length, bpp)
+
+/*
+ * For 32bpp pixels on the form 0x00rrggbb:
+ * If we treat the middle component separately, we can process the two
+ * remaining in parallel. This is safe to do because of the gap to the left
+ * of each component, so the bits from the multiplication don't collide.
+ * This can be used for any RGB permutation of course.
+ */
+#define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint32 *src = (Uint32 *)(from); \
+ Uint32 *dst = (Uint32 *)(to); \
+ for (i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ Uint32 s1 = s & 0xff00ff; \
+ Uint32 d1 = d & 0xff00ff; \
+ d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
+ s &= 0xff00; \
+ d &= 0xff00; \
+ d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
+ *dst++ = d1 | d; \
+ } \
+ } while (0)
+
+/*
+ * For 16bpp pixels we can go a step further: put the middle component
+ * in the high 16 bits of a 32 bit word, and process all three RGB
+ * components at the same time. Since the smallest gap is here just
+ * 5 bits, we have to scale alpha down to 5 bits as well.
+ */
+#define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint16 *src = (Uint16 *)(from); \
+ Uint16 *dst = (Uint16 *)(to); \
+ Uint32 ALPHA = alpha >> 3; \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ s = (s | s << 16) & 0x07e0f81f; \
+ d = (d | d << 16) & 0x07e0f81f; \
+ d += (s - d) * ALPHA >> 5; \
+ d &= 0x07e0f81f; \
+ *dst++ = (Uint16)(d | d >> 16); \
+ } \
+ } while(0)
+
+#define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint16 *src = (Uint16 *)(from); \
+ Uint16 *dst = (Uint16 *)(to); \
+ Uint32 ALPHA = alpha >> 3; \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ s = (s | s << 16) & 0x03e07c1f; \
+ d = (d | d << 16) & 0x03e07c1f; \
+ d += (s - d) * ALPHA >> 5; \
+ d &= 0x03e07c1f; \
+ *dst++ = (Uint16)(d | d >> 16); \
+ } \
+ } while(0)
+
+/*
+ * The general slow catch-all function, for remaining depths and formats
+ */
+#define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint8 *src = from; \
+ Uint8 *dst = to; \
+ for (i = 0; i < (int)(length); i++) { \
+ Uint32 s, d; \
+ unsigned rs, gs, bs, rd, gd, bd; \
+ switch (bpp) { \
+ case 2: \
+ s = *(Uint16 *)src; \
+ d = *(Uint16 *)dst; \
+ break; \
+ case 3: \
+ if (SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
+ s = (src[0] << 16) | (src[1] << 8) | src[2]; \
+ d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \
+ } else { \
+ s = (src[2] << 16) | (src[1] << 8) | src[0]; \
+ d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \
+ } \
+ break; \
+ case 4: \
+ s = *(Uint32 *)src; \
+ d = *(Uint32 *)dst; \
+ break; \
+ } \
+ RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \
+ RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \
+ rd += (rs - rd) * alpha >> 8; \
+ gd += (gs - gd) * alpha >> 8; \
+ bd += (bs - bd) * alpha >> 8; \
+ PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \
+ switch (bpp) { \
+ case 2: \
+ *(Uint16 *)dst = (Uint16)d; \
+ break; \
+ case 3: \
+ if (SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
+ dst[0] = (Uint8)(d >> 16); \
+ dst[1] = (Uint8)(d >> 8); \
+ dst[2] = (Uint8)(d); \
+ } else { \
+ dst[0] = (Uint8)d; \
+ dst[1] = (Uint8)(d >> 8); \
+ dst[2] = (Uint8)(d >> 16); \
+ } \
+ break; \
+ case 4: \
+ *(Uint32 *)dst = d; \
+ break; \
+ } \
+ src += bpp; \
+ dst += bpp; \
+ } \
+ } while(0)
+
+/*
+ * Special case: 50% alpha (alpha=128)
+ * This is treated specially because it can be optimized very well, and
+ * since it is good for many cases of semi-translucency.
+ * The theory is to do all three components at the same time:
+ * First zero the lowest bit of each component, which gives us room to
+ * add them. Then shift right and add the sum of the lowest bits.
+ */
+#define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint32 *src = (Uint32 *)(from); \
+ Uint32 *dst = (Uint32 *)(to); \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
+ + (s & d & 0x00010101); \
+ } \
+ } while(0)
+
+/*
+ * For 16bpp, we can actually blend two pixels in parallel, if we take
+ * care to shift before we add, not after.
+ */
+
+/* helper: blend a single 16 bit pixel at 50% */
+#define BLEND16_50(dst, src, mask) \
+ do { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \
+ (s & d & (~mask & 0xffff))); \
+ } while(0)
+
+/* basic 16bpp blender. mask is the pixels to keep when adding. */
+#define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \
+ do { \
+ unsigned n = (length); \
+ Uint16 *src = (Uint16 *)(from); \
+ Uint16 *dst = (Uint16 *)(to); \
+ if (((uintptr_t)src ^ (uintptr_t)dst) & 3) { \
+ /* source and destination not in phase, blit one by one */ \
+ while (n--) \
+ BLEND16_50(dst, src, mask); \
+ } else { \
+ if ((uintptr_t)src & 3) { \
+ /* first odd pixel */ \
+ BLEND16_50(dst, src, mask); \
+ n--; \
+ } \
+ for (; n > 1; n -= 2) { \
+ Uint32 s = *(Uint32 *)src; \
+ Uint32 d = *(Uint32 *)dst; \
+ *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \
+ + ((d & (mask | mask << 16)) >> 1) \
+ + (s & d & (~(mask | mask << 16))); \
+ src += 2; \
+ dst += 2; \
+ } \
+ if (n) \
+ BLEND16_50(dst, src, mask); /* last odd pixel */ \
+ } \
+ } while(0)
+
+#define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \
+ ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de)
+
+#define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \
+ ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
+
+#define CHOOSE_BLIT(blitter, alpha, fmt) \
+ do { \
+ if (alpha == 255) { \
+ switch (fmt->BytesPerPixel) { \
+ case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
+ case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
+ case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
+ case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
+ } \
+ } else { \
+ switch (fmt->BytesPerPixel) { \
+ case 1: \
+ /* No 8bpp alpha blitting */ \
+ break; \
+ \
+ case 2: \
+ switch (fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
+ case 0xffff: \
+ if (fmt->Gmask == 0x07e0 \
+ || fmt->Rmask == 0x07e0 \
+ || fmt->Bmask == 0x07e0) { \
+ if (alpha == 128) { \
+ blitter(2, Uint8, ALPHA_BLIT16_565_50); \
+ } else { \
+ blitter(2, Uint8, ALPHA_BLIT16_565); \
+ } \
+ } else \
+ goto general16; \
+ break; \
+ \
+ case 0x7fff: \
+ if (fmt->Gmask == 0x03e0 \
+ || fmt->Rmask == 0x03e0 \
+ || fmt->Bmask == 0x03e0) { \
+ if (alpha == 128) { \
+ blitter(2, Uint8, ALPHA_BLIT16_555_50); \
+ } else { \
+ blitter(2, Uint8, ALPHA_BLIT16_555); \
+ } \
+ break; \
+ } else \
+ goto general16; \
+ break; \
+ \
+ default: \
+ general16: \
+ blitter(2, Uint8, ALPHA_BLIT_ANY); \
+ } \
+ break; \
+ \
+ case 3: \
+ blitter(3, Uint8, ALPHA_BLIT_ANY); \
+ break; \
+ \
+ case 4: \
+ if ((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
+ && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
+ || fmt->Bmask == 0xff00)) { \
+ if (alpha == 128) { \
+ blitter(4, Uint16, ALPHA_BLIT32_888_50); \
+ } else { \
+ blitter(4, Uint16, ALPHA_BLIT32_888); \
+ } \
+ } else \
+ blitter(4, Uint16, ALPHA_BLIT_ANY); \
+ break; \
+ } \
+ } \
+ } while(0)
+
+/*
+ * Set a pixel value using the given format, except that the alpha value is
+ * placed in the top byte. This is the format used for RLE with alpha.
+ */
+#define RLEPIXEL_FROM_RGBA(Pixel, fmt, r, g, b, a) \
+{ \
+ Pixel = ((r>>fmt->Rloss)<<fmt->Rshift)| \
+ ((g>>fmt->Gloss)<<fmt->Gshift)| \
+ ((b>>fmt->Bloss)<<fmt->Bshift)| \
+ (a<<24); \
+}
+
+/*
+ * This takes care of the case when the surface is clipped on the left and/or
+ * right. Top clipping has already been taken care of.
+ */
+static void
+RLEClipBlit(int w, Uint8 * srcbuf, SDL_Surface * surf_dst,
+ Uint8 * dstbuf, SDL_Rect * srcrect, unsigned alpha)
+{
+ SDL_PixelFormat *fmt = surf_dst->format;
+
+#define RLECLIPBLIT(bpp, Type, do_blit) \
+ do { \
+ int linecount = srcrect->h; \
+ int ofs = 0; \
+ int left = srcrect->x; \
+ int right = left + srcrect->w; \
+ dstbuf -= left * bpp; \
+ for (;;) { \
+ int run; \
+ ofs += *(Type *)srcbuf; \
+ run = ((Type *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Type); \
+ if (run) { \
+ /* clip to left and right borders */ \
+ if (ofs < right) { \
+ int start = 0; \
+ int len = run; \
+ int startcol; \
+ if (left - ofs > 0) { \
+ start = left - ofs; \
+ len -= start; \
+ if (len <= 0) \
+ goto nocopy ## bpp ## do_blit; \
+ } \
+ startcol = ofs + start; \
+ if (len > right - startcol) \
+ len = right - startcol; \
+ do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \
+ len, bpp, alpha); \
+ } \
+ nocopy ## bpp ## do_blit: \
+ srcbuf += run * bpp; \
+ ofs += run; \
+ } else if (!ofs) \
+ break; \
+ \
+ if (ofs == w) { \
+ ofs = 0; \
+ dstbuf += surf_dst->pitch; \
+ if (!--linecount) \
+ break; \
+ } \
+ } \
+ } while(0)
+
+ CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt);
+
+#undef RLECLIPBLIT
+
+}
+
+
+/* blit a colorkeyed RLE surface */
+int SDLCALL
+SDL_RLEBlit(SDL_Surface * surf_src, SDL_Rect * srcrect,
+ SDL_Surface * surf_dst, SDL_Rect * dstrect)
+{
+ Uint8 *dstbuf;
+ Uint8 *srcbuf;
+ int x, y;
+ int w = surf_src->w;
+ unsigned alpha;
+
+ /* Lock the destination if necessary */
+ if (SDL_MUSTLOCK(surf_dst)) {
+ if (SDL_LockSurface(surf_dst) < 0) {
+ return (-1);
+ }
+ }
+
+ /* Set up the source and destination pointers */
+ x = dstrect->x;
+ y = dstrect->y;
+ dstbuf = (Uint8 *) surf_dst->pixels
+ + y * surf_dst->pitch + x * surf_src->format->BytesPerPixel;
+ srcbuf = (Uint8 *) surf_src->map->data;
+
+ {
+ /* skip lines at the top if necessary */
+ int vskip = srcrect->y;
+ int ofs = 0;
+ if (vskip) {
+
+#define RLESKIP(bpp, Type) \
+ for(;;) { \
+ int run; \
+ ofs += *(Type *)srcbuf; \
+ run = ((Type *)srcbuf)[1]; \
+ srcbuf += sizeof(Type) * 2; \
+ if(run) { \
+ srcbuf += run * bpp; \
+ ofs += run; \
+ } else if(!ofs) \
+ goto done; \
+ if(ofs == w) { \
+ ofs = 0; \
+ if(!--vskip) \
+ break; \
+ } \
+ }
+
+ switch (surf_src->format->BytesPerPixel) {
+ case 1:
+ RLESKIP(1, Uint8);
+ break;
+ case 2:
+ RLESKIP(2, Uint8);
+ break;
+ case 3:
+ RLESKIP(3, Uint8);
+ break;
+ case 4:
+ RLESKIP(4, Uint16);
+ break;
+ }
+
+#undef RLESKIP
+
+ }
+ }
+
+ alpha = surf_src->map->info.a;
+ /* if left or right edge clipping needed, call clip blit */
+ if (srcrect->x || srcrect->w != surf_src->w) {
+ RLEClipBlit(w, srcbuf, surf_dst, dstbuf, srcrect, alpha);
+ } else {
+ SDL_PixelFormat *fmt = surf_src->format;
+
+#define RLEBLIT(bpp, Type, do_blit) \
+ do { \
+ int linecount = srcrect->h; \
+ int ofs = 0; \
+ for(;;) { \
+ unsigned run; \
+ ofs += *(Type *)srcbuf; \
+ run = ((Type *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Type); \
+ if(run) { \
+ do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \
+ srcbuf += run * bpp; \
+ ofs += run; \
+ } else if(!ofs) \
+ break; \
+ if(ofs == w) { \
+ ofs = 0; \
+ dstbuf += surf_dst->pitch; \
+ if(!--linecount) \
+ break; \
+ } \
+ } \
+ } while(0)
+
+ CHOOSE_BLIT(RLEBLIT, alpha, fmt);
+
+#undef RLEBLIT
+ }
+
+ done:
+ /* Unlock the destination if necessary */
+ if (SDL_MUSTLOCK(surf_dst)) {
+ SDL_UnlockSurface(surf_dst);
+ }
+ return (0);
+}
+
+#undef OPAQUE_BLIT
+
+/*
+ * Per-pixel blitting macros for translucent pixels:
+ * These use the same techniques as the per-surface blitting macros
+ */
+
+/*
+ * For 32bpp pixels, we have made sure the alpha is stored in the top
+ * 8 bits, so proceed as usual
+ */
+#define BLIT_TRANSL_888(src, dst) \
+ do { \
+ Uint32 s = src; \
+ Uint32 d = dst; \
+ unsigned alpha = s >> 24; \
+ Uint32 s1 = s & 0xff00ff; \
+ Uint32 d1 = d & 0xff00ff; \
+ d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
+ s &= 0xff00; \
+ d &= 0xff00; \
+ d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
+ dst = d1 | d | 0xff000000; \
+ } while(0)
+
+/*
+ * For 16bpp pixels, we have stored the 5 most significant alpha bits in
+ * bits 5-10. As before, we can process all 3 RGB components at the same time.
+ */
+#define BLIT_TRANSL_565(src, dst) \
+ do { \
+ Uint32 s = src; \
+ Uint32 d = dst; \
+ unsigned alpha = (s & 0x3e0) >> 5; \
+ s &= 0x07e0f81f; \
+ d = (d | d << 16) & 0x07e0f81f; \
+ d += (s - d) * alpha >> 5; \
+ d &= 0x07e0f81f; \
+ dst = (Uint16)(d | d >> 16); \
+ } while(0)
+
+#define BLIT_TRANSL_555(src, dst) \
+ do { \
+ Uint32 s = src; \
+ Uint32 d = dst; \
+ unsigned alpha = (s & 0x3e0) >> 5; \
+ s &= 0x03e07c1f; \
+ d = (d | d << 16) & 0x03e07c1f; \
+ d += (s - d) * alpha >> 5; \
+ d &= 0x03e07c1f; \
+ dst = (Uint16)(d | d >> 16); \
+ } while(0)
+
+/* used to save the destination format in the encoding. Designed to be
+ macro-compatible with SDL_PixelFormat but without the unneeded fields */
+typedef struct
+{
+ Uint8 BytesPerPixel;
+ Uint8 padding[3];
+ Uint32 Rmask;
+ Uint32 Gmask;
+ Uint32 Bmask;
+ Uint32 Amask;
+ Uint8 Rloss;
+ Uint8 Gloss;
+ Uint8 Bloss;
+ Uint8 Aloss;
+ Uint8 Rshift;
+ Uint8 Gshift;
+ Uint8 Bshift;
+ Uint8 Ashift;
+} RLEDestFormat;
+
+/* blit a pixel-alpha RLE surface clipped at the right and/or left edges */
+static void
+RLEAlphaClipBlit(int w, Uint8 * srcbuf, SDL_Surface * surf_dst,
+ Uint8 * dstbuf, SDL_Rect * srcrect)
+{
+ SDL_PixelFormat *df = surf_dst->format;
+ /*
+ * clipped blitter: Ptype is the destination pixel type,
+ * Ctype the translucent count type, and do_blend the macro
+ * to blend one pixel.
+ */
+#define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \
+ do { \
+ int linecount = srcrect->h; \
+ int left = srcrect->x; \
+ int right = left + srcrect->w; \
+ dstbuf -= left * sizeof(Ptype); \
+ do { \
+ int ofs = 0; \
+ /* blit opaque pixels on one line */ \
+ do { \
+ unsigned run; \
+ ofs += ((Ctype *)srcbuf)[0]; \
+ run = ((Ctype *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Ctype); \
+ if(run) { \
+ /* clip to left and right borders */ \
+ int cofs = ofs; \
+ int crun = run; \
+ if(left - cofs > 0) { \
+ crun -= left - cofs; \
+ cofs = left; \
+ } \
+ if(crun > right - cofs) \
+ crun = right - cofs; \
+ if(crun > 0) \
+ PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \
+ srcbuf + (cofs - ofs) * sizeof(Ptype), \
+ (unsigned)crun, sizeof(Ptype)); \
+ srcbuf += run * sizeof(Ptype); \
+ ofs += run; \
+ } else if(!ofs) \
+ return; \
+ } while(ofs < w); \
+ /* skip padding if necessary */ \
+ if(sizeof(Ptype) == 2) \
+ srcbuf += (uintptr_t)srcbuf & 2; \
+ /* blit translucent pixels on the same line */ \
+ ofs = 0; \
+ do { \
+ unsigned run; \
+ ofs += ((Uint16 *)srcbuf)[0]; \
+ run = ((Uint16 *)srcbuf)[1]; \
+ srcbuf += 4; \
+ if(run) { \
+ /* clip to left and right borders */ \
+ int cofs = ofs; \
+ int crun = run; \
+ if(left - cofs > 0) { \
+ crun -= left - cofs; \
+ cofs = left; \
+ } \
+ if(crun > right - cofs) \
+ crun = right - cofs; \
+ if(crun > 0) { \
+ Ptype *dst = (Ptype *)dstbuf + cofs; \
+ Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \
+ int i; \
+ for(i = 0; i < crun; i++) \
+ do_blend(src[i], dst[i]); \
+ } \
+ srcbuf += run * 4; \
+ ofs += run; \
+ } \
+ } while(ofs < w); \
+ dstbuf += surf_dst->pitch; \
+ } while(--linecount); \
+ } while(0)
+
+ switch (df->BytesPerPixel) {
+ case 2:
+ if (df->Gmask == 0x07e0 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0)
+ RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565);
+ else
+ RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555);
+ break;
+ case 4:
+ RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888);
+ break;
+ }
+}
+
+/* blit a pixel-alpha RLE surface */
+int SDLCALL
+SDL_RLEAlphaBlit(SDL_Surface * surf_src, SDL_Rect * srcrect,
+ SDL_Surface * surf_dst, SDL_Rect * dstrect)
+{
+ int x, y;
+ int w = surf_src->w;
+ Uint8 *srcbuf, *dstbuf;
+ SDL_PixelFormat *df = surf_dst->format;
+
+ /* Lock the destination if necessary */
+ if (SDL_MUSTLOCK(surf_dst)) {
+ if (SDL_LockSurface(surf_dst) < 0) {
+ return -1;
+ }
+ }
+
+ x = dstrect->x;
+ y = dstrect->y;
+ dstbuf = (Uint8 *) surf_dst->pixels + y * surf_dst->pitch + x * df->BytesPerPixel;
+ srcbuf = (Uint8 *) surf_src->map->data + sizeof(RLEDestFormat);
+
+ {
+ /* skip lines at the top if necessary */
+ int vskip = srcrect->y;
+ if (vskip) {
+ int ofs;
+ if (df->BytesPerPixel == 2) {
+ /* the 16/32 interleaved format */
+ do {
+ /* skip opaque line */
+ ofs = 0;
+ do {
+ int run;
+ ofs += srcbuf[0];
+ run = srcbuf[1];
+ srcbuf += 2;
+ if (run) {
+ srcbuf += 2 * run;
+ ofs += run;
+ } else if (!ofs)
+ goto done;
+ } while (ofs < w);
+
+ /* skip padding */
+ srcbuf += (uintptr_t) srcbuf & 2;
+
+ /* skip translucent line */
+ ofs = 0;
+ do {
+ int run;
+ ofs += ((Uint16 *) srcbuf)[0];
+ run = ((Uint16 *) srcbuf)[1];
+ srcbuf += 4 * (run + 1);
+ ofs += run;
+ } while (ofs < w);
+ } while (--vskip);
+ } else {
+ /* the 32/32 interleaved format */
+ vskip <<= 1; /* opaque and translucent have same format */
+ do {
+ ofs = 0;
+ do {
+ int run;
+ ofs += ((Uint16 *) srcbuf)[0];
+ run = ((Uint16 *) srcbuf)[1];
+ srcbuf += 4;
+ if (run) {
+ srcbuf += 4 * run;
+ ofs += run;
+ } else if (!ofs)
+ goto done;
+ } while (ofs < w);
+ } while (--vskip);
+ }
+ }
+ }
+
+ /* if left or right edge clipping needed, call clip blit */
+ if (srcrect->x || srcrect->w != surf_src->w) {
+ RLEAlphaClipBlit(w, srcbuf, surf_dst, dstbuf, srcrect);
+ } else {
+
+ /*
+ * non-clipped blitter. Ptype is the destination pixel type,
+ * Ctype the translucent count type, and do_blend the
+ * macro to blend one pixel.
+ */
+#define RLEALPHABLIT(Ptype, Ctype, do_blend) \
+ do { \
+ int linecount = srcrect->h; \
+ do { \
+ int ofs = 0; \
+ /* blit opaque pixels on one line */ \
+ do { \
+ unsigned run; \
+ ofs += ((Ctype *)srcbuf)[0]; \
+ run = ((Ctype *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Ctype); \
+ if(run) { \
+ PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \
+ run, sizeof(Ptype)); \
+ srcbuf += run * sizeof(Ptype); \
+ ofs += run; \
+ } else if(!ofs) \
+ goto done; \
+ } while(ofs < w); \
+ /* skip padding if necessary */ \
+ if(sizeof(Ptype) == 2) \
+ srcbuf += (uintptr_t)srcbuf & 2; \
+ /* blit translucent pixels on the same line */ \
+ ofs = 0; \
+ do { \
+ unsigned run; \
+ ofs += ((Uint16 *)srcbuf)[0]; \
+ run = ((Uint16 *)srcbuf)[1]; \
+ srcbuf += 4; \
+ if(run) { \
+ Ptype *dst = (Ptype *)dstbuf + ofs; \
+ unsigned i; \
+ for(i = 0; i < run; i++) { \
+ Uint32 src = *(Uint32 *)srcbuf; \
+ do_blend(src, *dst); \
+ srcbuf += 4; \
+ dst++; \
+ } \
+ ofs += run; \
+ } \
+ } while(ofs < w); \
+ dstbuf += surf_dst->pitch; \
+ } while(--linecount); \
+ } while(0)
+
+ switch (df->BytesPerPixel) {
+ case 2:
+ if (df->Gmask == 0x07e0 || df->Rmask == 0x07e0
+ || df->Bmask == 0x07e0)
+ RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565);
+ else
+ RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555);
+ break;
+ case 4:
+ RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888);
+ break;
+ }
+ }
+
+ done:
+ /* Unlock the destination if necessary */
+ if (SDL_MUSTLOCK(surf_dst)) {
+ SDL_UnlockSurface(surf_dst);
+ }
+ return 0;
+}
+
+/*
+ * Auxiliary functions:
+ * The encoding functions take 32bpp rgb + a, and
+ * return the number of bytes copied to the destination.
+ * The decoding functions copy to 32bpp rgb + a, and
+ * return the number of bytes copied from the source.
+ * These are only used in the encoder and un-RLE code and are therefore not
+ * highly optimised.
+ */
+
+/* encode 32bpp rgb + a into 16bpp rgb, losing alpha */
+static int
+copy_opaque_16(void *dst, Uint32 * src, int n,
+ SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
+{
+ int i;
+ Uint16 *d = dst;
+ for (i = 0; i < n; i++) {
+ unsigned r, g, b;
+ RGB_FROM_PIXEL(*src, sfmt, r, g, b);
+ PIXEL_FROM_RGB(*d, dfmt, r, g, b);
+ src++;
+ d++;
+ }
+ return n * 2;
+}
+
+/* decode opaque pixels from 16bpp to 32bpp rgb + a */
+static int
+uncopy_opaque_16(Uint32 * dst, void *src, int n,
+ RLEDestFormat * sfmt, SDL_PixelFormat * dfmt)
+{
+ int i;
+ Uint16 *s = src;
+ unsigned alpha = dfmt->Amask ? 255 : 0;
+ for (i = 0; i < n; i++) {
+ unsigned r, g, b;
+ RGB_FROM_PIXEL(*s, sfmt, r, g, b);
+ PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha);
+ s++;
+ dst++;
+ }
+ return n * 2;
+}
+
+
+
+/* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */
+static int
+copy_transl_565(void *dst, Uint32 * src, int n,
+ SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
+{
+ int i;
+ Uint32 *d = dst;
+ for (i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint16 pix;
+ RGBA_FROM_8888(*src, sfmt, r, g, b, a);
+ PIXEL_FROM_RGB(pix, dfmt, r, g, b);
+ *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0);
+ src++;
+ d++;
+ }
+ return n * 4;
+}
+
+/* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */
+static int
+copy_transl_555(void *dst, Uint32 * src, int n,
+ SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
+{
+ int i;
+ Uint32 *d = dst;
+ for (i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint16 pix;
+ RGBA_FROM_8888(*src, sfmt, r, g, b, a);
+ PIXEL_FROM_RGB(pix, dfmt, r, g, b);
+ *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0);
+ src++;
+ d++;
+ }
+ return n * 4;
+}
+
+/* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */
+static int
+uncopy_transl_16(Uint32 * dst, void *src, int n,
+ RLEDestFormat * sfmt, SDL_PixelFormat * dfmt)
+{
+ int i;
+ Uint32 *s = src;
+ for (i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint32 pix = *s++;
+ a = (pix & 0x3e0) >> 2;
+ pix = (pix & ~0x3e0) | pix >> 16;
+ RGB_FROM_PIXEL(pix, sfmt, r, g, b);
+ PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
+ dst++;
+ }
+ return n * 4;
+}
+
+/* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
+static int
+copy_32(void *dst, Uint32 * src, int n,
+ SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
+{
+ int i;
+ Uint32 *d = dst;
+ for (i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ RGBA_FROM_8888(*src, sfmt, r, g, b, a);
+ RLEPIXEL_FROM_RGBA(*d, dfmt, r, g, b, a);
+ d++;
+ src++;
+ }
+ return n * 4;
+}
+
+/* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
+static int
+uncopy_32(Uint32 * dst, void *src, int n,
+ RLEDestFormat * sfmt, SDL_PixelFormat * dfmt)
+{
+ int i;
+ Uint32 *s = src;
+ for (i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint32 pixel = *s++;
+ RGB_FROM_PIXEL(pixel, sfmt, r, g, b);
+ a = pixel >> 24;
+ PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
+ dst++;
+ }
+ return n * 4;
+}
+
+#define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255)
+
+#define ISTRANSL(pixel, fmt) \
+ ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U)
+
+/* convert surface to be quickly alpha-blittable onto dest, if possible */
+static int
+RLEAlphaSurface(SDL_Surface * surface)
+{
+ SDL_Surface *dest;
+ SDL_PixelFormat *df;
+ int maxsize = 0;
+ int max_opaque_run;
+ int max_transl_run = 65535;
+ unsigned masksum;
+ Uint8 *rlebuf, *dst;
+ int (*copy_opaque) (void *, Uint32 *, int,
+ SDL_PixelFormat *, SDL_PixelFormat *);
+ int (*copy_transl) (void *, Uint32 *, int,
+ SDL_PixelFormat *, SDL_PixelFormat *);
+
+ dest = surface->map->dst;
+ if (!dest)
+ return -1;
+ df = dest->format;
+ if (surface->format->BitsPerPixel != 32)
+ return -1; /* only 32bpp source supported */
+
+ /* find out whether the destination is one we support,
+ and determine the max size of the encoded result */
+ masksum = df->Rmask | df->Gmask | df->Bmask;
+ switch (df->BytesPerPixel) {
+ case 2:
+ /* 16bpp: only support 565 and 555 formats */
+ switch (masksum) {
+ case 0xffff:
+ if (df->Gmask == 0x07e0
+ || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) {
+ copy_opaque = copy_opaque_16;
+ copy_transl = copy_transl_565;
+ } else
+ return -1;
+ break;
+ case 0x7fff:
+ if (df->Gmask == 0x03e0
+ || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) {
+ copy_opaque = copy_opaque_16;
+ copy_transl = copy_transl_555;
+ } else
+ return -1;
+ break;
+ default:
+ return -1;
+ }
+ max_opaque_run = 255; /* runs stored as bytes */
+
+ /* worst case is alternating opaque and translucent pixels,
+ with room for alignment padding between lines */
+ maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2;
+ break;
+ case 4:
+ if (masksum != 0x00ffffff)
+ return -1; /* requires unused high byte */
+ copy_opaque = copy_32;
+ copy_transl = copy_32;
+ max_opaque_run = 255; /* runs stored as short ints */
+
+ /* worst case is alternating opaque and translucent pixels */
+ maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4;
+ break;
+ default:
+ return -1; /* anything else unsupported right now */
+ }
+
+ maxsize += sizeof(RLEDestFormat);
+ rlebuf = (Uint8 *) SDL_malloc(maxsize);
+ if (!rlebuf) {
+ return SDL_OutOfMemory();
+ }
+ {
+ /* save the destination format so we can undo the encoding later */
+ RLEDestFormat *r = (RLEDestFormat *) rlebuf;
+ r->BytesPerPixel = df->BytesPerPixel;
+ r->Rmask = df->Rmask;
+ r->Gmask = df->Gmask;
+ r->Bmask = df->Bmask;
+ r->Amask = df->Amask;
+ r->Rloss = df->Rloss;
+ r->Gloss = df->Gloss;
+ r->Bloss = df->Bloss;
+ r->Aloss = df->Aloss;
+ r->Rshift = df->Rshift;
+ r->Gshift = df->Gshift;
+ r->Bshift = df->Bshift;
+ r->Ashift = df->Ashift;
+ }
+ dst = rlebuf + sizeof(RLEDestFormat);
+
+ /* Do the actual encoding */
+ {
+ int x, y;
+ int h = surface->h, w = surface->w;
+ SDL_PixelFormat *sf = surface->format;
+ Uint32 *src = (Uint32 *) surface->pixels;
+ Uint8 *lastline = dst; /* end of last non-blank line */
+
+ /* opaque counts are 8 or 16 bits, depending on target depth */
+#define ADD_OPAQUE_COUNTS(n, m) \
+ if(df->BytesPerPixel == 4) { \
+ ((Uint16 *)dst)[0] = n; \
+ ((Uint16 *)dst)[1] = m; \
+ dst += 4; \
+ } else { \
+ dst[0] = n; \
+ dst[1] = m; \
+ dst += 2; \
+ }
+
+ /* translucent counts are always 16 bit */
+#define ADD_TRANSL_COUNTS(n, m) \
+ (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4)
+
+ for (y = 0; y < h; y++) {
+ int runstart, skipstart;
+ int blankline = 0;
+ /* First encode all opaque pixels of a scan line */
+ x = 0;
+ do {
+ int run, skip, len;
+ skipstart = x;
+ while (x < w && !ISOPAQUE(src[x], sf))
+ x++;
+ runstart = x;
+ while (x < w && ISOPAQUE(src[x], sf))
+ x++;
+ skip = runstart - skipstart;
+ if (skip == w)
+ blankline = 1;
+ run = x - runstart;
+ while (skip > max_opaque_run) {
+ ADD_OPAQUE_COUNTS(max_opaque_run, 0);
+ skip -= max_opaque_run;
+ }
+ len = MIN(run, max_opaque_run);
+ ADD_OPAQUE_COUNTS(skip, len);
+ dst += copy_opaque(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ while (run) {
+ len = MIN(run, max_opaque_run);
+ ADD_OPAQUE_COUNTS(0, len);
+ dst += copy_opaque(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ }
+ } while (x < w);
+
+ /* Make sure the next output address is 32-bit aligned */
+ dst += (uintptr_t) dst & 2;
+
+ /* Next, encode all translucent pixels of the same scan line */
+ x = 0;
+ do {
+ int run, skip, len;
+ skipstart = x;
+ while (x < w && !ISTRANSL(src[x], sf))
+ x++;
+ runstart = x;
+ while (x < w && ISTRANSL(src[x], sf))
+ x++;
+ skip = runstart - skipstart;
+ blankline &= (skip == w);
+ run = x - runstart;
+ while (skip > max_transl_run) {
+ ADD_TRANSL_COUNTS(max_transl_run, 0);
+ skip -= max_transl_run;
+ }
+ len = MIN(run, max_transl_run);
+ ADD_TRANSL_COUNTS(skip, len);
+ dst += copy_transl(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ while (run) {
+ len = MIN(run, max_transl_run);
+ ADD_TRANSL_COUNTS(0, len);
+ dst += copy_transl(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ }
+ if (!blankline)
+ lastline = dst;
+ } while (x < w);
+
+ src += surface->pitch >> 2;
+ }
+ dst = lastline; /* back up past trailing blank lines */
+ ADD_OPAQUE_COUNTS(0, 0);
+ }
+
+#undef ADD_OPAQUE_COUNTS
+#undef ADD_TRANSL_COUNTS
+
+ /* Now that we have it encoded, release the original pixels */
+ if (!(surface->flags & SDL_PREALLOC)) {
+ SDL_free(surface->pixels);
+ surface->pixels = NULL;
+ }
+
+ /* realloc the buffer to release unused memory */
+ {
+ Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
+ if (!p)
+ p = rlebuf;
+ surface->map->data = p;
+ }
+
+ return 0;
+}
+
+static Uint32
+getpix_8(Uint8 * srcbuf)
+{
+ return *srcbuf;
+}
+
+static Uint32
+getpix_16(Uint8 * srcbuf)
+{
+ return *(Uint16 *) srcbuf;
+}
+
+static Uint32
+getpix_24(Uint8 * srcbuf)
+{
+#if SDL_BYTEORDER == SDL_LIL_ENDIAN
+ return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16);
+#else
+ return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2];
+#endif
+}
+
+static Uint32
+getpix_32(Uint8 * srcbuf)
+{
+ return *(Uint32 *) srcbuf;
+}
+
+typedef Uint32(*getpix_func) (Uint8 *);
+
+static const getpix_func getpixes[4] = {
+ getpix_8, getpix_16, getpix_24, getpix_32
+};
+
+static int
+RLEColorkeySurface(SDL_Surface * surface)
+{
+ Uint8 *rlebuf, *dst;
+ int maxn;
+ int y;
+ Uint8 *srcbuf, *lastline;
+ int maxsize = 0;
+ const int bpp = surface->format->BytesPerPixel;
+ getpix_func getpix;
+ Uint32 ckey, rgbmask;
+ int w, h;
+
+ /* calculate the worst case size for the compressed surface */
+ switch (bpp) {
+ case 1:
+ /* worst case is alternating opaque and transparent pixels,
+ starting with an opaque pixel */
+ maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2;
+ break;
+ case 2:
+ case 3:
+ /* worst case is solid runs, at most 255 pixels wide */
+ maxsize = surface->h * (2 * (surface->w / 255 + 1)
+ + surface->w * bpp) + 2;
+ break;
+ case 4:
+ /* worst case is solid runs, at most 65535 pixels wide */
+ maxsize = surface->h * (4 * (surface->w / 65535 + 1)
+ + surface->w * 4) + 4;
+ break;
+
+ default:
+ return -1;
+ }
+
+ rlebuf = (Uint8 *) SDL_malloc(maxsize);
+ if (rlebuf == NULL) {
+ return SDL_OutOfMemory();
+ }
+
+ /* Set up the conversion */
+ srcbuf = (Uint8 *) surface->pixels;
+ maxn = bpp == 4 ? 65535 : 255;
+ dst = rlebuf;
+ rgbmask = ~surface->format->Amask;
+ ckey = surface->map->info.colorkey & rgbmask;
+ lastline = dst;
+ getpix = getpixes[bpp - 1];
+ w = surface->w;
+ h = surface->h;
+
+#define ADD_COUNTS(n, m) \
+ if(bpp == 4) { \
+ ((Uint16 *)dst)[0] = n; \
+ ((Uint16 *)dst)[1] = m; \
+ dst += 4; \
+ } else { \
+ dst[0] = n; \
+ dst[1] = m; \
+ dst += 2; \
+ }
+
+ for (y = 0; y < h; y++) {
+ int x = 0;
+ int blankline = 0;
+ do {
+ int run, skip, len;
+ int runstart;
+ int skipstart = x;
+
+ /* find run of transparent, then opaque pixels */
+ while (x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey)
+ x++;
+ runstart = x;
+ while (x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey)
+ x++;
+ skip = runstart - skipstart;
+ if (skip == w)
+ blankline = 1;
+ run = x - runstart;
+
+ /* encode segment */
+ while (skip > maxn) {
+ ADD_COUNTS(maxn, 0);
+ skip -= maxn;
+ }
+ len = MIN(run, maxn);
+ ADD_COUNTS(skip, len);
+ SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
+ dst += len * bpp;
+ run -= len;
+ runstart += len;
+ while (run) {
+ len = MIN(run, maxn);
+ ADD_COUNTS(0, len);
+ SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
+ dst += len * bpp;
+ runstart += len;
+ run -= len;
+ }
+ if (!blankline)
+ lastline = dst;
+ } while (x < w);
+
+ srcbuf += surface->pitch;
+ }
+ dst = lastline; /* back up bast trailing blank lines */
+ ADD_COUNTS(0, 0);
+
+#undef ADD_COUNTS
+
+ /* Now that we have it encoded, release the original pixels */
+ if (!(surface->flags & SDL_PREALLOC)) {
+ SDL_free(surface->pixels);
+ surface->pixels = NULL;
+ }
+
+ /* realloc the buffer to release unused memory */
+ {
+ /* If realloc returns NULL, the original block is left intact */
+ Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
+ if (!p)
+ p = rlebuf;
+ surface->map->data = p;
+ }
+
+ return 0;
+}
+
+int
+SDL_RLESurface(SDL_Surface * surface)
+{
+ int flags;
+
+ /* Clear any previous RLE conversion */
+ if ((surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL) {
+ SDL_UnRLESurface(surface, 1);
+ }
+
+ /* We don't support RLE encoding of bitmaps */
+ if (surface->format->BitsPerPixel < 8) {
+ return -1;
+ }
+
+ /* Make sure the pixels are available */
+ if (!surface->pixels) {
+ return -1;
+ }
+
+ /* If we don't have colorkey or blending, nothing to do... */
+ flags = surface->map->info.flags;
+ if (!(flags & (SDL_COPY_COLORKEY | SDL_COPY_BLEND))) {
+ return -1;
+ }
+
+ /* Pass on combinations not supported */
+ if ((flags & SDL_COPY_MODULATE_COLOR) ||
+ ((flags & SDL_COPY_MODULATE_ALPHA) && surface->format->Amask) ||
+ (flags & (SDL_COPY_ADD | SDL_COPY_MOD)) ||
+ (flags & SDL_COPY_NEAREST)) {
+ return -1;
+ }
+
+ /* Encode and set up the blit */
+ if (!surface->format->Amask || !(flags & SDL_COPY_BLEND)) {
+ if (!surface->map->identity) {
+ return -1;
+ }
+ if (RLEColorkeySurface(surface) < 0) {
+ return -1;
+ }
+ surface->map->blit = SDL_RLEBlit;
+ surface->map->info.flags |= SDL_COPY_RLE_COLORKEY;
+ } else {
+ if (RLEAlphaSurface(surface) < 0) {
+ return -1;
+ }
+ surface->map->blit = SDL_RLEAlphaBlit;
+ surface->map->info.flags |= SDL_COPY_RLE_ALPHAKEY;
+ }
+
+ /* The surface is now accelerated */
+ surface->flags |= SDL_RLEACCEL;
+
+ return (0);
+}
+
+/*
+ * Un-RLE a surface with pixel alpha
+ * This may not give back exactly the image before RLE-encoding; all
+ * completely transparent pixels will be lost, and color and alpha depth
+ * may have been reduced (when encoding for 16bpp targets).
+ */
+static SDL_bool
+UnRLEAlpha(SDL_Surface * surface)
+{
+ Uint8 *srcbuf;
+ Uint32 *dst;
+ SDL_PixelFormat *sf = surface->format;
+ RLEDestFormat *df = surface->map->data;
+ int (*uncopy_opaque) (Uint32 *, void *, int,
+ RLEDestFormat *, SDL_PixelFormat *);
+ int (*uncopy_transl) (Uint32 *, void *, int,
+ RLEDestFormat *, SDL_PixelFormat *);
+ int w = surface->w;
+ int bpp = df->BytesPerPixel;
+
+ if (bpp == 2) {
+ uncopy_opaque = uncopy_opaque_16;
+ uncopy_transl = uncopy_transl_16;
+ } else {
+ uncopy_opaque = uncopy_transl = uncopy_32;
+ }
+
+ surface->pixels = SDL_malloc(surface->h * surface->pitch);
+ if (!surface->pixels) {
+ return (SDL_FALSE);
+ }
+ /* fill background with transparent pixels */
+ SDL_memset(surface->pixels, 0, surface->h * surface->pitch);
+
+ dst = surface->pixels;
+ srcbuf = (Uint8 *) (df + 1);
+ for (;;) {
+ /* copy opaque pixels */
+ int ofs = 0;
+ do {
+ unsigned run;
+ if (bpp == 2) {
+ ofs += srcbuf[0];
+ run = srcbuf[1];
+ srcbuf += 2;
+ } else {
+ ofs += ((Uint16 *) srcbuf)[0];
+ run = ((Uint16 *) srcbuf)[1];
+ srcbuf += 4;
+ }
+ if (run) {
+ srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf);
+ ofs += run;
+ } else if (!ofs)
+ return (SDL_TRUE);
+ } while (ofs < w);
+
+ /* skip padding if needed */
+ if (bpp == 2)
+ srcbuf += (uintptr_t) srcbuf & 2;
+
+ /* copy translucent pixels */
+ ofs = 0;
+ do {
+ unsigned run;
+ ofs += ((Uint16 *) srcbuf)[0];
+ run = ((Uint16 *) srcbuf)[1];
+ srcbuf += 4;
+ if (run) {
+ srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf);
+ ofs += run;
+ }
+ } while (ofs < w);
+ dst += surface->pitch >> 2;
+ }
+ /* Make the compiler happy */
+ return (SDL_TRUE);
+}
+
+void
+SDL_UnRLESurface(SDL_Surface * surface, int recode)
+{
+ if (surface->flags & SDL_RLEACCEL) {
+ surface->flags &= ~SDL_RLEACCEL;
+
+ if (recode && !(surface->flags & SDL_PREALLOC)) {
+ if (surface->map->info.flags & SDL_COPY_RLE_COLORKEY) {
+ SDL_Rect full;
+
+ /* re-create the original surface */
+ surface->pixels = SDL_malloc(surface->h * surface->pitch);
+ if (!surface->pixels) {
+ /* Oh crap... */
+ surface->flags |= SDL_RLEACCEL;
+ return;
+ }
+
+ /* fill it with the background color */
+ SDL_FillRect(surface, NULL, surface->map->info.colorkey);
+
+ /* now render the encoded surface */
+ full.x = full.y = 0;
+ full.w = surface->w;
+ full.h = surface->h;
+ SDL_RLEBlit(surface, &full, surface, &full);
+ } else {
+ if (!UnRLEAlpha(surface)) {
+ /* Oh crap... */
+ surface->flags |= SDL_RLEACCEL;
+ return;
+ }
+ }
+ }
+ surface->map->info.flags &=
+ ~(SDL_COPY_RLE_COLORKEY | SDL_COPY_RLE_ALPHAKEY);
+
+ SDL_free(surface->map->data);
+ surface->map->data = NULL;
+ }
+}
+
+/* vi: set ts=4 sw=4 expandtab: */