diff options
Diffstat (limited to 'Client/ThirdParty/fpm/3rdparty/googlebench/src/complexity.cc')
-rw-r--r-- | Client/ThirdParty/fpm/3rdparty/googlebench/src/complexity.cc | 220 |
1 files changed, 220 insertions, 0 deletions
diff --git a/Client/ThirdParty/fpm/3rdparty/googlebench/src/complexity.cc b/Client/ThirdParty/fpm/3rdparty/googlebench/src/complexity.cc new file mode 100644 index 0000000..97bf6e0 --- /dev/null +++ b/Client/ThirdParty/fpm/3rdparty/googlebench/src/complexity.cc @@ -0,0 +1,220 @@ +// Copyright 2016 Ismael Jimenez Martinez. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Source project : https://github.com/ismaelJimenez/cpp.leastsq +// Adapted to be used with google benchmark + +#include "benchmark/benchmark.h" + +#include <algorithm> +#include <cmath> +#include "check.h" +#include "complexity.h" + +namespace benchmark { + +// Internal function to calculate the different scalability forms +BigOFunc* FittingCurve(BigO complexity) { + switch (complexity) { + case oN: + return [](int64_t n) -> double { return static_cast<double>(n); }; + case oNSquared: + return [](int64_t n) -> double { return std::pow(n, 2); }; + case oNCubed: + return [](int64_t n) -> double { return std::pow(n, 3); }; + case oLogN: + return [](int64_t n) { return log2(n); }; + case oNLogN: + return [](int64_t n) { return n * log2(n); }; + case o1: + default: + return [](int64_t) { return 1.0; }; + } +} + +// Function to return an string for the calculated complexity +std::string GetBigOString(BigO complexity) { + switch (complexity) { + case oN: + return "N"; + case oNSquared: + return "N^2"; + case oNCubed: + return "N^3"; + case oLogN: + return "lgN"; + case oNLogN: + return "NlgN"; + case o1: + return "(1)"; + default: + return "f(N)"; + } +} + +// Find the coefficient for the high-order term in the running time, by +// minimizing the sum of squares of relative error, for the fitting curve +// given by the lambda expression. +// - n : Vector containing the size of the benchmark tests. +// - time : Vector containing the times for the benchmark tests. +// - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };). + +// For a deeper explanation on the algorithm logic, look the README file at +// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit + +LeastSq MinimalLeastSq(const std::vector<int64_t>& n, + const std::vector<double>& time, + BigOFunc* fitting_curve) { + double sigma_gn = 0.0; + double sigma_gn_squared = 0.0; + double sigma_time = 0.0; + double sigma_time_gn = 0.0; + + // Calculate least square fitting parameter + for (size_t i = 0; i < n.size(); ++i) { + double gn_i = fitting_curve(n[i]); + sigma_gn += gn_i; + sigma_gn_squared += gn_i * gn_i; + sigma_time += time[i]; + sigma_time_gn += time[i] * gn_i; + } + + LeastSq result; + result.complexity = oLambda; + + // Calculate complexity. + result.coef = sigma_time_gn / sigma_gn_squared; + + // Calculate RMS + double rms = 0.0; + for (size_t i = 0; i < n.size(); ++i) { + double fit = result.coef * fitting_curve(n[i]); + rms += pow((time[i] - fit), 2); + } + + // Normalized RMS by the mean of the observed values + double mean = sigma_time / n.size(); + result.rms = sqrt(rms / n.size()) / mean; + + return result; +} + +// Find the coefficient for the high-order term in the running time, by +// minimizing the sum of squares of relative error. +// - n : Vector containing the size of the benchmark tests. +// - time : Vector containing the times for the benchmark tests. +// - complexity : If different than oAuto, the fitting curve will stick to +// this one. If it is oAuto, it will be calculated the best +// fitting curve. +LeastSq MinimalLeastSq(const std::vector<int64_t>& n, + const std::vector<double>& time, const BigO complexity) { + CHECK_EQ(n.size(), time.size()); + CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two + // benchmark runs are given + CHECK_NE(complexity, oNone); + + LeastSq best_fit; + + if (complexity == oAuto) { + std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed}; + + // Take o1 as default best fitting curve + best_fit = MinimalLeastSq(n, time, FittingCurve(o1)); + best_fit.complexity = o1; + + // Compute all possible fitting curves and stick to the best one + for (const auto& fit : fit_curves) { + LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit)); + if (current_fit.rms < best_fit.rms) { + best_fit = current_fit; + best_fit.complexity = fit; + } + } + } else { + best_fit = MinimalLeastSq(n, time, FittingCurve(complexity)); + best_fit.complexity = complexity; + } + + return best_fit; +} + +std::vector<BenchmarkReporter::Run> ComputeBigO( + const std::vector<BenchmarkReporter::Run>& reports) { + typedef BenchmarkReporter::Run Run; + std::vector<Run> results; + + if (reports.size() < 2) return results; + + // Accumulators. + std::vector<int64_t> n; + std::vector<double> real_time; + std::vector<double> cpu_time; + + // Populate the accumulators. + for (const Run& run : reports) { + CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?"; + n.push_back(run.complexity_n); + real_time.push_back(run.real_accumulated_time / run.iterations); + cpu_time.push_back(run.cpu_accumulated_time / run.iterations); + } + + LeastSq result_cpu; + LeastSq result_real; + + if (reports[0].complexity == oLambda) { + result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda); + result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda); + } else { + result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity); + result_real = MinimalLeastSq(n, real_time, result_cpu.complexity); + } + std::string benchmark_name = + reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/')); + + // Get the data from the accumulator to BenchmarkReporter::Run's. + Run big_o; + big_o.benchmark_name = benchmark_name + "_BigO"; + big_o.iterations = 0; + big_o.real_accumulated_time = result_real.coef; + big_o.cpu_accumulated_time = result_cpu.coef; + big_o.report_big_o = true; + big_o.complexity = result_cpu.complexity; + + // All the time results are reported after being multiplied by the + // time unit multiplier. But since RMS is a relative quantity it + // should not be multiplied at all. So, here, we _divide_ it by the + // multiplier so that when it is multiplied later the result is the + // correct one. + double multiplier = GetTimeUnitMultiplier(reports[0].time_unit); + + // Only add label to mean/stddev if it is same for all runs + Run rms; + big_o.report_label = reports[0].report_label; + rms.benchmark_name = benchmark_name + "_RMS"; + rms.report_label = big_o.report_label; + rms.iterations = 0; + rms.real_accumulated_time = result_real.rms / multiplier; + rms.cpu_accumulated_time = result_cpu.rms / multiplier; + rms.report_rms = true; + rms.complexity = result_cpu.complexity; + // don't forget to keep the time unit, or we won't be able to + // recover the correct value. + rms.time_unit = reports[0].time_unit; + + results.push_back(big_o); + results.push_back(rms); + return results; +} + +} // end namespace benchmark |