summaryrefslogtreecommitdiff
path: root/Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp
diff options
context:
space:
mode:
authorchai <chaifix@163.com>2021-12-13 00:07:19 +0800
committerchai <chaifix@163.com>2021-12-13 00:07:19 +0800
commit60cbbdec07ab7a5636eac5b3c024ae44e937f4d4 (patch)
treeb2c7b0a868f18159dbc43d8954e1bd7668549a88 /Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp
+init
Diffstat (limited to 'Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp')
-rw-r--r--Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp643
1 files changed, 643 insertions, 0 deletions
diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp
new file mode 100644
index 0000000..00e7769
--- /dev/null
+++ b/Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp
@@ -0,0 +1,643 @@
+// MIT License
+
+// Copyright (c) 2019 Erin Catto
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#include "box2d/b2_body.h"
+#include "box2d/b2_draw.h"
+#include "box2d/b2_prismatic_joint.h"
+#include "box2d/b2_time_step.h"
+
+// Linear constraint (point-to-line)
+// d = p2 - p1 = x2 + r2 - x1 - r1
+// C = dot(perp, d)
+// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
+// = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
+// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
+//
+// Angular constraint
+// C = a2 - a1 + a_initial
+// Cdot = w2 - w1
+// J = [0 0 -1 0 0 1]
+//
+// K = J * invM * JT
+//
+// J = [-a -s1 a s2]
+// [0 -1 0 1]
+// a = perp
+// s1 = cross(d + r1, a) = cross(p2 - x1, a)
+// s2 = cross(r2, a) = cross(p2 - x2, a)
+
+// Motor/Limit linear constraint
+// C = dot(ax1, d)
+// Cdot = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
+// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
+
+// Predictive limit is applied even when the limit is not active.
+// Prevents a constraint speed that can lead to a constraint error in one time step.
+// Want C2 = C1 + h * Cdot >= 0
+// Or:
+// Cdot + C1/h >= 0
+// I do not apply a negative constraint error because that is handled in position correction.
+// So:
+// Cdot + max(C1, 0)/h >= 0
+
+// Block Solver
+// We develop a block solver that includes the angular and linear constraints. This makes the limit stiffer.
+//
+// The Jacobian has 2 rows:
+// J = [-uT -s1 uT s2] // linear
+// [0 -1 0 1] // angular
+//
+// u = perp
+// s1 = cross(d + r1, u), s2 = cross(r2, u)
+// a1 = cross(d + r1, v), a2 = cross(r2, v)
+
+void b2PrismaticJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis)
+{
+ bodyA = bA;
+ bodyB = bB;
+ localAnchorA = bodyA->GetLocalPoint(anchor);
+ localAnchorB = bodyB->GetLocalPoint(anchor);
+ localAxisA = bodyA->GetLocalVector(axis);
+ referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
+}
+
+b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def)
+: b2Joint(def)
+{
+ m_localAnchorA = def->localAnchorA;
+ m_localAnchorB = def->localAnchorB;
+ m_localXAxisA = def->localAxisA;
+ m_localXAxisA.Normalize();
+ m_localYAxisA = b2Cross(1.0f, m_localXAxisA);
+ m_referenceAngle = def->referenceAngle;
+
+ m_impulse.SetZero();
+ m_axialMass = 0.0f;
+ m_motorImpulse = 0.0f;
+ m_lowerImpulse = 0.0f;
+ m_upperImpulse = 0.0f;
+
+ m_lowerTranslation = def->lowerTranslation;
+ m_upperTranslation = def->upperTranslation;
+
+ b2Assert(m_lowerTranslation <= m_upperTranslation);
+
+ m_maxMotorForce = def->maxMotorForce;
+ m_motorSpeed = def->motorSpeed;
+ m_enableLimit = def->enableLimit;
+ m_enableMotor = def->enableMotor;
+
+ m_translation = 0.0f;
+ m_axis.SetZero();
+ m_perp.SetZero();
+}
+
+void b2PrismaticJoint::InitVelocityConstraints(const b2SolverData& data)
+{
+ m_indexA = m_bodyA->m_islandIndex;
+ m_indexB = m_bodyB->m_islandIndex;
+ m_localCenterA = m_bodyA->m_sweep.localCenter;
+ m_localCenterB = m_bodyB->m_sweep.localCenter;
+ m_invMassA = m_bodyA->m_invMass;
+ m_invMassB = m_bodyB->m_invMass;
+ m_invIA = m_bodyA->m_invI;
+ m_invIB = m_bodyB->m_invI;
+
+ b2Vec2 cA = data.positions[m_indexA].c;
+ float aA = data.positions[m_indexA].a;
+ b2Vec2 vA = data.velocities[m_indexA].v;
+ float wA = data.velocities[m_indexA].w;
+
+ b2Vec2 cB = data.positions[m_indexB].c;
+ float aB = data.positions[m_indexB].a;
+ b2Vec2 vB = data.velocities[m_indexB].v;
+ float wB = data.velocities[m_indexB].w;
+
+ b2Rot qA(aA), qB(aB);
+
+ // Compute the effective masses.
+ b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
+ b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
+ b2Vec2 d = (cB - cA) + rB - rA;
+
+ float mA = m_invMassA, mB = m_invMassB;
+ float iA = m_invIA, iB = m_invIB;
+
+ // Compute motor Jacobian and effective mass.
+ {
+ m_axis = b2Mul(qA, m_localXAxisA);
+ m_a1 = b2Cross(d + rA, m_axis);
+ m_a2 = b2Cross(rB, m_axis);
+
+ m_axialMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2;
+ if (m_axialMass > 0.0f)
+ {
+ m_axialMass = 1.0f / m_axialMass;
+ }
+ }
+
+ // Prismatic constraint.
+ {
+ m_perp = b2Mul(qA, m_localYAxisA);
+
+ m_s1 = b2Cross(d + rA, m_perp);
+ m_s2 = b2Cross(rB, m_perp);
+
+ float k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2;
+ float k12 = iA * m_s1 + iB * m_s2;
+ float k22 = iA + iB;
+ if (k22 == 0.0f)
+ {
+ // For bodies with fixed rotation.
+ k22 = 1.0f;
+ }
+
+ m_K.ex.Set(k11, k12);
+ m_K.ey.Set(k12, k22);
+ }
+
+ if (m_enableLimit)
+ {
+ m_translation = b2Dot(m_axis, d);
+ }
+ else
+ {
+ m_lowerImpulse = 0.0f;
+ m_upperImpulse = 0.0f;
+ }
+
+ if (m_enableMotor == false)
+ {
+ m_motorImpulse = 0.0f;
+ }
+
+ if (data.step.warmStarting)
+ {
+ // Account for variable time step.
+ m_impulse *= data.step.dtRatio;
+ m_motorImpulse *= data.step.dtRatio;
+ m_lowerImpulse *= data.step.dtRatio;
+ m_upperImpulse *= data.step.dtRatio;
+
+ float axialImpulse = m_motorImpulse + m_lowerImpulse - m_upperImpulse;
+ b2Vec2 P = m_impulse.x * m_perp + axialImpulse * m_axis;
+ float LA = m_impulse.x * m_s1 + m_impulse.y + axialImpulse * m_a1;
+ float LB = m_impulse.x * m_s2 + m_impulse.y + axialImpulse * m_a2;
+
+ vA -= mA * P;
+ wA -= iA * LA;
+
+ vB += mB * P;
+ wB += iB * LB;
+ }
+ else
+ {
+ m_impulse.SetZero();
+ m_motorImpulse = 0.0f;
+ m_lowerImpulse = 0.0f;
+ m_upperImpulse = 0.0f;
+ }
+
+ data.velocities[m_indexA].v = vA;
+ data.velocities[m_indexA].w = wA;
+ data.velocities[m_indexB].v = vB;
+ data.velocities[m_indexB].w = wB;
+}
+
+void b2PrismaticJoint::SolveVelocityConstraints(const b2SolverData& data)
+{
+ b2Vec2 vA = data.velocities[m_indexA].v;
+ float wA = data.velocities[m_indexA].w;
+ b2Vec2 vB = data.velocities[m_indexB].v;
+ float wB = data.velocities[m_indexB].w;
+
+ float mA = m_invMassA, mB = m_invMassB;
+ float iA = m_invIA, iB = m_invIB;
+
+ // Solve linear motor constraint
+ if (m_enableMotor)
+ {
+ float Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA;
+ float impulse = m_axialMass * (m_motorSpeed - Cdot);
+ float oldImpulse = m_motorImpulse;
+ float maxImpulse = data.step.dt * m_maxMotorForce;
+ m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
+ impulse = m_motorImpulse - oldImpulse;
+
+ b2Vec2 P = impulse * m_axis;
+ float LA = impulse * m_a1;
+ float LB = impulse * m_a2;
+
+ vA -= mA * P;
+ wA -= iA * LA;
+ vB += mB * P;
+ wB += iB * LB;
+ }
+
+ if (m_enableLimit)
+ {
+ // Lower limit
+ {
+ float C = m_translation - m_lowerTranslation;
+ float Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA;
+ float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
+ float oldImpulse = m_lowerImpulse;
+ m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f);
+ impulse = m_lowerImpulse - oldImpulse;
+
+ b2Vec2 P = impulse * m_axis;
+ float LA = impulse * m_a1;
+ float LB = impulse * m_a2;
+
+ vA -= mA * P;
+ wA -= iA * LA;
+ vB += mB * P;
+ wB += iB * LB;
+ }
+
+ // Upper limit
+ // Note: signs are flipped to keep C positive when the constraint is satisfied.
+ // This also keeps the impulse positive when the limit is active.
+ {
+ float C = m_upperTranslation - m_translation;
+ float Cdot = b2Dot(m_axis, vA - vB) + m_a1 * wA - m_a2 * wB;
+ float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
+ float oldImpulse = m_upperImpulse;
+ m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f);
+ impulse = m_upperImpulse - oldImpulse;
+
+ b2Vec2 P = impulse * m_axis;
+ float LA = impulse * m_a1;
+ float LB = impulse * m_a2;
+
+ vA += mA * P;
+ wA += iA * LA;
+ vB -= mB * P;
+ wB -= iB * LB;
+ }
+ }
+
+ // Solve the prismatic constraint in block form.
+ {
+ b2Vec2 Cdot;
+ Cdot.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA;
+ Cdot.y = wB - wA;
+
+ b2Vec2 df = m_K.Solve(-Cdot);
+ m_impulse += df;
+
+ b2Vec2 P = df.x * m_perp;
+ float LA = df.x * m_s1 + df.y;
+ float LB = df.x * m_s2 + df.y;
+
+ vA -= mA * P;
+ wA -= iA * LA;
+
+ vB += mB * P;
+ wB += iB * LB;
+ }
+
+ data.velocities[m_indexA].v = vA;
+ data.velocities[m_indexA].w = wA;
+ data.velocities[m_indexB].v = vB;
+ data.velocities[m_indexB].w = wB;
+}
+
+// A velocity based solver computes reaction forces(impulses) using the velocity constraint solver.Under this context,
+// the position solver is not there to resolve forces.It is only there to cope with integration error.
+//
+// Therefore, the pseudo impulses in the position solver do not have any physical meaning.Thus it is okay if they suck.
+//
+// We could take the active state from the velocity solver.However, the joint might push past the limit when the velocity
+// solver indicates the limit is inactive.
+bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data)
+{
+ b2Vec2 cA = data.positions[m_indexA].c;
+ float aA = data.positions[m_indexA].a;
+ b2Vec2 cB = data.positions[m_indexB].c;
+ float aB = data.positions[m_indexB].a;
+
+ b2Rot qA(aA), qB(aB);
+
+ float mA = m_invMassA, mB = m_invMassB;
+ float iA = m_invIA, iB = m_invIB;
+
+ // Compute fresh Jacobians
+ b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
+ b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
+ b2Vec2 d = cB + rB - cA - rA;
+
+ b2Vec2 axis = b2Mul(qA, m_localXAxisA);
+ float a1 = b2Cross(d + rA, axis);
+ float a2 = b2Cross(rB, axis);
+ b2Vec2 perp = b2Mul(qA, m_localYAxisA);
+
+ float s1 = b2Cross(d + rA, perp);
+ float s2 = b2Cross(rB, perp);
+
+ b2Vec3 impulse;
+ b2Vec2 C1;
+ C1.x = b2Dot(perp, d);
+ C1.y = aB - aA - m_referenceAngle;
+
+ float linearError = b2Abs(C1.x);
+ float angularError = b2Abs(C1.y);
+
+ bool active = false;
+ float C2 = 0.0f;
+ if (m_enableLimit)
+ {
+ float translation = b2Dot(axis, d);
+ if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
+ {
+ C2 = translation;
+ linearError = b2Max(linearError, b2Abs(translation));
+ active = true;
+ }
+ else if (translation <= m_lowerTranslation)
+ {
+ C2 = b2Min(translation - m_lowerTranslation, 0.0f);
+ linearError = b2Max(linearError, m_lowerTranslation - translation);
+ active = true;
+ }
+ else if (translation >= m_upperTranslation)
+ {
+ C2 = b2Max(translation - m_upperTranslation, 0.0f);
+ linearError = b2Max(linearError, translation - m_upperTranslation);
+ active = true;
+ }
+ }
+
+ if (active)
+ {
+ float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
+ float k12 = iA * s1 + iB * s2;
+ float k13 = iA * s1 * a1 + iB * s2 * a2;
+ float k22 = iA + iB;
+ if (k22 == 0.0f)
+ {
+ // For fixed rotation
+ k22 = 1.0f;
+ }
+ float k23 = iA * a1 + iB * a2;
+ float k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2;
+
+ b2Mat33 K;
+ K.ex.Set(k11, k12, k13);
+ K.ey.Set(k12, k22, k23);
+ K.ez.Set(k13, k23, k33);
+
+ b2Vec3 C;
+ C.x = C1.x;
+ C.y = C1.y;
+ C.z = C2;
+
+ impulse = K.Solve33(-C);
+ }
+ else
+ {
+ float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
+ float k12 = iA * s1 + iB * s2;
+ float k22 = iA + iB;
+ if (k22 == 0.0f)
+ {
+ k22 = 1.0f;
+ }
+
+ b2Mat22 K;
+ K.ex.Set(k11, k12);
+ K.ey.Set(k12, k22);
+
+ b2Vec2 impulse1 = K.Solve(-C1);
+ impulse.x = impulse1.x;
+ impulse.y = impulse1.y;
+ impulse.z = 0.0f;
+ }
+
+ b2Vec2 P = impulse.x * perp + impulse.z * axis;
+ float LA = impulse.x * s1 + impulse.y + impulse.z * a1;
+ float LB = impulse.x * s2 + impulse.y + impulse.z * a2;
+
+ cA -= mA * P;
+ aA -= iA * LA;
+ cB += mB * P;
+ aB += iB * LB;
+
+ data.positions[m_indexA].c = cA;
+ data.positions[m_indexA].a = aA;
+ data.positions[m_indexB].c = cB;
+ data.positions[m_indexB].a = aB;
+
+ return linearError <= b2_linearSlop && angularError <= b2_angularSlop;
+}
+
+b2Vec2 b2PrismaticJoint::GetAnchorA() const
+{
+ return m_bodyA->GetWorldPoint(m_localAnchorA);
+}
+
+b2Vec2 b2PrismaticJoint::GetAnchorB() const
+{
+ return m_bodyB->GetWorldPoint(m_localAnchorB);
+}
+
+b2Vec2 b2PrismaticJoint::GetReactionForce(float inv_dt) const
+{
+ return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_lowerImpulse - m_upperImpulse) * m_axis);
+}
+
+float b2PrismaticJoint::GetReactionTorque(float inv_dt) const
+{
+ return inv_dt * m_impulse.y;
+}
+
+float b2PrismaticJoint::GetJointTranslation() const
+{
+ b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA);
+ b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB);
+ b2Vec2 d = pB - pA;
+ b2Vec2 axis = m_bodyA->GetWorldVector(m_localXAxisA);
+
+ float translation = b2Dot(d, axis);
+ return translation;
+}
+
+float b2PrismaticJoint::GetJointSpeed() const
+{
+ b2Body* bA = m_bodyA;
+ b2Body* bB = m_bodyB;
+
+ b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter);
+ b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter);
+ b2Vec2 p1 = bA->m_sweep.c + rA;
+ b2Vec2 p2 = bB->m_sweep.c + rB;
+ b2Vec2 d = p2 - p1;
+ b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA);
+
+ b2Vec2 vA = bA->m_linearVelocity;
+ b2Vec2 vB = bB->m_linearVelocity;
+ float wA = bA->m_angularVelocity;
+ float wB = bB->m_angularVelocity;
+
+ float speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA));
+ return speed;
+}
+
+bool b2PrismaticJoint::IsLimitEnabled() const
+{
+ return m_enableLimit;
+}
+
+void b2PrismaticJoint::EnableLimit(bool flag)
+{
+ if (flag != m_enableLimit)
+ {
+ m_bodyA->SetAwake(true);
+ m_bodyB->SetAwake(true);
+ m_enableLimit = flag;
+ m_lowerImpulse = 0.0f;
+ m_upperImpulse = 0.0f;
+ }
+}
+
+float b2PrismaticJoint::GetLowerLimit() const
+{
+ return m_lowerTranslation;
+}
+
+float b2PrismaticJoint::GetUpperLimit() const
+{
+ return m_upperTranslation;
+}
+
+void b2PrismaticJoint::SetLimits(float lower, float upper)
+{
+ b2Assert(lower <= upper);
+ if (lower != m_lowerTranslation || upper != m_upperTranslation)
+ {
+ m_bodyA->SetAwake(true);
+ m_bodyB->SetAwake(true);
+ m_lowerTranslation = lower;
+ m_upperTranslation = upper;
+ m_lowerImpulse = 0.0f;
+ m_upperImpulse = 0.0f;
+ }
+}
+
+bool b2PrismaticJoint::IsMotorEnabled() const
+{
+ return m_enableMotor;
+}
+
+void b2PrismaticJoint::EnableMotor(bool flag)
+{
+ if (flag != m_enableMotor)
+ {
+ m_bodyA->SetAwake(true);
+ m_bodyB->SetAwake(true);
+ m_enableMotor = flag;
+ }
+}
+
+void b2PrismaticJoint::SetMotorSpeed(float speed)
+{
+ if (speed != m_motorSpeed)
+ {
+ m_bodyA->SetAwake(true);
+ m_bodyB->SetAwake(true);
+ m_motorSpeed = speed;
+ }
+}
+
+void b2PrismaticJoint::SetMaxMotorForce(float force)
+{
+ if (force != m_maxMotorForce)
+ {
+ m_bodyA->SetAwake(true);
+ m_bodyB->SetAwake(true);
+ m_maxMotorForce = force;
+ }
+}
+
+float b2PrismaticJoint::GetMotorForce(float inv_dt) const
+{
+ return inv_dt * m_motorImpulse;
+}
+
+void b2PrismaticJoint::Dump()
+{
+ // FLT_DECIMAL_DIG == 9
+
+ int32 indexA = m_bodyA->m_islandIndex;
+ int32 indexB = m_bodyB->m_islandIndex;
+
+ b2Dump(" b2PrismaticJointDef jd;\n");
+ b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
+ b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
+ b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
+ b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
+ b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
+ b2Dump(" jd.localAxisA.Set(%.9g, %.9g);\n", m_localXAxisA.x, m_localXAxisA.y);
+ b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle);
+ b2Dump(" jd.enableLimit = bool(%d);\n", m_enableLimit);
+ b2Dump(" jd.lowerTranslation = %.9g;\n", m_lowerTranslation);
+ b2Dump(" jd.upperTranslation = %.9g;\n", m_upperTranslation);
+ b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor);
+ b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed);
+ b2Dump(" jd.maxMotorForce = %.9g;\n", m_maxMotorForce);
+ b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
+}
+
+void b2PrismaticJoint::Draw(b2Draw* draw) const
+{
+ const b2Transform& xfA = m_bodyA->GetTransform();
+ const b2Transform& xfB = m_bodyB->GetTransform();
+ b2Vec2 pA = b2Mul(xfA, m_localAnchorA);
+ b2Vec2 pB = b2Mul(xfB, m_localAnchorB);
+
+ b2Vec2 axis = b2Mul(xfA.q, m_localXAxisA);
+
+ b2Color c1(0.7f, 0.7f, 0.7f);
+ b2Color c2(0.3f, 0.9f, 0.3f);
+ b2Color c3(0.9f, 0.3f, 0.3f);
+ b2Color c4(0.3f, 0.3f, 0.9f);
+ b2Color c5(0.4f, 0.4f, 0.4f);
+
+ draw->DrawSegment(pA, pB, c5);
+
+ if (m_enableLimit)
+ {
+ b2Vec2 lower = pA + m_lowerTranslation * axis;
+ b2Vec2 upper = pA + m_upperTranslation * axis;
+ b2Vec2 perp = b2Mul(xfA.q, m_localYAxisA);
+ draw->DrawSegment(lower, upper, c1);
+ draw->DrawSegment(lower - 0.5f * perp, lower + 0.5f * perp, c2);
+ draw->DrawSegment(upper - 0.5f * perp, upper + 0.5f * perp, c3);
+ }
+ else
+ {
+ draw->DrawSegment(pA - 1.0f * axis, pA + 1.0f * axis, c1);
+ }
+
+ draw->DrawPoint(pA, 5.0f, c1);
+ draw->DrawPoint(pB, 5.0f, c4);
+}