summaryrefslogtreecommitdiff
path: root/Client/ThirdParty/Box2D/include/box2d/b2_dynamic_tree.h
blob: b85491915d9254493287f8ed965a3214e4752f97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// MIT License

// Copyright (c) 2019 Erin Catto

// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#ifndef B2_DYNAMIC_TREE_H
#define B2_DYNAMIC_TREE_H

#include "b2_api.h"
#include "b2_collision.h"
#include "b2_growable_stack.h"

#define b2_nullNode (-1)

/// A node in the dynamic tree. The client does not interact with this directly.
struct B2_API b2TreeNode
{
	bool IsLeaf() const
	{
		return child1 == b2_nullNode;
	}

	/// Enlarged AABB
	b2AABB aabb;

	void* userData;

	union
	{
		int32 parent;
		int32 next;
	};

	int32 child1;
	int32 child2;

	// leaf = 0, free node = -1
	int32 height;

	bool moved;
};

/// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt.
/// A dynamic tree arranges data in a binary tree to accelerate
/// queries such as volume queries and ray casts. Leafs are proxies
/// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor
/// so that the proxy AABB is bigger than the client object. This allows the client
/// object to move by small amounts without triggering a tree update.
///
/// Nodes are pooled and relocatable, so we use node indices rather than pointers.
class B2_API b2DynamicTree
{
public:
	/// Constructing the tree initializes the node pool.
	b2DynamicTree();

	/// Destroy the tree, freeing the node pool.
	~b2DynamicTree();

	/// Create a proxy. Provide a tight fitting AABB and a userData pointer.
	int32 CreateProxy(const b2AABB& aabb, void* userData);

	/// Destroy a proxy. This asserts if the id is invalid.
	void DestroyProxy(int32 proxyId);

	/// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB,
	/// then the proxy is removed from the tree and re-inserted. Otherwise
	/// the function returns immediately.
	/// @return true if the proxy was re-inserted.
	bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement);

	/// Get proxy user data.
	/// @return the proxy user data or 0 if the id is invalid.
	void* GetUserData(int32 proxyId) const;

	bool WasMoved(int32 proxyId) const;
	void ClearMoved(int32 proxyId);

	/// Get the fat AABB for a proxy.
	const b2AABB& GetFatAABB(int32 proxyId) const;

	/// Query an AABB for overlapping proxies. The callback class
	/// is called for each proxy that overlaps the supplied AABB.
	template <typename T>
	void Query(T* callback, const b2AABB& aabb) const;

	/// Ray-cast against the proxies in the tree. This relies on the callback
	/// to perform a exact ray-cast in the case were the proxy contains a shape.
	/// The callback also performs the any collision filtering. This has performance
	/// roughly equal to k * log(n), where k is the number of collisions and n is the
	/// number of proxies in the tree.
	/// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
	/// @param callback a callback class that is called for each proxy that is hit by the ray.
	template <typename T>
	void RayCast(T* callback, const b2RayCastInput& input) const;

	/// Validate this tree. For testing.
	void Validate() const;

	/// Compute the height of the binary tree in O(N) time. Should not be
	/// called often.
	int32 GetHeight() const;

	/// Get the maximum balance of an node in the tree. The balance is the difference
	/// in height of the two children of a node.
	int32 GetMaxBalance() const;

	/// Get the ratio of the sum of the node areas to the root area.
	float GetAreaRatio() const;

	/// Build an optimal tree. Very expensive. For testing.
	void RebuildBottomUp();

	/// Shift the world origin. Useful for large worlds.
	/// The shift formula is: position -= newOrigin
	/// @param newOrigin the new origin with respect to the old origin
	void ShiftOrigin(const b2Vec2& newOrigin);

private:

	int32 AllocateNode();
	void FreeNode(int32 node);

	void InsertLeaf(int32 node);
	void RemoveLeaf(int32 node);

	int32 Balance(int32 index);

	int32 ComputeHeight() const;
	int32 ComputeHeight(int32 nodeId) const;

	void ValidateStructure(int32 index) const;
	void ValidateMetrics(int32 index) const;

	int32 m_root;

	b2TreeNode* m_nodes;
	int32 m_nodeCount;
	int32 m_nodeCapacity;

	int32 m_freeList;

	int32 m_insertionCount;
};

inline void* b2DynamicTree::GetUserData(int32 proxyId) const
{
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
	return m_nodes[proxyId].userData;
}

inline bool b2DynamicTree::WasMoved(int32 proxyId) const
{
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
	return m_nodes[proxyId].moved;
}

inline void b2DynamicTree::ClearMoved(int32 proxyId)
{
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
	m_nodes[proxyId].moved = false;
}

inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const
{
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
	return m_nodes[proxyId].aabb;
}

template <typename T>
inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const
{
	b2GrowableStack<int32, 256> stack;
	stack.Push(m_root);

	while (stack.GetCount() > 0)
	{
		int32 nodeId = stack.Pop();
		if (nodeId == b2_nullNode)
		{
			continue;
		}

		const b2TreeNode* node = m_nodes + nodeId;

		if (b2TestOverlap(node->aabb, aabb))
		{
			if (node->IsLeaf())
			{
				bool proceed = callback->QueryCallback(nodeId);
				if (proceed == false)
				{
					return;
				}
			}
			else
			{
				stack.Push(node->child1);
				stack.Push(node->child2);
			}
		}
	}
}

template <typename T>
inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const
{
	b2Vec2 p1 = input.p1;
	b2Vec2 p2 = input.p2;
	b2Vec2 r = p2 - p1;
	b2Assert(r.LengthSquared() > 0.0f);
	r.Normalize();

	// v is perpendicular to the segment.
	b2Vec2 v = b2Cross(1.0f, r);
	b2Vec2 abs_v = b2Abs(v);

	// Separating axis for segment (Gino, p80).
	// |dot(v, p1 - c)| > dot(|v|, h)

	float maxFraction = input.maxFraction;

	// Build a bounding box for the segment.
	b2AABB segmentAABB;
	{
		b2Vec2 t = p1 + maxFraction * (p2 - p1);
		segmentAABB.lowerBound = b2Min(p1, t);
		segmentAABB.upperBound = b2Max(p1, t);
	}

	b2GrowableStack<int32, 256> stack;
	stack.Push(m_root);

	while (stack.GetCount() > 0)
	{
		int32 nodeId = stack.Pop();
		if (nodeId == b2_nullNode)
		{
			continue;
		}

		const b2TreeNode* node = m_nodes + nodeId;

		if (b2TestOverlap(node->aabb, segmentAABB) == false)
		{
			continue;
		}

		// Separating axis for segment (Gino, p80).
		// |dot(v, p1 - c)| > dot(|v|, h)
		b2Vec2 c = node->aabb.GetCenter();
		b2Vec2 h = node->aabb.GetExtents();
		float separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h);
		if (separation > 0.0f)
		{
			continue;
		}

		if (node->IsLeaf())
		{
			b2RayCastInput subInput;
			subInput.p1 = input.p1;
			subInput.p2 = input.p2;
			subInput.maxFraction = maxFraction;

			float value = callback->RayCastCallback(subInput, nodeId);

			if (value == 0.0f)
			{
				// The client has terminated the ray cast.
				return;
			}

			if (value > 0.0f)
			{
				// Update segment bounding box.
				maxFraction = value;
				b2Vec2 t = p1 + maxFraction * (p2 - p1);
				segmentAABB.lowerBound = b2Min(p1, t);
				segmentAABB.upperBound = b2Max(p1, t);
			}
		}
		else
		{
			stack.Push(node->child1);
			stack.Push(node->child2);
		}
	}
}

#endif