summaryrefslogtreecommitdiff
path: root/Client/ThirdParty/Box2D/include/box2d/b2_math.h
blob: 479e667be39174c691974ffcf40c34a3588308be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
// MIT License

// Copyright (c) 2019 Erin Catto

// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#ifndef B2_MATH_H
#define B2_MATH_H

#include <math.h>

#include "b2_api.h"
#include "b2_settings.h"

/// This function is used to ensure that a floating point number is not a NaN or infinity.
inline bool b2IsValid(float x)
{
	return isfinite(x);
}

#define	b2Sqrt(x)	sqrtf(x)
#define	b2Atan2(y, x)	atan2f(y, x)

/// A 2D column vector.
struct B2_API b2Vec2
{
	/// Default constructor does nothing (for performance).
	b2Vec2() {}

	/// Construct using coordinates.
	b2Vec2(float xIn, float yIn) : x(xIn), y(yIn) {}

	/// Set this vector to all zeros.
	void SetZero() { x = 0.0f; y = 0.0f; }

	/// Set this vector to some specified coordinates.
	void Set(float x_, float y_) { x = x_; y = y_; }

	/// Negate this vector.
	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }

	/// Read from and indexed element.
	float operator () (int32 i) const
	{
		return (&x)[i];
	}

	/// Write to an indexed element.
	float& operator () (int32 i)
	{
		return (&x)[i];
	}

	/// Add a vector to this vector.
	void operator += (const b2Vec2& v)
	{
		x += v.x; y += v.y;
	}

	/// Subtract a vector from this vector.
	void operator -= (const b2Vec2& v)
	{
		x -= v.x; y -= v.y;
	}

	/// Multiply this vector by a scalar.
	void operator *= (float a)
	{
		x *= a; y *= a;
	}

	/// Get the length of this vector (the norm).
	float Length() const
	{
		return b2Sqrt(x * x + y * y);
	}

	/// Get the length squared. For performance, use this instead of
	/// b2Vec2::Length (if possible).
	float LengthSquared() const
	{
		return x * x + y * y;
	}

	/// Convert this vector into a unit vector. Returns the length.
	float Normalize()
	{
		float length = Length();
		if (length < b2_epsilon)
		{
			return 0.0f;
		}
		float invLength = 1.0f / length;
		x *= invLength;
		y *= invLength;

		return length;
	}

	/// Does this vector contain finite coordinates?
	bool IsValid() const
	{
		return b2IsValid(x) && b2IsValid(y);
	}

	/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
	b2Vec2 Skew() const
	{
		return b2Vec2(-y, x);
	}

	float x, y;
};

/// A 2D column vector with 3 elements.
struct B2_API b2Vec3
{
	/// Default constructor does nothing (for performance).
	b2Vec3() {}

	/// Construct using coordinates.
	b2Vec3(float xIn, float yIn, float zIn) : x(xIn), y(yIn), z(zIn) {}

	/// Set this vector to all zeros.
	void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }

	/// Set this vector to some specified coordinates.
	void Set(float x_, float y_, float z_) { x = x_; y = y_; z = z_; }

	/// Negate this vector.
	b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }

	/// Add a vector to this vector.
	void operator += (const b2Vec3& v)
	{
		x += v.x; y += v.y; z += v.z;
	}

	/// Subtract a vector from this vector.
	void operator -= (const b2Vec3& v)
	{
		x -= v.x; y -= v.y; z -= v.z;
	}

	/// Multiply this vector by a scalar.
	void operator *= (float s)
	{
		x *= s; y *= s; z *= s;
	}

	float x, y, z;
};

/// A 2-by-2 matrix. Stored in column-major order.
struct B2_API b2Mat22
{
	/// The default constructor does nothing (for performance).
	b2Mat22() {}

	/// Construct this matrix using columns.
	b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
	{
		ex = c1;
		ey = c2;
	}

	/// Construct this matrix using scalars.
	b2Mat22(float a11, float a12, float a21, float a22)
	{
		ex.x = a11; ex.y = a21;
		ey.x = a12; ey.y = a22;
	}

	/// Initialize this matrix using columns.
	void Set(const b2Vec2& c1, const b2Vec2& c2)
	{
		ex = c1;
		ey = c2;
	}

	/// Set this to the identity matrix.
	void SetIdentity()
	{
		ex.x = 1.0f; ey.x = 0.0f;
		ex.y = 0.0f; ey.y = 1.0f;
	}

	/// Set this matrix to all zeros.
	void SetZero()
	{
		ex.x = 0.0f; ey.x = 0.0f;
		ex.y = 0.0f; ey.y = 0.0f;
	}

	b2Mat22 GetInverse() const
	{
		float a = ex.x, b = ey.x, c = ex.y, d = ey.y;
		b2Mat22 B;
		float det = a * d - b * c;
		if (det != 0.0f)
		{
			det = 1.0f / det;
		}
		B.ex.x =  det * d;	B.ey.x = -det * b;
		B.ex.y = -det * c;	B.ey.y =  det * a;
		return B;
	}

	/// Solve A * x = b, where b is a column vector. This is more efficient
	/// than computing the inverse in one-shot cases.
	b2Vec2 Solve(const b2Vec2& b) const
	{
		float a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
		float det = a11 * a22 - a12 * a21;
		if (det != 0.0f)
		{
			det = 1.0f / det;
		}
		b2Vec2 x;
		x.x = det * (a22 * b.x - a12 * b.y);
		x.y = det * (a11 * b.y - a21 * b.x);
		return x;
	}

	b2Vec2 ex, ey;
};

/// A 3-by-3 matrix. Stored in column-major order.
struct B2_API b2Mat33
{
	/// The default constructor does nothing (for performance).
	b2Mat33() {}

	/// Construct this matrix using columns.
	b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
	{
		ex = c1;
		ey = c2;
		ez = c3;
	}

	/// Set this matrix to all zeros.
	void SetZero()
	{
		ex.SetZero();
		ey.SetZero();
		ez.SetZero();
	}

	/// Solve A * x = b, where b is a column vector. This is more efficient
	/// than computing the inverse in one-shot cases.
	b2Vec3 Solve33(const b2Vec3& b) const;

	/// Solve A * x = b, where b is a column vector. This is more efficient
	/// than computing the inverse in one-shot cases. Solve only the upper
	/// 2-by-2 matrix equation.
	b2Vec2 Solve22(const b2Vec2& b) const;

	/// Get the inverse of this matrix as a 2-by-2.
	/// Returns the zero matrix if singular.
	void GetInverse22(b2Mat33* M) const;

	/// Get the symmetric inverse of this matrix as a 3-by-3.
	/// Returns the zero matrix if singular.
	void GetSymInverse33(b2Mat33* M) const;

	b2Vec3 ex, ey, ez;
};

/// Rotation
struct B2_API b2Rot
{
	b2Rot() {}

	/// Initialize from an angle in radians
	explicit b2Rot(float angle)
	{
		/// TODO_ERIN optimize
		s = sinf(angle);
		c = cosf(angle);
	}

	/// Set using an angle in radians.
	void Set(float angle)
	{
		/// TODO_ERIN optimize
		s = sinf(angle);
		c = cosf(angle);
	}

	/// Set to the identity rotation
	void SetIdentity()
	{
		s = 0.0f;
		c = 1.0f;
	}

	/// Get the angle in radians
	float GetAngle() const
	{
		return b2Atan2(s, c);
	}

	/// Get the x-axis
	b2Vec2 GetXAxis() const
	{
		return b2Vec2(c, s);
	}

	/// Get the u-axis
	b2Vec2 GetYAxis() const
	{
		return b2Vec2(-s, c);
	}

	/// Sine and cosine
	float s, c;
};

/// A transform contains translation and rotation. It is used to represent
/// the position and orientation of rigid frames.
struct B2_API b2Transform
{
	/// The default constructor does nothing.
	b2Transform() {}

	/// Initialize using a position vector and a rotation.
	b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}

	/// Set this to the identity transform.
	void SetIdentity()
	{
		p.SetZero();
		q.SetIdentity();
	}

	/// Set this based on the position and angle.
	void Set(const b2Vec2& position, float angle)
	{
		p = position;
		q.Set(angle);
	}

	b2Vec2 p;
	b2Rot q;
};

/// This describes the motion of a body/shape for TOI computation.
/// Shapes are defined with respect to the body origin, which may
/// no coincide with the center of mass. However, to support dynamics
/// we must interpolate the center of mass position.
struct B2_API b2Sweep
{
	/// Get the interpolated transform at a specific time.
	/// @param transform the output transform
	/// @param beta is a factor in [0,1], where 0 indicates alpha0.
	void GetTransform(b2Transform* transform, float beta) const;

	/// Advance the sweep forward, yielding a new initial state.
	/// @param alpha the new initial time.
	void Advance(float alpha);

	/// Normalize the angles.
	void Normalize();

	b2Vec2 localCenter;	///< local center of mass position
	b2Vec2 c0, c;		///< center world positions
	float a0, a;		///< world angles

	/// Fraction of the current time step in the range [0,1]
	/// c0 and a0 are the positions at alpha0.
	float alpha0;
};

/// Useful constant
extern B2_API const b2Vec2 b2Vec2_zero;

/// Perform the dot product on two vectors.
inline float b2Dot(const b2Vec2& a, const b2Vec2& b)
{
	return a.x * b.x + a.y * b.y;
}

/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline float b2Cross(const b2Vec2& a, const b2Vec2& b)
{
	return a.x * b.y - a.y * b.x;
}

/// Perform the cross product on a vector and a scalar. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(const b2Vec2& a, float s)
{
	return b2Vec2(s * a.y, -s * a.x);
}

/// Perform the cross product on a scalar and a vector. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(float s, const b2Vec2& a)
{
	return b2Vec2(-s * a.y, s * a.x);
}

/// Multiply a matrix times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another.
inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
{
	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
}

/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another (inverse transform).
inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
{
	return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
}

/// Add two vectors component-wise.
inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
{
	return b2Vec2(a.x + b.x, a.y + b.y);
}

/// Subtract two vectors component-wise.
inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
{
	return b2Vec2(a.x - b.x, a.y - b.y);
}

inline b2Vec2 operator * (float s, const b2Vec2& a)
{
	return b2Vec2(s * a.x, s * a.y);
}

inline bool operator == (const b2Vec2& a, const b2Vec2& b)
{
	return a.x == b.x && a.y == b.y;
}

inline bool operator != (const b2Vec2& a, const b2Vec2& b)
{
	return a.x != b.x || a.y != b.y;
}

inline float b2Distance(const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 c = a - b;
	return c.Length();
}

inline float b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 c = a - b;
	return b2Dot(c, c);
}

inline b2Vec3 operator * (float s, const b2Vec3& a)
{
	return b2Vec3(s * a.x, s * a.y, s * a.z);
}

/// Add two vectors component-wise.
inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
{
	return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
}

/// Subtract two vectors component-wise.
inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
{
	return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
}

/// Perform the dot product on two vectors.
inline float b2Dot(const b2Vec3& a, const b2Vec3& b)
{
	return a.x * b.x + a.y * b.y + a.z * b.z;
}

/// Perform the cross product on two vectors.
inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
{
	return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}

inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
{
	return b2Mat22(A.ex + B.ex, A.ey + B.ey);
}

// A * B
inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
{
	return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
}

// A^T * B
inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
{
	b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
	b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
	return b2Mat22(c1, c2);
}

/// Multiply a matrix times a vector.
inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
{
	return v.x * A.ex + v.y * A.ey + v.z * A.ez;
}

/// Multiply a matrix times a vector.
inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
{
	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
}

/// Multiply two rotations: q * r
inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
{
	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc]
	// s = qs * rc + qc * rs
	// c = qc * rc - qs * rs
	b2Rot qr;
	qr.s = q.s * r.c + q.c * r.s;
	qr.c = q.c * r.c - q.s * r.s;
	return qr;
}

/// Transpose multiply two rotations: qT * r
inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
{
	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc]
	// s = qc * rs - qs * rc
	// c = qc * rc + qs * rs
	b2Rot qr;
	qr.s = q.c * r.s - q.s * r.c;
	qr.c = q.c * r.c + q.s * r.s;
	return qr;
}

/// Rotate a vector
inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
{
	return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
}

/// Inverse rotate a vector
inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
{
	return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
}

inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
{
	float x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
	float y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;

	return b2Vec2(x, y);
}

inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
{
	float px = v.x - T.p.x;
	float py = v.y - T.p.y;
	float x = (T.q.c * px + T.q.s * py);
	float y = (-T.q.s * px + T.q.c * py);

	return b2Vec2(x, y);
}

// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
//    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
{
	b2Transform C;
	C.q = b2Mul(A.q, B.q);
	C.p = b2Mul(A.q, B.p) + A.p;
	return C;
}

// v2 = A.q' * (B.q * v1 + B.p - A.p)
//    = A.q' * B.q * v1 + A.q' * (B.p - A.p)
inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
{
	b2Transform C;
	C.q = b2MulT(A.q, B.q);
	C.p = b2MulT(A.q, B.p - A.p);
	return C;
}

template <typename T>
inline T b2Abs(T a)
{
	return a > T(0) ? a : -a;
}

inline b2Vec2 b2Abs(const b2Vec2& a)
{
	return b2Vec2(b2Abs(a.x), b2Abs(a.y));
}

inline b2Mat22 b2Abs(const b2Mat22& A)
{
	return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
}

template <typename T>
inline T b2Min(T a, T b)
{
	return a < b ? a : b;
}

inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
{
	return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
}

template <typename T>
inline T b2Max(T a, T b)
{
	return a > b ? a : b;
}

inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
{
	return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
}

template <typename T>
inline T b2Clamp(T a, T low, T high)
{
	return b2Max(low, b2Min(a, high));
}

inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
{
	return b2Max(low, b2Min(a, high));
}

template<typename T> inline void b2Swap(T& a, T& b)
{
	T tmp = a;
	a = b;
	b = tmp;
}

/// "Next Largest Power of 2
/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
/// largest power of 2. For a 32-bit value:"
inline uint32 b2NextPowerOfTwo(uint32 x)
{
	x |= (x >> 1);
	x |= (x >> 2);
	x |= (x >> 4);
	x |= (x >> 8);
	x |= (x >> 16);
	return x + 1;
}

inline bool b2IsPowerOfTwo(uint32 x)
{
	bool result = x > 0 && (x & (x - 1)) == 0;
	return result;
}

// https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
inline void b2Sweep::GetTransform(b2Transform* xf, float beta) const
{
	xf->p = (1.0f - beta) * c0 + beta * c;
	float angle = (1.0f - beta) * a0 + beta * a;
	xf->q.Set(angle);

	// Shift to origin
	xf->p -= b2Mul(xf->q, localCenter);
}

inline void b2Sweep::Advance(float alpha)
{
	b2Assert(alpha0 < 1.0f);
	float beta = (alpha - alpha0) / (1.0f - alpha0);
	c0 += beta * (c - c0);
	a0 += beta * (a - a0);
	alpha0 = alpha;
}

/// Normalize an angle in radians to be between -pi and pi
inline void b2Sweep::Normalize()
{
	float twoPi = 2.0f * b2_pi;
	float d =  twoPi * floorf(a0 / twoPi);
	a0 -= d;
	a -= d;
}

#endif