1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
// MIT License
// Copyright (c) 2019 Erin Catto
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef B2_WHEEL_JOINT_H
#define B2_WHEEL_JOINT_H
#include "b2_api.h"
#include "b2_joint.h"
/// Wheel joint definition. This requires defining a line of
/// motion using an axis and an anchor point. The definition uses local
/// anchor points and a local axis so that the initial configuration
/// can violate the constraint slightly. The joint translation is zero
/// when the local anchor points coincide in world space. Using local
/// anchors and a local axis helps when saving and loading a game.
struct B2_API b2WheelJointDef : public b2JointDef
{
b2WheelJointDef()
{
type = e_wheelJoint;
localAnchorA.SetZero();
localAnchorB.SetZero();
localAxisA.Set(1.0f, 0.0f);
enableLimit = false;
lowerTranslation = 0.0f;
upperTranslation = 0.0f;
enableMotor = false;
maxMotorTorque = 0.0f;
motorSpeed = 0.0f;
stiffness = 0.0f;
damping = 0.0f;
}
/// Initialize the bodies, anchors, axis, and reference angle using the world
/// anchor and world axis.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The local translation axis in bodyA.
b2Vec2 localAxisA;
/// Enable/disable the joint limit.
bool enableLimit;
/// The lower translation limit, usually in meters.
float lowerTranslation;
/// The upper translation limit, usually in meters.
float upperTranslation;
/// Enable/disable the joint motor.
bool enableMotor;
/// The maximum motor torque, usually in N-m.
float maxMotorTorque;
/// The desired motor speed in radians per second.
float motorSpeed;
/// Suspension stiffness. Typically in units N/m.
float stiffness;
/// Suspension damping. Typically in units of N*s/m.
float damping;
};
/// A wheel joint. This joint provides two degrees of freedom: translation
/// along an axis fixed in bodyA and rotation in the plane. In other words, it is a point to
/// line constraint with a rotational motor and a linear spring/damper. The spring/damper is
/// initialized upon creation. This joint is designed for vehicle suspensions.
class B2_API b2WheelJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const override;
b2Vec2 GetAnchorB() const override;
b2Vec2 GetReactionForce(float inv_dt) const override;
float GetReactionTorque(float inv_dt) const override;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// The local joint axis relative to bodyA.
const b2Vec2& GetLocalAxisA() const { return m_localXAxisA; }
/// Get the current joint translation, usually in meters.
float GetJointTranslation() const;
/// Get the current joint linear speed, usually in meters per second.
float GetJointLinearSpeed() const;
/// Get the current joint angle in radians.
float GetJointAngle() const;
/// Get the current joint angular speed in radians per second.
float GetJointAngularSpeed() const;
/// Is the joint limit enabled?
bool IsLimitEnabled() const;
/// Enable/disable the joint translation limit.
void EnableLimit(bool flag);
/// Get the lower joint translation limit, usually in meters.
float GetLowerLimit() const;
/// Get the upper joint translation limit, usually in meters.
float GetUpperLimit() const;
/// Set the joint translation limits, usually in meters.
void SetLimits(float lower, float upper);
/// Is the joint motor enabled?
bool IsMotorEnabled() const;
/// Enable/disable the joint motor.
void EnableMotor(bool flag);
/// Set the motor speed, usually in radians per second.
void SetMotorSpeed(float speed);
/// Get the motor speed, usually in radians per second.
float GetMotorSpeed() const;
/// Set/Get the maximum motor force, usually in N-m.
void SetMaxMotorTorque(float torque);
float GetMaxMotorTorque() const;
/// Get the current motor torque given the inverse time step, usually in N-m.
float GetMotorTorque(float inv_dt) const;
/// Access spring stiffness
void SetStiffness(float stiffness);
float GetStiffness() const;
/// Access damping
void SetDamping(float damping);
float GetDamping() const;
/// Dump to b2Log
void Dump() override;
///
void Draw(b2Draw* draw) const override;
protected:
friend class b2Joint;
b2WheelJoint(const b2WheelJointDef* def);
void InitVelocityConstraints(const b2SolverData& data) override;
void SolveVelocityConstraints(const b2SolverData& data) override;
bool SolvePositionConstraints(const b2SolverData& data) override;
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
b2Vec2 m_localXAxisA;
b2Vec2 m_localYAxisA;
float m_impulse;
float m_motorImpulse;
float m_springImpulse;
float m_lowerImpulse;
float m_upperImpulse;
float m_translation;
float m_lowerTranslation;
float m_upperTranslation;
float m_maxMotorTorque;
float m_motorSpeed;
bool m_enableLimit;
bool m_enableMotor;
float m_stiffness;
float m_damping;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float m_invMassA;
float m_invMassB;
float m_invIA;
float m_invIB;
b2Vec2 m_ax, m_ay;
float m_sAx, m_sBx;
float m_sAy, m_sBy;
float m_mass;
float m_motorMass;
float m_axialMass;
float m_springMass;
float m_bias;
float m_gamma;
};
inline float b2WheelJoint::GetMotorSpeed() const
{
return m_motorSpeed;
}
inline float b2WheelJoint::GetMaxMotorTorque() const
{
return m_maxMotorTorque;
}
#endif
|