1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
/*
Box2DX Copyright (c) 2009 Ihar Kalasouski http://code.google.com/p/box2dx
Box2D original C++ version Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
using Box2DX.Common;
namespace Box2DX.Collision
{
public partial class Collision
{
/// <summary>
/// Find the separation between poly1 and poly2 for a give edge normal on poly1.
/// </summary>
public static float EdgeSeparation(PolygonShape poly1, XForm xf1, int edge1, PolygonShape poly2, XForm xf2)
{
int count1 = poly1._vertexCount;
Vec2[] vertices1 = poly1._vertices;
Vec2[] normals1 = poly1._normals;
int count2 = poly2._vertexCount;
Vec2[] vertices2 = poly2._vertices;
Box2DXDebug.Assert(0 <= edge1 && edge1 < count1);
// Convert normal from poly1's frame into poly2's frame.
Vec2 normal1World = Common.Math.Mul(xf1.R, normals1[edge1]);
Vec2 normal1 = Common.Math.MulT(xf2.R, normal1World);
// Find support vertex on poly2 for -normal.
int index = 0;
float minDot = Common.Settings.FLT_MAX;
for (int i = 0; i < count2; ++i)
{
float dot = Vec2.Dot(vertices2[i], normal1);
if (dot < minDot)
{
minDot = dot;
index = i;
}
}
Vec2 v1 = Common.Math.Mul(xf1, vertices1[edge1]);
Vec2 v2 = Common.Math.Mul(xf2, vertices2[index]);
float separation = Vec2.Dot(v2 - v1, normal1World);
return separation;
}
/// <summary>
/// Find the max separation between poly1 and poly2 using edge normals from poly1.
/// </summary>
public static float FindMaxSeparation(ref int edgeIndex, PolygonShape poly1, XForm xf1, PolygonShape poly2, XForm xf2)
{
int count1 = poly1._vertexCount;
Vec2[] normals1 = poly1._normals;
// Vector pointing from the centroid of poly1 to the centroid of poly2.
Vec2 d = Common.Math.Mul(xf2, poly2._centroid) - Common.Math.Mul(xf1, poly1._centroid);
Vec2 dLocal1 = Common.Math.MulT(xf1.R, d);
// Find edge normal on poly1 that has the largest projection onto d.
int edge = 0;
float maxDot = -Common.Settings.FLT_MAX;
for (int i = 0; i < count1; ++i)
{
float dot = Vec2.Dot(normals1[i], dLocal1);
if (dot > maxDot)
{
maxDot = dot;
edge = i;
}
}
// Get the separation for the edge normal.
float s = Collision.EdgeSeparation(poly1, xf1, edge, poly2, xf2);
// Check the separation for the previous edge normal.
int prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
float sPrev = Collision.EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2);
// Check the separation for the next edge normal.
int nextEdge = edge + 1 < count1 ? edge + 1 : 0;
float sNext = Collision.EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2);
// Find the best edge and the search direction.
int bestEdge;
float bestSeparation;
int increment;
if (sPrev > s && sPrev > sNext)
{
increment = -1;
bestEdge = prevEdge;
bestSeparation = sPrev;
}
else if (sNext > s)
{
increment = 1;
bestEdge = nextEdge;
bestSeparation = sNext;
}
else
{
edgeIndex = edge;
return s;
}
// Perform a local search for the best edge normal.
for (; ; )
{
if (increment == -1)
edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
else
edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
s = Collision.EdgeSeparation(poly1, xf1, edge, poly2, xf2);
if (s > bestSeparation)
{
bestEdge = edge;
bestSeparation = s;
}
else
{
break;
}
}
edgeIndex = bestEdge;
return bestSeparation;
}
public static void FindIncidentEdge(out ClipVertex[] c,
PolygonShape poly1, XForm xf1, int edge1, PolygonShape poly2, XForm xf2)
{
int count1 = poly1._vertexCount;
Vec2[] normals1 = poly1._normals;
int count2 = poly2._vertexCount;
Vec2[] vertices2 = poly2._vertices;
Vec2[] normals2 = poly2._normals;
Box2DXDebug.Assert(0 <= edge1 && edge1 < count1);
// Get the normal of the reference edge in poly2's frame.
Vec2 normal1 = Common.Math.MulT(xf2.R, Common.Math.Mul(xf1.R, normals1[edge1]));
// Find the incident edge on poly2.
int index = 0;
float minDot = Settings.FLT_MAX;
for (int i = 0; i < count2; ++i)
{
float dot = Vec2.Dot(normal1, normals2[i]);
if (dot < minDot)
{
minDot = dot;
index = i;
}
}
// Build the clip vertices for the incident edge.
int i1 = index;
int i2 = i1 + 1 < count2 ? i1 + 1 : 0;
c = new ClipVertex[2];
c[0].V = Common.Math.Mul(xf2, vertices2[i1]);
c[0].ID.Features.ReferenceEdge = (byte)edge1;
c[0].ID.Features.IncidentEdge = (byte)i1;
c[0].ID.Features.IncidentVertex = 0;
c[1].V = Common.Math.Mul(xf2, vertices2[i2]);
c[1].ID.Features.ReferenceEdge = (byte)edge1;
c[1].ID.Features.IncidentEdge = (byte)i2;
c[1].ID.Features.IncidentVertex = 1;
}
// Find edge normal of max separation on A - return if separating axis is found
// Find edge normal of max separation on B - return if separation axis is found
// Choose reference edge as min(minA, minB)
// Find incident edge
// Clip
// The normal points from 1 to 2
public static void CollidePolygons(ref Manifold manifold,
PolygonShape polyA, XForm xfA, PolygonShape polyB, XForm xfB)
{
manifold.PointCount = 0;
float totalRadius = polyA._radius + polyB._radius;
int edgeA = 0;
float separationA = Collision.FindMaxSeparation(ref edgeA, polyA, xfA, polyB, xfB);
if (separationA > totalRadius)
return;
int edgeB = 0;
float separationB = Collision.FindMaxSeparation(ref edgeB, polyB, xfB, polyA, xfA);
if (separationB > totalRadius)
return;
PolygonShape poly1; // reference poly
PolygonShape poly2; // incident poly
XForm xf1, xf2;
int edge1; // reference edge
byte flip;
const float k_relativeTol = 0.98f;
const float k_absoluteTol = 0.001f;
if (separationB > k_relativeTol * separationA + k_absoluteTol)
{
poly1 = polyB;
poly2 = polyA;
xf1 = xfB;
xf2 = xfA;
edge1 = edgeB;
manifold.Type = ManifoldType.FaceB;
flip = 1;
}
else
{
poly1 = polyA;
poly2 = polyB;
xf1 = xfA;
xf2 = xfB;
edge1 = edgeA;
manifold.Type = ManifoldType.FaceA;
flip = 0;
}
ClipVertex[] incidentEdge;
Collision.FindIncidentEdge(out incidentEdge, poly1, xf1, edge1, poly2, xf2);
int count1 = poly1._vertexCount;
Vec2[] vertices1 = poly1._vertices;
Vec2 v11 = vertices1[edge1];
Vec2 v12 = edge1 + 1 < count1 ? vertices1[edge1 + 1] : vertices1[0];
Vec2 dv = v12 - v11;
Vec2 localNormal = Vec2.Cross(dv, 1.0f);
localNormal.Normalize();
Vec2 planePoint = 0.5f * (v11 + v12);
Vec2 sideNormal = Common.Math.Mul(xf1.R, v12 - v11);
sideNormal.Normalize();
Vec2 frontNormal = Vec2.Cross(sideNormal, 1.0f);
v11 = Common.Math.Mul(xf1, v11);
v12 = Common.Math.Mul(xf1, v12);
float frontOffset = Vec2.Dot(frontNormal, v11);
float sideOffset1 = -Vec2.Dot(sideNormal, v11);
float sideOffset2 = Vec2.Dot(sideNormal, v12);
// Clip incident edge against extruded edge1 side edges.
ClipVertex[] clipPoints1;
ClipVertex[] clipPoints2;
int np;
// Clip to box side 1
np = Collision.ClipSegmentToLine(out clipPoints1, incidentEdge, -sideNormal, sideOffset1);
if (np < 2)
return;
// Clip to negative box side 1
np = ClipSegmentToLine(out clipPoints2, clipPoints1, sideNormal, sideOffset2);
if (np < 2)
return;
// Now clipPoints2 contains the clipped points.
manifold.LocalPlaneNormal = localNormal;
manifold.LocalPoint = planePoint;
int pointCount = 0;
for (int i = 0; i < Settings.MaxManifoldPoints; ++i)
{
float separation = Vec2.Dot(frontNormal, clipPoints2[i].V) - frontOffset;
if (separation <= totalRadius)
{
ManifoldPoint cp = manifold.Points[pointCount];
cp.LocalPoint = Common.Math.MulT(xf2, clipPoints2[i].V);
cp.ID = clipPoints2[i].ID;
cp.ID.Features.Flip = flip;
++pointCount;
}
}
manifold.PointCount = pointCount;
}
}
}
|