summaryrefslogtreecommitdiff
path: root/src/math/mat.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/mat.c')
-rw-r--r--src/math/mat.c755
1 files changed, 755 insertions, 0 deletions
diff --git a/src/math/mat.c b/src/math/mat.c
new file mode 100644
index 0000000..84a5a41
--- /dev/null
+++ b/src/math/mat.c
@@ -0,0 +1,755 @@
+#include <math.h>
+#include <stdio.h>
+#include <string.h>
+
+#include "math.h"
+#include "../util/assert.h"
+#include "../core/mem.h"
+
+
+static Mat4 sharedMat;
+static Mat4 sharedMat2;
+static Vec4 sharedVec4;
+
+Mat4 mat4identity = {
+ 1,0,0,0,
+ 0,1,0,0,
+ 0,0,1,0,
+ 0,0,0,1
+};
+
+#define shrmat(p) \
+do{\
+sharedMat = *p;\
+p = &sharedMat;\
+}while(0)
+
+#define shrmat2(p) \
+do{\
+sharedMat2 = *p;\
+p = &sharedMat2;\
+}while(0)
+
+void mat4_tostring(Mat4* m, char str[]) {
+ ssrM_zero(str, sizeof(str));
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ sprintf(str, "%8.3f ", MAT(m, r, c) == -0 ? +0 : MAT(m, r, c));
+ str += strlen(str);
+ }
+ if(r != 3) sprintf(str, "\n");
+ str += strlen(str);
+ }
+}
+
+void mat4_print(Mat4* m) {
+ mat4_tostring(m, printbuffer);
+ printf("\n%s\n", printbuffer);
+}
+
+void mat4_zero(Mat4* out) {
+ ssr_assert(out);
+ ssrM_zero(out, sizeof(Mat4));
+}
+
+void mat4_setidentity(Mat4* out) {
+ ssr_assert(out);
+ mat4_zero(out);
+ out->e00 = 1;
+ out->e11 = 1;
+ out->e22 = 1;
+ out->e33 = 1;
+}
+
+void mat4_setortho(float l, float r, float b, float t, float n, float f, Mat4* out) {
+ ssr_assert(out);
+ mat4_zero(out);
+ out->e00 = 2 / (r - l);
+ out->e03 = -(r + l) / (r - l);
+ out->e11 = 2 / (t - b);
+ out->e13 = -(t + b) / (t - b);
+ out->e22 = -2 / (f - n);
+ out->e23 = -(f + n) / (f - n);
+ out->e33 = 1;
+}
+
+void mat4_setfrustum(float l, float r, float b, float t, float n, float f, Mat4* out) {
+ ssr_assert(out);
+ mat4_zero(out);
+ out->e00 = (2.f * n) / (r - l);
+ out->e02 = (r + l) / (r - l);
+ out->e11 = 2.f * n / (t - b);
+ out->e12 = (t + b) / (t - b);
+ out->e22 = -(f + n) / (f - n);
+ out->e23 = -2.f * f * n / (f - n);
+ out->e32 = -1;
+}
+
+void mat4_setperspective(float _fov, float aspect, float near, float far, Mat4* out) {
+ float fov = _fov * PI / 180.f;
+ float tanf = tan(fov * 0.5);
+ ssr_assert(fov > 0 && aspect > 0);
+ ssr_assert(near > 0 && far > 0 && near != far);
+ mat4_setfrustum(
+ -near*tanf*aspect,
+ near*tanf*aspect,
+ -near*tanf,
+ near*tanf,
+ near,
+ far,
+ out
+ );
+}
+
+static float _mul(float* r, float* c) {
+ return c[0] * r[0] + c[1] * r[4] + c[2] * r[8] + c[3] * r[12];
+}
+
+#define mul(r, c) _mul(&MAT(m1,r,0), &MAT(m2,0,c))
+
+void mat4_multiply(Mat4* m1, Mat4* m2, Mat4* out) {
+ ssr_assert(m1 && m2 && out);
+ if (mat4_isidentity(m1)) { if(m2 != out) *out = *m2; return; }
+ if (mat4_isidentity(m2)) { if(m1 != out) *out = *m1; return; }
+ if (m1 == out) shrmat(m1);
+ if (m2 == out) shrmat2(m2);
+
+ out->e00 = mul(0, 0); out->e01 = mul(0, 1); out->e02 = mul(0, 2); out->e03 = mul(0, 3);
+ out->e10 = mul(1, 0); out->e11 = mul(1, 1); out->e12 = mul(1, 2); out->e13 = mul(1, 3);
+ out->e20 = mul(2, 0); out->e21 = mul(2, 1); out->e22 = mul(2, 2); out->e23 = mul(2, 3);
+ out->e30 = mul(3, 0); out->e31 = mul(3, 1); out->e32 = mul(3, 2); out->e33 = mul(3, 3);
+}
+
+void mat4_setscale(float kx, float ky, float kz, Mat4* out) {
+ ssr_assert(out);
+ mat4_zero(out);
+ out->e00 = kx;
+ out->e11 = ky;
+ out->e22 = kz;
+ out->e33 = 1;
+}
+
+void mat4_setposition(float x, float y, float z, Mat4* out) {
+ ssr_assert(out);
+ mat4_setidentity(out);
+ out->e03 = x;
+ out->e13 = y;
+ out->e23 = z;
+}
+
+void mat4_setrotatez(float angle, Mat4* out) {
+ ssr_assert(out);
+ mat4_setidentity(out);
+ angle = radians(angle);
+ float s = sin(angle), c = cos(angle);
+ out->e00 = c; out->e01 = -s;
+ out->e10 = s; out->e11 = c;
+}
+
+void mat4_setrotatex(float angle, Mat4* out) {
+ ssr_assert(out);
+ mat4_setidentity(out);
+ angle = radians(angle);
+ float s = sin(angle), c = cos(angle);
+ out->e11 = c; out->e12 = -s;
+ out->e21 = s; out->e22 = c;
+}
+
+void mat4_setrotatey(float angle, Mat4* out) {
+ ssr_assert(out);
+ mat4_setidentity(out);
+ angle = radians(angle);
+ float s = sin(angle), c = cos(angle);
+ out->e00 = c; out->e02 = s;
+ out->e20 = -s; out->e22 = c;
+}
+
+/*https://www.geometrictools.com/Documentation/EulerAngles.pdf*/
+void mat4_setrotate(float angleX, float angleY, float angleZ, Mat4* out) {
+ ssr_assert(out);
+ mat4_setidentity(out);
+ angleX = radians(angleX); angleY = radians(angleY); angleZ = radians(angleZ);
+ float sx = sin(angleX), cx = cos(angleX);
+ float sy = sin(angleY), cy = cos(angleY);
+ float sz = sin(angleZ), cz = cos(angleZ);
+ out->e00 = cy * cz + sx * sy * sz; out->e01 = cz * sx*sy - cy * sz; out->e02 = cx * sy;
+ out->e10 = cx * sz; out->e11 = cx * cz; out->e12 = -sx;
+ out->e20 = -cz * sy + cy * sx * sz; out->e21 = cy * cz*sx + sy * sz; out->e22 = cx * cy;
+}
+
+void mat4_setaxisangle(Vec3* ax, float angle, Mat4* out) {
+ ssr_assert(ax && out);
+
+ float a = radians(angle);
+ float c = cos(a);
+ float s = sin(a);
+
+ Vec3 axis = *ax;
+ Vec3 temp;
+ vec3_normalize(&axis, &axis);
+ vec3_scale(&axis, 1 - c, &temp);
+
+ /*
+ rotation matrix 推导过程 https://zhuanlan.zhihu.com/p/56587491
+ X^2(1-c)+c, XY(1-c)-Zs, XZ(1-c)+Ys, 0
+ XY(1-c)+Zs, Y^2(1-c)+c, YZ(1-c)-Xs, 0
+ XZ(1-c)-Ys, YZ(1-c)+Xs, Z^2(1-c)+c, 0
+ 0, 0, 0, 1
+ */
+
+ mat4_setidentity(out);
+ out->m[0][0] = c + temp.x * axis.x;
+ out->m[0][1] = 0 + temp.x * axis.y + s * axis.z;
+ out->m[0][2] = 0 + temp.x * axis.z - s * axis.y;
+
+ out->m[1][0] = 0 + temp.y * axis.x - s * axis.z;
+ out->m[1][1] = c + temp.y * axis.y;
+ out->m[1][2] = 0 + temp.y * axis.z + s * axis.x;
+
+ out->m[2][0] = 0 + temp.z * axis.x + s * axis.y;
+ out->m[2][1] = 0 + temp.z * axis.y - s * axis.x;
+ out->m[2][2] = c + temp.z * axis.z;
+
+}
+
+void mat4_setorthonormalbias(Vec3* x, Vec3* y, Vec3* z, Mat4* out) {
+ ssr_assert(x && y && z);
+ mat4_setidentity(out);
+ Vec4 asix = { x->x, x->y, x->z, 0 };
+ Vec4 asiy = { y->x, y->y, y->z, 0 };
+ Vec4 asiz = { z->x, z->y, z->z, 0 };
+ out->colums[0] = asix;
+ out->colums[1] = asiy;
+ out->colums[2] = asiz;
+}
+
+bool mat4_isidentity(Mat4* m) {
+ ssr_assert(m);
+ //return memcmp(m, &mat4identity, sizeof(Mat4)) == 0;
+ return
+ compare(m->axisx.x, 1) && compare(m->axisx.y, 0) && compare(m->axisx.z,0) && compare(m->axisx.w, 0) &&
+ compare(m->axisy.x, 0) && compare(m->axisy.y, 1) && compare(m->axisy.z,0) && compare(m->axisy.w, 0) &&
+ compare(m->axisz.x, 0) && compare(m->axisz.y, 0) && compare(m->axisz.z,1) && compare(m->axisz.w, 0) &&
+ compare(m->pos.x, 0 ) && compare(m->pos.y, 0 ) && compare(m->pos.z, 0 ) &&compare( m->pos.w, 1);
+}
+
+bool mat4_isorthogonal(Mat4* m) {
+ ssr_assert(m);
+ Mat4 trans = {0}, res = { 0 };
+ mat4_transpose(m, &trans);
+ mat4_multiply(m, &trans, &res);
+ return mat4_isidentity(&res);
+}
+
+/*
+** 以z轴为准进行正交化,分为施密特正交化和叉乘正交化,施密特过程更加普遍,叉乘适用于三维空间,两种方法实际上等价
+** 如果用叉乘的方法,只需要关注yz,x通过叉乘得到
+*/
+void mat4_orthogonalize(Mat4* in, Mat4* out) {
+ ssr_assert(in && out);
+ if (in == out) {
+ shrmat(in);
+ }
+
+ mat4_setidentity(out);
+ Vec4 z = in->basis.z;
+ vec3_normalize(&z, &z);
+ Vec4 y = in->basis.y;
+ Vec4 x = {0};
+ vec3_cross(&y, &z, &x);
+ vec3_normalize(&x, &x);
+ vec3_cross(&z, &x, &y);
+ out->basis.x = x;
+ out->basis.y = y;
+ out->basis.z = z;
+
+ /*
+ mat4_setidentity(out);
+
+ Vec4 x = in->basis.x;
+ Vec4 y = in->basis.y;
+ Vec4 z = in->basis.z;
+ Vec3 temp, temp2;
+
+ vec3_normalize(&z, &z);
+ out->basis.z = z;
+
+ float dot = vec3_dot(&y, &z);
+ vec3_scale(&z, dot, &temp);
+ vec3_minus(&y, &temp, &y);
+ vec3_normalize(&y, &y);
+ out->basis.y = y;
+
+ vec3_cross(&y, &z, &out->basis.x);
+ */
+ /*针对右手系调整basis.x的方向*/
+ /*https://math.stackexchange.com/questions/1847465/why-to-use-gram-schmidt-process-to-orthonormalise-a-basis-instead-of-cross-produ*/
+ /*由于需要针对右手系,这里不这样计算,因为可能要对结果进行翻转
+ dot = vec3_dot(&x, &z);
+ vec3_scale(&z, dot, &temp);
+ vec3_minus(&x, &temp, &temp2);
+ dot = vec3_dot(&x, &y);
+ vec3_scale(&y, dot, &temp);
+ vec3_minus(&temp2, &temp, &x);
+ vec3_normalize(&x, &x);
+ out->basis.x = x;
+ */
+}
+
+bool mat4_setlookrotation(Vec3* view, Vec3* up, Mat4* out) {
+ ssr_assert(view && up && out);
+
+ /*正交化*/
+ float mag = vec3_magnitude(view);
+ if (mag < EPSILON) return 0;
+ Vec3 z;
+ vec3_scale(view, 1.f / mag, &z);
+
+ Vec3 x;
+ vec3_cross(up, &z, &x);
+ mag = vec3_magnitude(&x);
+ if (mag < EPSILON) return 0;
+ vec3_scale(&x, 1.f / mag, &x);
+
+ Vec3 y;
+ vec3_cross(&z, &x, &y);
+ mag = vec3_magnitude(&y);
+ if (!compare(mag, 1)) return 0;
+
+ mat4_setorthonormalbias(&x, &y, &z, out); /*xyz正交*/
+
+ return 1;
+}
+
+void mat4_applytovec4(Mat4* mat, Vec4* v, Vec4* out) {
+ ssr_assert(mat && v && out);
+ if (v == out) {
+ sharedVec4 = *v;
+ v = &sharedVec4;
+ }
+ out->x = mat->e00 * v->x + mat->e01 * v->y + mat->e02 * v->z + mat->e03 * v->w;
+ out->y = mat->e10 * v->x + mat->e11 * v->y + mat->e12 * v->z + mat->e13 * v->w;
+ out->z = mat->e20 * v->x + mat->e21 * v->y + mat->e22 * v->z + mat->e23 * v->w;
+ out->w = mat->e30 * v->x + mat->e31 * v->y + mat->e32 * v->z + mat->e33 * v->w;
+}
+
+#define trans(r, c) out->e##r##c = m->e##c##r
+
+void mat4_transpose(Mat4* m, Mat4* out) {
+ ssr_assert(m && out);
+ if (m == out) shrmat(m);
+
+ trans(0, 0); trans(0, 1); trans(0, 2); trans(0, 3);
+ trans(1, 0); trans(1, 1); trans(1, 2); trans(1, 3);
+ trans(2, 0); trans(2, 1); trans(2, 2); trans(2, 3);
+ trans(3, 0); trans(3, 1); trans(3, 2); trans(3, 3);
+}
+
+/*
+** 使用高斯消元法计算任意矩阵的逆矩阵。针对不含投影的3D变换矩阵,应该使用
+** mat4_invertgeneral3d()
+** 更快一些
+*/
+bool mat4_invertfull(Mat4* m, Mat4* out) {
+ ssr_assert(m && out);
+
+#define _m(r, c) MAT(m, r, c)
+ float wtmp[4][8] = {
+ { /*M*/ _m(0,0), _m(0, 1), _m(0, 2), _m(0, 3), /*I*/ 1, 0, 0, 0 },
+ { /*M*/ _m(1,0), _m(1, 1), _m(1, 2), _m(1, 3), /*I*/ 0, 1, 0, 0 },
+ { /*M*/ _m(2,0), _m(2, 1), _m(2, 2), _m(2, 3), /*I*/ 0, 0, 1, 0 },
+ { /*M*/ _m(3,0), _m(3, 1), _m(3, 2), _m(3, 3), /*I*/ 0, 0, 0, 1 },
+ };
+#undef _m
+ float m0, m1, m2, m3, s;
+ float *r0, *r1, *r2, *r3;
+ r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
+#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
+
+ //#define optimize(block) if(s!=0.f){block}
+#define optimize(block) block
+
+ /* choose pivot - or die */
+ if (absf(r3[0]) > absf(r2[0])) SWAP_ROWS(r3, r2);
+ if (absf(r2[0]) > absf(r1[0])) SWAP_ROWS(r2, r1);
+ if (absf(r1[0]) > absf(r0[0])) SWAP_ROWS(r1, r0);
+ if (0.0f == r0[0]) return 0;
+
+ /* eliminate first variable */
+ m1 = r1[0] / r0[0]; m2 = r2[0] / r0[0]; m3 = r3[0] / r0[0];
+ s = r0[1]; optimize(r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; )
+ s = r0[2]; optimize(r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; )
+ s = r0[3]; optimize(r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; )
+ s = r0[4]; optimize(r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; )
+ s = r0[5]; optimize(r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; )
+ s = r0[6]; optimize(r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; )
+ s = r0[7]; optimize(r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; )
+
+ /* choose pivot - or die */
+ if (absf(r3[1]) > absf(r2[1])) SWAP_ROWS(r3, r2);
+ if (absf(r2[1]) > absf(r1[1])) SWAP_ROWS(r2, r1);
+ if (0.0F == r1[1]) return 0;
+
+ /* eliminate second variable */
+ m2 = r2[1] / r1[1]; m3 = r3[1] / r1[1];
+ s = r1[2]; optimize(r2[2] -= m2 * s; r3[2] -= m3 * s; )
+ s = r1[3]; optimize(r2[3] -= m2 * s; r3[3] -= m3 * s; )
+ s = r1[4]; optimize(r2[4] -= m2 * s; r3[4] -= m3 * s; )
+ s = r1[5]; optimize(r2[5] -= m2 * s; r3[5] -= m3 * s; )
+ s = r1[6]; optimize(r2[6] -= m2 * s; r3[6] -= m3 * s; )
+ s = r1[7]; optimize(r2[7] -= m2 * s; r3[7] -= m3 * s; )
+
+ /* choose pivot - or die */
+ if (absf(r3[2])>absf(r2[2])) SWAP_ROWS(r3, r2);
+ if (0.0F == r2[2]) return 0;
+
+ /* eliminate third variable */
+ m3 = r3[2] / r2[2];
+ s = r2[3]; optimize(r3[3] -= m3 * s; )
+ s = r2[4]; optimize(r3[4] -= m3 * s; )
+ s = r2[5]; optimize(r3[5] -= m3 * s; )
+ s = r2[6]; optimize(r3[6] -= m3 * s; )
+ s = r2[7]; optimize(r3[7] -= m3 * s; )
+
+#undef optimize
+
+ /* last check */
+ if (0.0F == r3[3]) return 0;
+
+ s = 1.0F / r3[3]; /* now back substitute row 3 */
+ r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
+
+ m2 = r2[3]; /* now back substitute row 2 */
+ s = 1.0F / r2[2];
+ r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
+ r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
+ m1 = r1[3];
+ r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
+ r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
+ m0 = r0[3];
+ r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
+ r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
+
+ m1 = r1[2]; /* now back substitute row 1 */
+ s = 1.0F / r1[1];
+ r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
+ r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
+ m0 = r0[2];
+ r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
+ r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
+
+ m0 = r0[1]; /* now back substitute row 0 */
+ s = 1.0F / r0[0];
+ r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
+ r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
+
+ out->e00 = r0[4]; out->e01 = r0[5]; out->e02 = r0[6]; out->e03 = r0[7];
+ out->e10 = r1[4]; out->e11 = r1[5]; out->e12 = r1[6]; out->e13 = r1[7];
+ out->e20 = r2[4]; out->e21 = r2[5]; out->e22 = r2[6]; out->e23 = r2[7];
+ out->e30 = r3[4]; out->e31 = r3[5]; out->e32 = r3[6]; out->e33 = r3[7];
+
+#undef SWAP_ROWS
+
+ return 1;
+}
+
+/*
+** 对只包含基本3D变换的矩阵进行变换,先计算左上角3x3的RS矩阵的逆(通过伴随矩阵),然后
+** 乘上平移矩阵的逆矩阵,即
+** M^-1 = (T(RS))^-1 = (RS)^-1 * T^-1
+*/
+bool mat4_invertgeneral3d(Mat4* in, Mat4* out) {
+ ssr_assert(in && out);
+ if (in == out) shrmat(in);
+
+ mat4_setidentity(out);
+
+ /*计算左上角3x3矩阵的行列式*/
+ float pos = 0, neg = 0, t;
+ float det;
+
+ t = in->e00 * in->e11 * in->e22;
+ if (t >= 0) pos += t; else neg += t;
+ t = in->e10 * in->e21 * in->e02;
+ if (t >= 0) pos += t; else neg += t;
+ t = in->e20 * in->e01 * in->e12;
+ if (t >= 0) pos += t; else neg += t;
+
+ t = -in->e20 * in->e11 * in->e02;
+ if (t >= 0) pos += t; else neg += t;
+ t = -in->e10 * in->e01 * in->e22;
+ if (t >= 0) pos += t; else neg += t;
+ t = -in->e00 * in->e21 * in->e12;
+ if (t >= 0) pos += t; else neg += t;
+
+ det = pos + neg;
+
+ if (det * det < 1e-25)
+ return 0; /*行列式为0*/
+
+ det = 1.f / det;
+ MAT(out, 0, 0) = ((MAT(in, 1, 1)*MAT(in, 2, 2) - MAT(in, 2, 1)*MAT(in, 1, 2))*det);
+ MAT(out, 0, 1) = (-(MAT(in, 0, 1)*MAT(in, 2, 2) - MAT(in, 2, 1)*MAT(in, 0, 2))*det);
+ MAT(out, 0, 2) = ((MAT(in, 0, 1)*MAT(in, 1, 2) - MAT(in, 1, 1)*MAT(in, 0, 2))*det);
+ MAT(out, 1, 0) = (-(MAT(in, 1, 0)*MAT(in, 2, 2) - MAT(in, 2, 0)*MAT(in, 1, 2))*det);
+ MAT(out, 1, 1) = ((MAT(in, 0, 0)*MAT(in, 2, 2) - MAT(in, 2, 0)*MAT(in, 0, 2))*det);
+ MAT(out, 1, 2) = (-(MAT(in, 0, 0)*MAT(in, 1, 2) - MAT(in, 1, 0)*MAT(in, 0, 2))*det);
+ MAT(out, 2, 0) = ((MAT(in, 1, 0)*MAT(in, 2, 1) - MAT(in, 2, 0)*MAT(in, 1, 1))*det);
+ MAT(out, 2, 1) = (-(MAT(in, 0, 0)*MAT(in, 2, 1) - MAT(in, 2, 0)*MAT(in, 0, 1))*det);
+ MAT(out, 2, 2) = ((MAT(in, 0, 0)*MAT(in, 1, 1) - MAT(in, 1, 0)*MAT(in, 0, 1))*det);
+
+ // 乘T^-1
+ MAT(out, 0, 3) = -(MAT(in, 0, 3) * MAT(out, 0, 0) +
+ MAT(in, 1, 3) * MAT(out, 0, 1) +
+ MAT(in, 2, 3) * MAT(out, 0, 2));
+ MAT(out, 1, 3) = -(MAT(in, 0, 3) * MAT(out, 1, 0) +
+ MAT(in, 1, 3) * MAT(out, 1, 1) +
+ MAT(in, 2, 3) * MAT(out, 1, 2));
+ MAT(out, 2, 3) = -(MAT(in, 0, 3) * MAT(out, 2, 0) +
+ MAT(in, 1, 3) * MAT(out, 2, 1) +
+ MAT(in, 2, 3) * MAT(out, 2, 2));
+
+ return 1;
+}
+
+void mat4_invertpos(Mat4* in, Mat4* out) {
+
+}
+
+void mat4_invertscale(Mat4* in, Mat4* out) {
+
+}
+
+void mat4_invertrot(Mat4* in, Mat4* out) {
+ ssr_assert(in && out);
+ mat4_transpose(in, out);
+}
+
+void mat4_settr(Vec3* pos, Quat* rot, Mat4* out) {
+ ssr_assert(pos && rot && out);
+ mat4_zero(out);
+ quat_tomat4(rot, out);
+ out->e03 = pos->x;
+ out->e13 = pos->y;
+ out->e23 = pos->z;
+}
+
+void mat4_settrs(Vec3* pos, Quat* rot, Vec3* scale, Mat4* out) {
+ ssr_assert(pos && rot && scale && out);
+ mat4_zero(out);
+ quat_tomat4(rot, out); /*pos*rot*scale的顺序*/
+ out->e00 *= scale->x; out->e01 *= scale->y; out->e02 *= scale->z;
+ out->e10 *= scale->x; out->e11 *= scale->y; out->e12 *= scale->z;
+ out->e20 *= scale->x; out->e21 *= scale->y; out->e22 *= scale->z;
+ out->e03 = pos->x;
+ out->e13 = pos->y;
+ out->e23 = pos->z;
+}
+
+void mat4_settrinverse(Vec3* pos, Quat* rot, Mat4* out) {
+ ssr_assert(pos && rot && out);
+ mat4_zero(out);
+ quat_invert(rot, rot);
+ quat_tomat4(rot, out);
+ Vec3 reverse = { -pos->x, -pos->y, -pos->z};
+ mat4_translate(out, &reverse, out); /* (TR)^-1 = R^-1*T^-1所以这里是右乘*/
+}
+
+void mat4_scale(Mat4* m, Vec3* scale, Mat4* out) {
+ ssr_assert(m && scale && out);
+ if (out != m) {
+ *out = *m;
+ }
+ /*
+ scale matrix
+ x, 0, 0, 0,
+ 0, y, 0, 0,
+ 0, 0, z, 0,
+ 0, 0, 0, 1
+ */
+ out->e00 *= scale->x;
+ out->e10 *= scale->x;
+ out->e20 *= scale->x;
+ out->e30 *= scale->x;
+
+ out->e01 *= scale->y;
+ out->e11 *= scale->y;
+ out->e21 *= scale->y;
+ out->e31 *= scale->y;
+
+ out->e02 *= scale->z;
+ out->e12 *= scale->z;
+ out->e22 *= scale->z;
+ out->e32 *= scale->z;
+}
+
+void mat4_translate(Mat4* m, Vec3* pos, Mat4* out) {
+ ssr_assert(m && pos && out);
+ if (out != m) {
+ *out = *m;
+ }
+ /*
+ translate matrix
+ 1, 0, 0, x,
+ 0, 1, 0, y,
+ 0, 0, 1, z,
+ 0, 0, 0, 1,
+ */
+ out->e03 = out->e00 * pos->x + out->e01 * pos->y + out->e02 * pos->z + out->e03;
+ out->e13 = out->e10 * pos->x + out->e11 * pos->y + out->e12 * pos->z + out->e13;
+ out->e23 = out->e20 * pos->x + out->e21 * pos->y + out->e22 * pos->z + out->e23;
+ out->e33 = out->e30 * pos->x + out->e31 * pos->y + out->e32 * pos->z + out->e33;
+}
+
+void mat4_rotate(Mat4* m, float angle, Vec3* ax, Mat4* out) {
+ ssr_assert(m && ax && out);
+ Mat4 rot;
+ mat4_setaxisangle(ax, angle, &rot);
+ mat4_multiply(m, &rot, out);
+}
+
+void mat4_decomposetrs(Mat4* src, Vec3* pos, Quat* quat, Vec3* scale) {
+ ssr_assert(src && pos && quat && scale);
+
+ Vec3* x = &src->colums[0];
+ Vec3* y = &src->colums[1];
+ Vec3* z = &src->colums[2];
+ Vec3* w = &src->colums[3];
+
+ *pos = *w;
+
+ quat_setlookrotation(z, y, quat);
+
+ scale->x = vec3_magnitude(x);
+ scale->y = vec3_magnitude(y);
+ scale->z = vec3_magnitude(z);
+}
+
+static void MakePositive(Euler* euler) {/*弧度制欧拉角*/
+ const float negativeFlip = -0.0001F;
+ const float positiveFlip = (PI * 2.0F) - 0.0001F;
+
+ if (euler->x < negativeFlip)
+ euler->x += 2.0 * PI;
+ else if (euler->x > positiveFlip)
+ euler->x -= 2.0 * PI;
+
+ if (euler->y < negativeFlip)
+ euler->y += 2.0 * PI;
+ else if (euler->y > positiveFlip)
+ euler->y -= 2.0 * PI;
+
+ if (euler->z < negativeFlip)
+ euler->z += 2.0 * PI;
+ else if (euler->z > positiveFlip)
+ euler->z -= 2.0 * PI;
+}
+
+static void SanitizeEuler(Euler* e) {/*弧度制欧拉角*/
+ MakePositive(e);
+}
+
+/*from unity src*/
+bool mat4_toeuler(Mat4* in, Euler* out) {
+ ssr_assert(in && out);
+ // from http://www.geometrictools.com/Documentation/EulerAngles.pdf
+ // YXZ order
+ if (MAT(in, 1, 2) < 0.999F) // some fudge for imprecision
+ {
+ if (MAT(in, 1, 2) > -0.999F) // some fudge for imprecision
+ {
+ out->x = asin(-MAT(in, 1, 2));
+ out->y = atan2(MAT(in, 0, 2), MAT(in, 2, 2));
+ out->z = atan2(MAT(in, 1, 0), MAT(in, 1, 1));
+ //euler_rad2deg(out, out);
+ SanitizeEuler(out);
+ euler_rad2deg(out, out);
+ return 1;
+ }
+ else
+ {
+ // WARNING. Not unique. YA - ZA = atan2(r01,r00)
+ out->x = PI * 0.5F;
+ out->y = atan2(MAT(in, 0, 1), MAT(in, 0, 0));
+ out->z = 0.0F;
+ //euler_rad2deg(out, out);
+ SanitizeEuler(out);
+ euler_rad2deg(out, out);
+ return 0;
+ }
+ }
+ else
+ {
+ // WARNING. Not unique. YA + ZA = atan2(-r01,r00)
+ out->x = -PI * 0.5F;
+ out->y = atan2(-MAT(in, 0, 1), MAT(in, 0, 0));
+ out->z = 0.0F;
+ //euler_rad2deg(out, out);
+ SanitizeEuler(out);
+ euler_rad2deg(out, out);
+ return 0;
+ }
+}
+
+/*from unity src*/
+/*https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/*/
+void mat4_toquat(Mat4* in, Quat* out) {
+ // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
+ // article "Quaternionf Calculus and Fast Animation".
+ float fTrace = MAT(in, 0, 0) + MAT(in, 1, 1) + MAT(in, 2, 2);
+ float fRoot;
+
+ if (fTrace > 0.0f)
+ {
+ // |w| > 1/2, may as well choose w > 1/2
+ fRoot = sqrt(fTrace + 1.0f); // 2w
+ out->w = 0.5f*fRoot;
+ fRoot = 0.5f / fRoot; // 1/(4w)
+ out->x = (MAT(in, 2, 1) - MAT(in, 1, 2))*fRoot;
+ out->y = (MAT(in, 0, 2) - MAT(in, 2, 0))*fRoot;
+ out->z = (MAT(in, 1, 0) - MAT(in, 0, 1))*fRoot;
+ }
+ else
+ {
+ // |w| <= 1/2
+ int s_iNext[3] = { 1, 2, 0 };
+ int i = 0;
+ if (MAT(in, 1, 1) > MAT(in, 0, 0))
+ i = 1;
+ if (MAT(in, 2, 2) > MAT(in, i, i))
+ i = 2;
+ int j = s_iNext[i];
+ int k = s_iNext[j];
+
+ fRoot = sqrt(MAT(in, i, i) - MAT(in, j, j) - MAT(in, k, k) + 1.0f);
+ float* apkQuat[3] = { &out->x, &out->y, &out->z };
+ ssr_assert(fRoot >= EPSILON);
+ *apkQuat[i] = 0.5f*fRoot;
+ fRoot = 0.5f / fRoot;
+ out->w = (MAT(in, k, j) - MAT(in, j, k)) * fRoot;
+ *apkQuat[j] = (MAT(in, j, i) + MAT(in, i, j))*fRoot;
+ *apkQuat[k] = (MAT(in, k, i) + MAT(in, i, k))*fRoot;
+ }
+ quat_normalize(out, out);
+}
+
+void mat3_applytovec3(Mat3* m, Vec3* v, Vec3* out) {
+ ssr_assert(m && v && out);
+ out->x = m->e00 * v->x + m->e01 * v->y + m->e02 * v->z;
+ out->y = m->e10 * v->x + m->e11 * v->y + m->e12 * v->z;
+ out->z = m->e20 * v->x + m->e21 * v->y + m->e22 * v->z;
+}
+
+void mat23_applytovec3(Mat23* m, Vec3* v, Vec2* out) {
+ ssr_assert(m && v && out);
+ out->x = m->e00 * v->x + m->e01 * v->y + m->e02 * v->z;
+ out->y = m->e10 * v->x + m->e11 * v->y + m->e12 * v->z;
+}
+
+void mat43_applytovec3(Mat43* m, Vec3* v, Vec4* out) {
+ ssr_assert(m && v && out);
+ out->x = m->e00 * v->x + m->e01 * v->y + m->e02 * v->z;
+ out->y = m->e10 * v->x + m->e11 * v->y + m->e12 * v->z;
+ out->z = m->e20 * v->x + m->e21 * v->y + m->e22 * v->z;
+ out->w = m->e30 * v->x + m->e31 * v->y + m->e32 * v->z;
+} \ No newline at end of file