summaryrefslogtreecommitdiff
path: root/src/math/mat.c
blob: e3c6ce31d8b290dd0e33e6494667a5e575cc5f8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
#include <math.h>
#include <stdio.h>
#include <string.h>

#include "math.h"
#include "../util/assert.h"
#include "../core/mem.h"


static Mat4 sharedMat;
static Mat4 sharedMat2;
static Vec3 sharedVec3;
static Vec4 sharedVec4;

Mat4 mat4identity = {
	1,0,0,0,
	0,1,0,0,
	0,0,1,0,
	0,0,0,1
};

#define shrmat(p) \
do{\
sharedMat = *p;\
p = &sharedMat;\
}while(0)

#define shrmat2(p) \
do{\
sharedMat2 = *p;\
p = &sharedMat2;\
}while(0)

void internal_mat4_tostring(Mat4* m, char str[]) {
	ssrM_zero(str, sizeof(str));
	for (int r = 0; r < 4; ++r) {
		for (int c = 0; c < 4; ++c) {
			sprintf(str, "%8.3f ", MAT(m, r, c) == -0 ? +0 : MAT(m, r, c));
			str += strlen(str);
		}
		if(r != 3) sprintf(str, "\n");
		str += strlen(str);
	}
}

void internal_mat4_print(Mat4* m) {
	internal_mat4_tostring(m, printbuffer);
	printf("\n%s\n", printbuffer);
}

void internal_mat4_zero(Mat4* out) {
	ssr_assert(out);
	ssrM_zero(out, sizeof(Mat4));
}

void internal_mat4_setidentity(Mat4* out) {
	ssr_assert(out);
	internal_mat4_zero(out);
	out->e00 = 1; 
	out->e11 = 1; 
	out->e22 = 1; 
	out->e33 = 1;
}

void internal_mat4_setortho(float l, float r, float b, float t, float n, float f, Mat4* out) {
	ssr_assert(out);
	internal_mat4_zero(out);
	out->e00 = 2 / (r - l);
	out->e03 = -(r + l) / (r - l);
	out->e11 = 2 / (t - b);
	out->e13 = -(t + b) / (t - b);
	out->e22 = -2 / (f - n);
	out->e23 = -(f + n) / (f - n);
	out->e33 = 1;
}

void internal_mat4_setfrustum(float l, float r, float b, float t, float n, float f, Mat4* out) {
	ssr_assert(out);
	internal_mat4_zero(out);
	out->e00 = (2.f * n) / (r - l);
	out->e02 = (r + l) / (r - l);
	out->e11 = 2.f * n / (t - b);
	out->e12 = (t + b) / (t - b);
	out->e22 = -(f + n) / (f - n);
	out->e23 = -2.f * f * n / (f - n);
	out->e32 = -1;
}

void internal_mat4_setperspective(float _fov, float aspect, float near, float far, Mat4* out) {
	float fov = _fov * PI / 180.f;
	float tanf = tan(fov * 0.5);
	ssr_assert(fov > 0 && aspect > 0);
	ssr_assert(near > 0 && far > 0 && near != far);
	internal_mat4_setfrustum(
	  -near*tanf*aspect,
		near*tanf*aspect,
		-near*tanf,
		near*tanf, 
		near, 
		far,
		out
	);
}

static float _mul(float* r, float* c) {
	return c[0] * r[0] + c[1] * r[4] + c[2] * r[8] + c[3] * r[12];
}

#define mul(r, c) _mul(&MAT(m1,r,0), &MAT(m2,0,c))

void internal_mat4_multiply(Mat4* m1, Mat4* m2, Mat4* out) {
	ssr_assert(m1 && m2 && out);
	if (internal_mat4_isidentity(m1)) { if(m2 != out) *out = *m2; return; }
	if (internal_mat4_isidentity(m2)) { if(m1 != out) *out = *m1; return; }
	if (m1 == out) shrmat(m1);
	if (m2 == out) shrmat2(m2);

	out->e00 = mul(0, 0); out->e01 = mul(0, 1); out->e02 = mul(0, 2); out->e03 = mul(0, 3);
	out->e10 = mul(1, 0); out->e11 = mul(1, 1); out->e12 = mul(1, 2); out->e13 = mul(1, 3);
	out->e20 = mul(2, 0); out->e21 = mul(2, 1); out->e22 = mul(2, 2); out->e23 = mul(2, 3);
	out->e30 = mul(3, 0); out->e31 = mul(3, 1); out->e32 = mul(3, 2); out->e33 = mul(3, 3);
}

void internal_mat4_setscale(float kx, float ky, float kz, Mat4* out) {
	ssr_assert(out);
	internal_mat4_zero(out);
	out->e00 = kx;
	out->e11 = ky;
	out->e22 = kz;
	out->e33 = 1;
}

void internal_mat4_setposition(float x, float y, float z, Mat4* out) {
	ssr_assert(out);
	internal_mat4_setidentity(out);
	out->e03 = x;
	out->e13 = y;
	out->e23 = z;
}

void internal_mat4_setrotatez(float angle, Mat4* out) {
	ssr_assert(out);
	internal_mat4_setidentity(out);
	angle = radians(angle);
	float s = sin(angle), c = cos(angle);
	out->e00 = c; out->e01 = -s;
	out->e10 = s; out->e11 = c;
}

void internal_mat4_setrotatex(float angle, Mat4* out) {
	ssr_assert(out);
	internal_mat4_setidentity(out);
	angle = radians(angle);
	float s = sin(angle), c = cos(angle);
	out->e11 = c; out->e12 = -s; 
	out->e21 = s; out->e22 = c;
}

void internal_mat4_setrotatey(float angle, Mat4* out) {
	ssr_assert(out);
	internal_mat4_setidentity(out);
	angle = radians(angle);
	float s = sin(angle), c = cos(angle);
	out->e00 = c; out->e02 = s;
	out->e20 = -s; out->e22 = c;
}

/*https://www.geometrictools.com/Documentation/EulerAngles.pdf*/
void internal_mat4_setrotate(float angleX, float angleY, float angleZ, Mat4* out) {
	ssr_assert(out);
	internal_mat4_setidentity(out);
	angleX = radians(angleX); angleY = radians(angleY); angleZ = radians(angleZ);
	float sx = sin(angleX), cx = cos(angleX);
	float sy = sin(angleY), cy = cos(angleY);
	float sz = sin(angleZ), cz = cos(angleZ);
	out->e00 = cy * cz + sx * sy * sz;  out->e01 = cz * sx*sy - cy * sz; out->e02 = cx * sy;
	out->e10 = cx * sz;                 out->e11 = cx * cz;              out->e12 = -sx;
	out->e20 = -cz * sy + cy * sx * sz; out->e21 = cy * cz*sx + sy * sz; out->e22 = cx * cy;
}

void internal_mat4_setaxisangle(Vec3* ax, float angle, Mat4* out) {
	ssr_assert(ax && out);

	float a = radians(angle);
	float c = cos(a);
	float s = sin(a);

	Vec3 axis = *ax;
	Vec3 temp;
	internal_vec3_normalize(&axis, &axis);
	internal_vec3_scale(&axis, 1 - c, &temp);

	/*
	rotation matrix 推导过程 https://zhuanlan.zhihu.com/p/56587491
	X^2(1-c)+c, XY(1-c)-Zs, XZ(1-c)+Ys, 0
	XY(1-c)+Zs, Y^2(1-c)+c, YZ(1-c)-Xs, 0
	XZ(1-c)-Ys, YZ(1-c)+Xs, Z^2(1-c)+c, 0
	0,          0,          0, 1
	*/

	internal_mat4_setidentity(out);
	out->m[0][0] = c + temp.x * axis.x;
	out->m[0][1] = 0 + temp.x * axis.y + s * axis.z;
	out->m[0][2] = 0 + temp.x * axis.z - s * axis.y;

	out->m[1][0] = 0 + temp.y * axis.x - s * axis.z;
	out->m[1][1] = c + temp.y * axis.y;
	out->m[1][2] = 0 + temp.y * axis.z + s * axis.x;

	out->m[2][0] = 0 + temp.z * axis.x + s * axis.y;
	out->m[2][1] = 0 + temp.z * axis.y - s * axis.x;
	out->m[2][2] = c + temp.z * axis.z;

}

void internal_mat4_setorthonormalbias(Vec3* x, Vec3* y, Vec3* z, Mat4* out) {
	ssr_assert(x && y && z);
	internal_mat4_setidentity(out);
	Vec4 asix = { x->x, x->y, x->z, 0 };
	Vec4 asiy = { y->x, y->y, y->z, 0 };
	Vec4 asiz = { z->x, z->y, z->z, 0 };
	out->colums[0] = asix;
	out->colums[1] = asiy;
	out->colums[2] = asiz;
}

bool internal_mat4_isidentity(Mat4* m) {
	ssr_assert(m);
	//return memcmp(m, &mat4identity, sizeof(Mat4)) == 0;
	return
		compare(m->axisx.x, 1) && compare(m->axisx.y, 0) && compare(m->axisx.z,0) && compare(m->axisx.w, 0) &&
		compare(m->axisy.x, 0) && compare(m->axisy.y, 1) && compare(m->axisy.z,0) && compare(m->axisy.w, 0) &&
		compare(m->axisz.x, 0) && compare(m->axisz.y, 0) && compare(m->axisz.z,1) && compare(m->axisz.w, 0) &&
		compare(m->pos.x, 0  ) && compare(m->pos.y, 0  ) && compare(m->pos.z, 0  ) &&compare( m->pos.w, 1);
}

bool internal_mat4_isorthogonal(Mat4* m) {
	ssr_assert(m);
	Mat4 trans = {0}, res = { 0 };
	internal_mat4_transpose(m, &trans);
	internal_mat4_multiply(m, &trans, &res);
	return internal_mat4_isidentity(&res);
}

/*
** 以z轴为准进行正交化,分为施密特正交化和叉乘正交化,施密特过程更加普遍,叉乘适用于三维空间,两种方法实际上等价
** 如果用叉乘的方法,只需要关注yz,x通过叉乘得到
*/
void internal_mat4_orthogonalize(Mat4* in, Mat4* out) {
	ssr_assert(in && out);
	if (in == out) {
		shrmat(in);
	}
	
	internal_mat4_setidentity(out);
	Vec4 z = in->basis.z;
	internal_vec3_normalize(&z, &z);
	Vec4 y = in->basis.y;
	Vec4 x = {0};
	internal_vec3_cross(&y, &z, &x);
	internal_vec3_normalize(&x, &x);
	internal_vec3_cross(&z, &x, &y);
	out->basis.x = x;
	out->basis.y = y;
	out->basis.z = z;
	
	/*
	internal_mat4_setidentity(out);

	Vec4 x = in->basis.x;
	Vec4 y = in->basis.y;
	Vec4 z = in->basis.z;
	Vec3 temp, temp2;

	internal_vec3_normalize(&z, &z);
	out->basis.z = z;

	float dot = internal_vec3_dot(&y, &z);
	internal_vec3_scale(&z, dot, &temp);
	internal_vec3_minus(&y, &temp, &y);
	internal_vec3_normalize(&y, &y);
	out->basis.y = y;

	internal_vec3_cross(&y, &z, &out->basis.x);
	*/
	/*针对右手系调整basis.x的方向*/ 
	/*https://math.stackexchange.com/questions/1847465/why-to-use-gram-schmidt-process-to-orthonormalise-a-basis-instead-of-cross-produ*/
	/*由于需要针对右手系,这里不这样计算,因为可能要对结果进行翻转
	dot = internal_vec3_dot(&x, &z);
	internal_vec3_scale(&z, dot, &temp);
	internal_vec3_minus(&x, &temp, &temp2);
	dot = internal_vec3_dot(&x, &y);
	internal_vec3_scale(&y, dot, &temp);
	internal_vec3_minus(&temp2, &temp, &x);
	internal_vec3_normalize(&x, &x);
	out->basis.x = x;
	*/
}

bool internal_mat4_setlookrotation(Vec3* view, Vec3* up, Mat4* out) {
	ssr_assert(view && up && out);

	/*正交化*/
	float mag = internal_vec3_magnitude(view);
	if (mag < EPSILON) return 0;
	Vec3 z;
	internal_vec3_scale(view, 1.f / mag, &z);

	Vec3 x;
	internal_vec3_cross(up, &z, &x);
	mag = internal_vec3_magnitude(&x);
	if (mag < EPSILON) return 0;
	internal_vec3_scale(&x, 1.f / mag, &x);

	Vec3 y;
	internal_vec3_cross(&z, &x, &y);
	mag = internal_vec3_magnitude(&y);
	if (!compare(mag, 1)) return 0;

	internal_mat4_setorthonormalbias(&x, &y, &z, out); /*xyz正交*/

	return 1;
}

void internal_mat4_mulvec4(Mat4* mat, Vec4* v, Vec4* out) {
	ssr_assert(mat && v && out);
	if (v == out) {
		sharedVec4 = *v;
		v = &sharedVec4;
	}
	out->x = mat->e00 * v->x + mat->e01 * v->y + mat->e02 * v->z + mat->e03 * v->w;
	out->y = mat->e10 * v->x + mat->e11 * v->y + mat->e12 * v->z + mat->e13 * v->w;
	out->z = mat->e20 * v->x + mat->e21 * v->y + mat->e22 * v->z + mat->e23 * v->w;
	out->w = mat->e30 * v->x + mat->e31 * v->y + mat->e32 * v->z + mat->e33 * v->w;
}

/*
** mat3 apply to vec3
*/
void internal_mat4_mulvec3(Mat4* mat, Vec3* v, Vec3* out) {
	ssr_assert(mat && v && out);
	if (v == out) {
		sharedVec3 = *v;
		v = &sharedVec3;
	}
	out->x = mat->e00 * v->x + mat->e01 * v->y + mat->e02 * v->z;
	out->y = mat->e10 * v->x + mat->e11 * v->y + mat->e12 * v->z;
	out->z = mat->e20 * v->x + mat->e21 * v->y + mat->e22 * v->z;
}

#define trans(r, c) out->e##r##c = m->e##c##r

void internal_mat4_transpose(Mat4* m, Mat4* out) {
	ssr_assert(m && out);
	if (m == out) shrmat(m);

	trans(0, 0); trans(0, 1); trans(0, 2); trans(0, 3);
	trans(1, 0); trans(1, 1); trans(1, 2); trans(1, 3);
	trans(2, 0); trans(2, 1); trans(2, 2); trans(2, 3);
	trans(3, 0); trans(3, 1); trans(3, 2); trans(3, 3);
}

/*
** 使用高斯消元法计算任意矩阵的逆矩阵。针对不含投影的3D变换矩阵,应该使用
** internal_mat4_invertgeneral3d() 
** 更快一些
*/
bool internal_mat4_invertfull(Mat4* m, Mat4* out) {
	ssr_assert(m && out);

#define _m(r, c) MAT(m, r, c)
	float wtmp[4][8] = {
		{ /*M*/ _m(0,0), _m(0, 1), _m(0, 2), _m(0, 3), /*I*/ 1, 0, 0, 0 },
		{ /*M*/ _m(1,0), _m(1, 1), _m(1, 2), _m(1, 3), /*I*/ 0, 1, 0, 0 },
		{ /*M*/ _m(2,0), _m(2, 1), _m(2, 2), _m(2, 3), /*I*/ 0, 0, 1, 0 },
		{ /*M*/ _m(3,0), _m(3, 1), _m(3, 2), _m(3, 3), /*I*/ 0, 0, 0, 1 },
	};
#undef _m
	float m0, m1, m2, m3, s;
	float *r0, *r1, *r2, *r3;
	r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }

	//#define optimize(block) if(s!=0.f){block}
#define optimize(block) block

	/* choose pivot - or die */
	if (absf(r3[0]) > absf(r2[0])) SWAP_ROWS(r3, r2);
	if (absf(r2[0]) > absf(r1[0])) SWAP_ROWS(r2, r1);
	if (absf(r1[0]) > absf(r0[0])) SWAP_ROWS(r1, r0);
	if (0.0f == r0[0]) return 0;

	/* eliminate first variable */
	m1 = r1[0] / r0[0]; m2 = r2[0] / r0[0]; m3 = r3[0] / r0[0];
	s = r0[1]; optimize(r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; )
	s = r0[2]; optimize(r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; )
	s = r0[3]; optimize(r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; )
	s = r0[4]; optimize(r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; )
	s = r0[5]; optimize(r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; )
	s = r0[6]; optimize(r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; )
	s = r0[7]; optimize(r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; )

	/* choose pivot - or die */
	if (absf(r3[1]) > absf(r2[1])) SWAP_ROWS(r3, r2);
	if (absf(r2[1]) > absf(r1[1])) SWAP_ROWS(r2, r1);
	if (0.0F == r1[1]) return 0;

	/* eliminate second variable */
	m2 = r2[1] / r1[1]; m3 = r3[1] / r1[1];
	s = r1[2]; optimize(r2[2] -= m2 * s; r3[2] -= m3 * s; )
	s = r1[3]; optimize(r2[3] -= m2 * s; r3[3] -= m3 * s; )
	s = r1[4]; optimize(r2[4] -= m2 * s; r3[4] -= m3 * s; )
	s = r1[5]; optimize(r2[5] -= m2 * s; r3[5] -= m3 * s; )
	s = r1[6]; optimize(r2[6] -= m2 * s; r3[6] -= m3 * s; )
	s = r1[7]; optimize(r2[7] -= m2 * s; r3[7] -= m3 * s; )

	/* choose pivot - or die */
	if (absf(r3[2])>absf(r2[2])) SWAP_ROWS(r3, r2);
	if (0.0F == r2[2]) return 0;

	/* eliminate third variable */
	m3 = r3[2] / r2[2];
	s = r2[3]; optimize(r3[3] -= m3 * s; )
	s = r2[4]; optimize(r3[4] -= m3 * s; )
	s = r2[5]; optimize(r3[5] -= m3 * s; )
	s = r2[6]; optimize(r3[6] -= m3 * s; )
	s = r2[7]; optimize(r3[7] -= m3 * s; )

#undef optimize

	/* last check */
	if (0.0F == r3[3]) return 0;

	s = 1.0F / r3[3];             /* now back substitute row 3 */
	r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;

	m2 = r2[3];                 /* now back substitute row 2 */
	s = 1.0F / r2[2];
	r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
	r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
	m1 = r1[3];
	r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
	r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
	m0 = r0[3];
	r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
	r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;

	m1 = r1[2];                 /* now back substitute row 1 */
	s = 1.0F / r1[1];
	r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
	r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
	m0 = r0[2];
	r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
	r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;

	m0 = r0[1];                 /* now back substitute row 0 */
	s = 1.0F / r0[0];
	r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
	r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);

	out->e00 = r0[4]; out->e01 = r0[5]; out->e02 = r0[6]; out->e03 = r0[7];
	out->e10 = r1[4]; out->e11 = r1[5]; out->e12 = r1[6]; out->e13 = r1[7];
	out->e20 = r2[4]; out->e21 = r2[5]; out->e22 = r2[6]; out->e23 = r2[7];
	out->e30 = r3[4]; out->e31 = r3[5]; out->e32 = r3[6]; out->e33 = r3[7];

#undef SWAP_ROWS

	return 1;
}

/*
** 对只包含基本3D变换的矩阵进行变换,先计算左上角3x3的RS矩阵的逆(通过伴随矩阵),然后
** 乘上平移矩阵的逆矩阵,即
** M^-1 = (T(RS))^-1 = (RS)^-1 * T^-1
*/
bool internal_mat4_invertgeneral3d(Mat4* in, Mat4* out) {
	ssr_assert(in && out);
	if (in == out) shrmat(in);

	internal_mat4_setidentity(out);

	/*计算左上角3x3矩阵的行列式*/
	float pos = 0, neg = 0, t;
	float det;

	t = in->e00 * in->e11 * in->e22;
	if (t >= 0) pos += t; else neg += t;
	t = in->e10 * in->e21 * in->e02;
	if (t >= 0) pos += t; else neg += t;
	t = in->e20 * in->e01 * in->e12;
	if (t >= 0) pos += t; else neg += t;

	t = -in->e20 * in->e11 * in->e02;
	if (t >= 0) pos += t; else neg += t;
	t = -in->e10 * in->e01 * in->e22;
	if (t >= 0) pos += t; else neg += t;
	t = -in->e00 * in->e21 * in->e12;
	if (t >= 0) pos += t; else neg += t;

	det = pos + neg;

	if (det * det < 1e-25)
		return 0; /*行列式为0*/

	det = 1.f / det; 
	MAT(out, 0, 0) = ((MAT(in, 1, 1)*MAT(in, 2, 2) - MAT(in, 2, 1)*MAT(in, 1, 2))*det);
	MAT(out, 0, 1) = (-(MAT(in, 0, 1)*MAT(in, 2, 2) - MAT(in, 2, 1)*MAT(in, 0, 2))*det);
	MAT(out, 0, 2) = ((MAT(in, 0, 1)*MAT(in, 1, 2) - MAT(in, 1, 1)*MAT(in, 0, 2))*det);
	MAT(out, 1, 0) = (-(MAT(in, 1, 0)*MAT(in, 2, 2) - MAT(in, 2, 0)*MAT(in, 1, 2))*det);
	MAT(out, 1, 1) = ((MAT(in, 0, 0)*MAT(in, 2, 2) - MAT(in, 2, 0)*MAT(in, 0, 2))*det);
	MAT(out, 1, 2) = (-(MAT(in, 0, 0)*MAT(in, 1, 2) - MAT(in, 1, 0)*MAT(in, 0, 2))*det);
	MAT(out, 2, 0) = ((MAT(in, 1, 0)*MAT(in, 2, 1) - MAT(in, 2, 0)*MAT(in, 1, 1))*det);
	MAT(out, 2, 1) = (-(MAT(in, 0, 0)*MAT(in, 2, 1) - MAT(in, 2, 0)*MAT(in, 0, 1))*det);
	MAT(out, 2, 2) = ((MAT(in, 0, 0)*MAT(in, 1, 1) - MAT(in, 1, 0)*MAT(in, 0, 1))*det);

	// 乘T^-1
	MAT(out, 0, 3) = -(MAT(in, 0, 3) * MAT(out, 0, 0) +
		MAT(in, 1, 3) * MAT(out, 0, 1) +
		MAT(in, 2, 3) * MAT(out, 0, 2));
	MAT(out, 1, 3) = -(MAT(in, 0, 3) * MAT(out, 1, 0) +
		MAT(in, 1, 3) * MAT(out, 1, 1) +
		MAT(in, 2, 3) * MAT(out, 1, 2));
	MAT(out, 2, 3) = -(MAT(in, 0, 3) * MAT(out, 2, 0) +
		MAT(in, 1, 3) * MAT(out, 2, 1) +
		MAT(in, 2, 3) * MAT(out, 2, 2));

	return 1;
}

void internal_mat4_invertpos(Mat4* in, Mat4* out) {

}

void internal_mat4_invertscale(Mat4* in, Mat4* out) {

}

void internal_mat4_invertrot(Mat4* in, Mat4* out) {
	ssr_assert(in && out);
	internal_mat4_transpose(in, out);
}

void internal_mat4_settr(Vec3* pos, Quat* rot, Mat4* out) {
	ssr_assert(pos && rot && out);
	internal_mat4_zero(out);
	internal_quat_tomat4(rot, out);
	out->e03 = pos->x;
	out->e13 = pos->y;
	out->e23 = pos->z;
}

void internal_mat4_settrs(Vec3* pos, Quat* rot, Vec3* scale, Mat4* out) {
	ssr_assert(pos && rot && scale && out);
	internal_mat4_zero(out);
	internal_quat_tomat4(rot, out); /*pos*rot*scale的顺序*/
	out->e00 *= scale->x; out->e01 *= scale->y; out->e02 *= scale->z;
	out->e10 *= scale->x; out->e11 *= scale->y; out->e12 *= scale->z;
	out->e20 *= scale->x; out->e21 *= scale->y; out->e22 *= scale->z;
	out->e03 = pos->x;
	out->e13 = pos->y;
	out->e23 = pos->z;
}

void internal_mat4_settrinverse(Vec3* pos, Quat* rot, Mat4* out) {
	ssr_assert(pos && rot && out);
	internal_mat4_zero(out);
	internal_quat_invert(rot, rot);
	internal_quat_tomat4(rot, out);
	Vec3 reverse = { -pos->x, -pos->y, -pos->z};
	internal_mat4_translate(out, &reverse, out); /* (TR)^-1 = R^-1*T^-1所以这里是右乘*/
}

void internal_mat4_scale(Mat4* m, Vec3* scale, Mat4* out) {
	ssr_assert(m && scale && out);
	if (out != m) {
		*out = *m;
	}
	/*
	scale matrix 
	x, 0, 0, 0,
	0, y, 0, 0,
	0, 0, z, 0, 
	0, 0, 0, 1
	*/
	out->e00 *= scale->x;
	out->e10 *= scale->x;
	out->e20 *= scale->x;
	out->e30 *= scale->x;

	out->e01 *= scale->y;
	out->e11 *= scale->y;
	out->e21 *= scale->y;
	out->e31 *= scale->y;
	
	out->e02 *= scale->z;
	out->e12 *= scale->z;
	out->e22 *= scale->z;
	out->e32 *= scale->z;
}

void internal_mat4_translate(Mat4* m, Vec3* pos, Mat4* out) {
	ssr_assert(m && pos && out);
	if (out != m) {
		*out = *m;
	}
	/*
	translate matrix 
	1, 0, 0, x,
	0, 1, 0, y,
	0, 0, 1, z,
	0, 0, 0, 1,
	*/
	out->e03 = out->e00 * pos->x + out->e01 * pos->y + out->e02 * pos->z + out->e03;
	out->e13 = out->e10 * pos->x + out->e11 * pos->y + out->e12 * pos->z + out->e13;
	out->e23 = out->e20 * pos->x + out->e21 * pos->y + out->e22 * pos->z + out->e23;
	out->e33 = out->e30 * pos->x + out->e31 * pos->y + out->e32 * pos->z + out->e33;
}

void internal_mat4_rotate(Mat4* m, float angle, Vec3* ax, Mat4* out) {
	ssr_assert(m && ax && out);
	Mat4 rot; 
	internal_mat4_setaxisangle(ax, angle, &rot);
	internal_mat4_multiply(m, &rot, out);
}

void internal_mat4_decomposetrs(Mat4* src, Vec3* pos, Quat* quat, Vec3* scale) {
	ssr_assert(src && pos && quat && scale); 

	Vec3* x = &src->colums[0];
	Vec3* y = &src->colums[1];
	Vec3* z = &src->colums[2];
	Vec3* w = &src->colums[3];

	*pos = *w;

	internal_quat_setlookrotation(z, y, quat);

	scale->x = internal_vec3_magnitude(x);
	scale->y = internal_vec3_magnitude(y);
	scale->z = internal_vec3_magnitude(z);
}

static void MakePositive(Euler* euler) {/*弧度制欧拉角*/
	const float negativeFlip = -0.0001F;
	const float positiveFlip = (PI * 2.0F) - 0.0001F;

	if (euler->x < negativeFlip)
		euler->x += 2.0 * PI;
	else if (euler->x > positiveFlip)
		euler->x -= 2.0 * PI;

	if (euler->y < negativeFlip)
		euler->y += 2.0 * PI;
	else if (euler->y > positiveFlip)
		euler->y -= 2.0 * PI;

	if (euler->z < negativeFlip)
		euler->z += 2.0 * PI;
	else if (euler->z > positiveFlip)
		euler->z -= 2.0 * PI;
}

static void SanitizeEuler(Euler* e) {/*弧度制欧拉角*/
	MakePositive(e);
}

/*from unity src*/
bool internal_mat4_toeuler(Mat4* in, Euler* out) {
	ssr_assert(in && out);
	// from http://www.geometrictools.com/Documentation/EulerAngles.pdf
	// YXZ order
	if (MAT(in, 1, 2) < 0.999F) // some fudge for imprecision
	{
		if (MAT(in, 1, 2) > -0.999F) // some fudge for imprecision
		{
			out->x = asin(-MAT(in, 1, 2));
			out->y = atan2(MAT(in, 0, 2), MAT(in, 2, 2));
			out->z = atan2(MAT(in, 1, 0), MAT(in, 1, 1));
			//internal_euler_rad2deg(out, out);
			SanitizeEuler(out);
			internal_euler_rad2deg(out, out);
			return 1;
		}
		else
		{
			// WARNING.  Not unique.  YA - ZA = atan2(r01,r00)
			out->x = PI * 0.5F;
			out->y = atan2(MAT(in, 0, 1), MAT(in, 0, 0));
			out->z = 0.0F;
			//internal_euler_rad2deg(out, out);
			SanitizeEuler(out);
			internal_euler_rad2deg(out, out);
			return 0;
		}
	}
	else
	{
		// WARNING.  Not unique.  YA + ZA = atan2(-r01,r00)
		out->x = -PI * 0.5F;
		out->y = atan2(-MAT(in, 0, 1), MAT(in, 0, 0));
		out->z = 0.0F;
		//internal_euler_rad2deg(out, out);
		SanitizeEuler(out);
		internal_euler_rad2deg(out, out);
		return 0;
	}
}

/*from unity source*/
/*https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/*/
void internal_mat4_toquat(Mat4* in, Quat* out) {
	// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
	// article "Quaternionf Calculus and Fast Animation".
	float fTrace = MAT(in, 0, 0) + MAT(in, 1, 1) + MAT(in, 2, 2);
	float fRoot;

	if (fTrace > 0.0f)
	{
		// |w| > 1/2, may as well choose w > 1/2
		fRoot = sqrt(fTrace + 1.0f);  // 2w
		out->w = 0.5f*fRoot;
		fRoot = 0.5f / fRoot;  // 1/(4w)
		out->x = (MAT(in, 2, 1) - MAT(in, 1, 2))*fRoot;
		out->y = (MAT(in, 0, 2) - MAT(in, 2, 0))*fRoot;
		out->z = (MAT(in, 1, 0) - MAT(in, 0, 1))*fRoot;
	}
	else
	{
		// |w| <= 1/2
		int s_iNext[3] = { 1, 2, 0 };
		int i = 0;
		if (MAT(in, 1, 1) > MAT(in, 0, 0))
			i = 1;
		if (MAT(in, 2, 2) > MAT(in, i, i))
			i = 2;
		int j = s_iNext[i];
		int k = s_iNext[j];

		fRoot = sqrt(MAT(in, i, i) - MAT(in, j, j) - MAT(in, k, k) + 1.0f);
		float* apkQuat[3] = { &out->x, &out->y, &out->z };
		ssr_assert(fRoot >= EPSILON);
		*apkQuat[i] = 0.5f*fRoot;
		fRoot = 0.5f / fRoot;
		out->w = (MAT(in, k, j) - MAT(in, j, k)) * fRoot;
		*apkQuat[j] = (MAT(in, j, i) + MAT(in, i, j))*fRoot;
		*apkQuat[k] = (MAT(in, k, i) + MAT(in, i, k))*fRoot;
	}
	internal_quat_normalize(out, out);
}

void mat3_multvec3(Mat3* m, Vec3* v, Vec3* out) {
	ssr_assert(m && v && out);
	out->x = m->e00 * v->x + m->e01 * v->y + m->e02 * v->z;
	out->y = m->e10 * v->x + m->e11 * v->y + m->e12 * v->z;
	out->z = m->e20 * v->x + m->e21 * v->y + m->e22 * v->z;
}

void mat23_applytovec3(Mat23* m, Vec3* v, Vec2* out) {
	ssr_assert(m && v && out);
	out->x = m->e00 * v->x + m->e01 * v->y + m->e02 * v->z;
	out->y = m->e10 * v->x + m->e11 * v->y + m->e12 * v->z;
}

void mat43_applytovec3(Mat43* m, Vec3* v, Vec4* out) {
	ssr_assert(m && v && out);
	out->x = m->e00 * v->x + m->e01 * v->y + m->e02 * v->z;
	out->y = m->e10 * v->x + m->e11 * v->y + m->e12 * v->z;
	out->z = m->e20 * v->x + m->e21 * v->y + m->e22 * v->z;
	out->w = m->e30 * v->x + m->e31 * v->y + m->e32 * v->z;
}