1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
#include "UnityPrefix.h"
#include "TransformVertex.h"
#include "Runtime/Math/Matrix4x4.h"
#include "Runtime/Math/Vector4.h"
#include "Runtime/Math/Vector3.h"
#include "Runtime/Math/Vector2.h"
#include "Runtime/Math/Color.h"
#include "Runtime/Misc/CPUInfo.h"
void
TransformVerticesStridedREF( StrideIterator<Vector3f> inPos, StrideIterator<Vector3f> inNormal,
StrideIterator<ColorRGBA32> inColor, StrideIterator<Vector2f> inTexCoord0, StrideIterator<Vector2f> inTexCoord1,
StrideIterator<Vector4f> inTangent,
UInt8* dstData, const Matrix4x4f& m, unsigned vertexCount, bool multiStream )
{
// NOTE: kill this code once all shaders normalize normals & tangents!
//
// We batch uniformly scaled objects, so derive the "normal matrix" here by scaling world matrix axes.
// On reference code seems much cheaper than full normalization of normal/tangent vectors.
// Test with scene of 200k vertices on Core i7 2600K: no handling of scale 3.77ms, normalization 8.00ms,
// using scaled normal matrix 3.80ms.
//
// Note that ARM NEON/VFP transformation code does not handle this, but it's not needed on GLES platforms
// since shaders always normalize normal & tangent. Might be needed on WinRT+ARM though (or just disable
// dynamic batching with tangents there).
Matrix4x4f nm;
CopyMatrix(m.GetPtr(), nm.GetPtr());
const float axisLen = Magnitude (m.GetAxisX());
float scale = axisLen > 1.0e-6f ? 1.0f / axisLen : 1.0f;
nm.Get (0, 0) *= scale;
nm.Get (1, 0) *= scale;
nm.Get (2, 0) *= scale;
nm.Get (0, 1) *= scale;
nm.Get (1, 1) *= scale;
nm.Get (2, 1) *= scale;
nm.Get (0, 2) *= scale;
nm.Get (1, 2) *= scale;
nm.Get (2, 2) *= scale;
while (vertexCount --> 0)
{
Vector3f* outPos = reinterpret_cast<Vector3f*> (dstData);
m.MultiplyPoint3(*inPos, *outPos);
dstData += sizeof(Vector3f);
++inPos;
if (inNormal.GetPointer())
{
Vector3f* outNormal = reinterpret_cast<Vector3f*> (dstData);
nm.MultiplyVector3(*inNormal, *outNormal);
dstData += sizeof(Vector3f);
++inNormal;
}
if (inColor.GetPointer())
{
memcpy(dstData, inColor.GetPointer(), sizeof(ColorRGBA32));
dstData += sizeof(ColorRGBA32);
++inColor;
}
if (inTexCoord0.GetPointer())
{
memcpy(dstData, inTexCoord0.GetPointer(), sizeof(Vector2f));
dstData += sizeof(Vector2f);
++inTexCoord0;
}
if (inTexCoord1.GetPointer())
{
memcpy(dstData, inTexCoord1.GetPointer(), sizeof(Vector2f));
dstData += sizeof(Vector2f);
++inTexCoord1;
}
if (inTangent.GetPointer())
{
Vector4f* outTangent = reinterpret_cast<Vector4f*> (dstData);
Vector3f* outTangentXYZ = reinterpret_cast<Vector3f*> (outTangent);
nm.MultiplyVector3(reinterpret_cast<const Vector3f&>(*inTangent), *outTangentXYZ);
outTangent->w = inTangent->w;
dstData += sizeof(Vector4f);
++inTangent;
}
}
}
#if (UNITY_SUPPORTS_NEON && !UNITY_DISABLE_NEON_SKINNING) || UNITY_SUPPORTS_VFP
typedef void (*TransformFunc)( const void*, const void*, const void*, const float*, void*, int );
typedef void (*TransformFuncWithTangents)( const void*, const void*, const void*, const float*, void*, int, const void* );
#if UNITY_SUPPORTS_NEON
namespace TransformNEON
{
#define TRANSFORM_FUNC(prefix, addData) s_TransformVertices_Strided_##prefix##_##addData##_NEON
TransformFunc TransformXYZ[] =
{
TRANSFORM_FUNC(XYZ,0), TRANSFORM_FUNC(XYZ,1), TRANSFORM_FUNC(XYZ,2), TRANSFORM_FUNC(XYZ,3), TRANSFORM_FUNC(XYZ,4), TRANSFORM_FUNC(XYZ,5)
};
TransformFunc TransformXYZN[] =
{
TRANSFORM_FUNC(XYZN,0), TRANSFORM_FUNC(XYZN,1), TRANSFORM_FUNC(XYZN,2), TRANSFORM_FUNC(XYZN,3), TRANSFORM_FUNC(XYZN,4), TRANSFORM_FUNC(XYZN,5)
};
TransformFuncWithTangents TransformXYZNT[] =
{
TRANSFORM_FUNC(XYZNT,0), TRANSFORM_FUNC(XYZNT,1), TRANSFORM_FUNC(XYZNT,2), TRANSFORM_FUNC(XYZNT,3), TRANSFORM_FUNC(XYZNT,4), TRANSFORM_FUNC(XYZNT,5)
};
#undef TRANSFORM_FUNC
}
#endif // UNITY_SUPPORTS_NEON
#if UNITY_SUPPORTS_VFP
namespace TransformVFP
{
#define TRANSFORM_FUNC(prefix, addData) s_TransformVertices_Strided_##prefix##_##addData##_VFP
TransformFunc TransformXYZ[] =
{
TRANSFORM_FUNC(XYZ,0), TRANSFORM_FUNC(XYZ,1), TRANSFORM_FUNC(XYZ,2), TRANSFORM_FUNC(XYZ,3), TRANSFORM_FUNC(XYZ,4), TRANSFORM_FUNC(XYZ,5)
};
TransformFunc TransformXYZN[] =
{
TRANSFORM_FUNC(XYZN,0), TRANSFORM_FUNC(XYZN,1), TRANSFORM_FUNC(XYZN,2), TRANSFORM_FUNC(XYZN,3), TRANSFORM_FUNC(XYZN,4), TRANSFORM_FUNC(XYZN,5)
};
TransformFuncWithTangents TransformXYZNT[] =
{
TRANSFORM_FUNC(XYZNT,0), TRANSFORM_FUNC(XYZNT,1), TRANSFORM_FUNC(XYZNT,2), TRANSFORM_FUNC(XYZNT,3), TRANSFORM_FUNC(XYZNT,4), TRANSFORM_FUNC(XYZNT,5)
};
#undef TRANSFORM_FUNC
}
#endif // UNITY_SUPPORTS_VFP
void
TransformVerticesStridedARM( StrideIterator<Vector3f> inPos, StrideIterator<Vector3f> inNormal,
StrideIterator<ColorRGBA32> inColor, StrideIterator<Vector2f> inTexCoord0, StrideIterator<Vector2f> inTexCoord1,
StrideIterator<Vector4f> inTangent,
UInt8* dstData, const Matrix4x4f& m, unsigned vertexCount, bool multiStream )
{
int addDataSize = 0;
if( inColor.GetPointer() ) addDataSize += 1;
if( inTexCoord0.GetPointer() ) addDataSize += 2;
if( inTexCoord1.GetPointer() ) addDataSize += 2;
const void* addDataSrc = 0;
if( inColor.GetPointer() ) addDataSrc = inColor.GetPointer();
else if( inTexCoord0.GetPointer() ) addDataSrc = inTexCoord0.GetPointer();
else if( inTexCoord1.GetPointer() ) addDataSrc = inTexCoord1.GetPointer();
// slow path determination
if( (inColor.GetPointer() && inTexCoord1.GetPointer() && !inTexCoord0.GetPointer())
|| (inTangent.GetPointer() && !inNormal.GetPointer()) || multiStream )
{
TransformVerticesStridedREF(inPos, inNormal, inColor, inTexCoord0, inTexCoord1, inTangent, dstData, m, vertexCount, multiStream);
return;
}
int stride = inPos.GetStride();
const UInt8* inDataBegin = static_cast<const UInt8*>(inPos.GetPointer());
const UInt8* inDataEnd = inDataBegin + vertexCount * stride;
#if UNITY_SUPPORTS_NEON
if (CPUInfo::HasNEONSupport())
{
using namespace TransformNEON;
if( inNormal.GetPointer() && inTangent.GetPointer() )
TransformXYZNT[addDataSize]( inDataBegin, inDataEnd, addDataSrc, m.m_Data, dstData, stride, inTangent.GetPointer() );
else if( inNormal.GetPointer() )
TransformXYZN[addDataSize]( inDataBegin, inDataEnd, addDataSrc, m.m_Data, dstData, stride );
else
TransformXYZ[addDataSize]( inDataBegin, inDataEnd, addDataSrc, m.m_Data, dstData, stride );
}
else
#endif
#if UNITY_SUPPORTS_VFP
{
using namespace TransformVFP;
if( inNormal.GetPointer() && inTangent.GetPointer() )
TransformXYZNT[addDataSize]( inDataBegin, inDataEnd, addDataSrc, m.m_Data, dstData, stride, inTangent.GetPointer() );
else if( inNormal.GetPointer() )
TransformXYZN[addDataSize]( inDataBegin, inDataEnd, addDataSrc, m.m_Data, dstData, stride );
else
TransformXYZ[addDataSize]( inDataBegin, inDataEnd, addDataSrc, m.m_Data, dstData, stride );
}
#else
{
ErrorString("non-NEON path not enabled!");
}
#endif
}
#endif
|