1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
|
#include "UnityPrefix.h"
#include <float.h>
#include "CollisionModule.h"
#include "Runtime/BaseClasses/ObjectDefines.h"
#include "Runtime/Camera/Camera.h"
#include "Runtime/Geometry/Intersection.h"
#include "Runtime/Geometry/Plane.h"
#include "Runtime/Graphics/ParticleSystem/ParticleSystemCurves.h"
#include "Runtime/Graphics/ParticleSystem/ParticleSystemParticle.h"
#include "Runtime/Graphics/ParticleSystem/ParticleSystemUtils.h"
#include "Runtime/Graphics/Transform.h"
#include "Runtime/Input/TimeManager.h"
#include "Runtime/Interfaces/IRaycast.h"
#include "Runtime/Math/Matrix4x4.h"
#include "Runtime/Misc/BuildSettings.h"
#include "Runtime/Serialize/TransferFunctions/SerializeTransfer.h"
#include "Editor/Src/Utility/DebugPrimitives.h"
struct ParticleSystemCollisionParameters
{
float bounceFactor;
float energyLossOnCollision;
float minKillSpeedSqr;
float particleRadius;
float dampen;
PlaneColliderCache* planeColliderCache;
IRaycast* raycaster;
size_t rayBudget;
size_t nextParticleToTrace;
float voxelSize;
};
struct ColliderInfo
{
Plane m_CollisionPlane;
bool m_Traced;
int m_ColliderInstanceID;
int m_RigidBodyOrColliderInstanceID;
};
struct CollisionInfo
{
CollisionInfo():m_NumWorldCollisions(0),m_NumCachedCollisions(0),m_NumPlaneCollisions(0),m_Colliders(NULL) {}
size_t m_NumWorldCollisions;
size_t m_NumCachedCollisions;
size_t m_NumPlaneCollisions;
ColliderInfo* m_Colliders;
size_t AllCollisions() const { return m_NumWorldCollisions+m_NumCachedCollisions+m_NumPlaneCollisions; }
};
/// @TODO: Why does Vector3f has a constructor? WTF.
inline void CalculateCollisionResponse(const ParticleSystemReadOnlyState& roState,
ParticleSystemState& state,
ParticleSystemParticles& ps,
const size_t q,
const ParticleSystemCollisionParameters& params,
const Vector3f& position,
const Vector3f& velocity,
const HitInfo& hitInfo)
{
// Reflect + dampen
Vector3f positionOffset = ReflectVector (position - hitInfo.intersection, hitInfo.normal) * params.dampen;
Vector3f newVelocity = ReflectVector(velocity, hitInfo.normal) * params.dampen;
// Apply bounce
positionOffset -= hitInfo.normal * (Dot(positionOffset, hitInfo.normal)) * params.bounceFactor;
newVelocity -= hitInfo.normal * Dot(newVelocity, hitInfo.normal) * params.bounceFactor;
ps.position[q] = hitInfo.intersection + positionOffset;
ps.velocity[q] = newVelocity - ps.animatedVelocity[q];
for(int s = 0; s < state.numCachedSubDataCollision; s++)
{
ParticleSystemEmissionState emissionState;
RecordEmit(emissionState, state.cachedSubDataCollision[s], roState, state, ps, kParticleSystemSubTypeCollision, s, q, 0.0f, 0.0001f, 1.0f);
}
ps.lifetime[q] -= params.energyLossOnCollision * ps.startLifetime[q];
if (ps.GetUsesCollisionEvents () && !(hitInfo.colliderInstanceID == 0))
{
Vector3f wcIntersection = hitInfo.intersection;
Vector3f wcNormal = hitInfo.normal;
Vector3f wcVelocity = velocity;
if ( roState.useLocalSpace )
{
wcIntersection = state.localToWorld.MultiplyPoint3 (wcIntersection);
wcNormal = state.localToWorld.MultiplyVector3 (wcNormal);
wcVelocity = state.localToWorld.MultiplyVector3 (wcVelocity);
}
ps.collisionEvents.AddEvent (ParticleCollisionEvent (wcIntersection, wcNormal, wcVelocity, hitInfo.colliderInstanceID, hitInfo.rigidBodyOrColliderInstanceID));
//printf_console (Format ("Intersected '%s' -> id: %d -> go id: %d.\n", hitInfo.collider->GetName (), hitInfo.collider->GetInstanceID (), hitInfo.collider->GetGameObject ().GetInstanceID ()).c_str ());
}
}
CollisionModule::CollisionModule () : ParticleSystemModule(false)
, m_Type(0)
, m_Dampen(0.0f)
, m_Bounce(1.0f)
, m_EnergyLossOnCollision(0.0f)
, m_MinKillSpeed(0.0f)
, m_ParticleRadius(0.01f)
, m_Quality(0)
, m_VoxelSize(0.5f)
, m_CollisionMessages(false)
{
m_CollidesWith.m_Bits = 0xFFFFFFFF;
}
void CollisionModule::AllocateAndCache(const ParticleSystemReadOnlyState& roState, ParticleSystemState& state)
{
Assert(!state.cachedCollisionPlanes);
Matrix4x4f matrix = Matrix4x4f::identity;
if(roState.useLocalSpace)
matrix = state.worldToLocal;
state.numCachedCollisionPlanes = 0;
for (unsigned i=0; i<kMaxNumPrimitives; ++i)
{
if (m_Primitives[i].IsNull ())
continue;
state.numCachedCollisionPlanes++;
}
state.cachedCollisionPlanes = ALLOC_TEMP_MANUAL(Plane, state.numCachedCollisionPlanes);
int planeCount = 0;
for (unsigned i=0; i<kMaxNumPrimitives; ++i)
{
if (m_Primitives[i].IsNull ())
continue;
const Transform* transform = m_Primitives[i]->QueryComponent(Transform);
const Vector3f position = matrix.MultiplyPoint3(transform->GetPosition());
Assert(planeCount <= state.numCachedCollisionPlanes);
const Vector3f normal = matrix.MultiplyVector3(RotateVectorByQuat (transform->GetRotation (), Vector3f::yAxis));
state.cachedCollisionPlanes[planeCount].SetNormalAndPosition (normal, position);
state.cachedCollisionPlanes[planeCount].NormalizeRobust();
planeCount++;
}
}
void CollisionModule::FreeCache(ParticleSystemState& state)
{
if(state.cachedCollisionPlanes)
{
FREE_TEMP_MANUAL(state.cachedCollisionPlanes);
state.cachedCollisionPlanes = 0;
state.numCachedCollisionPlanes = 0;
}
}
// read the plane cache for a given range
size_t ReadCache(const ParticleSystemReadOnlyState& roState, const ParticleSystemState& state, const ParticleSystemParticles& ps, const ParticleSystemCollisionParameters& params, CollisionInfo& collision, const size_t fromIndex, const size_t& toIndex, const float dt)
{
size_t numIntersections = 0;
for (size_t q = fromIndex; q < toIndex; ++q)
{
// initialise plane to value that guarantees no intersection
collision.m_Colliders[q].m_CollisionPlane.distance = FLT_MAX;
collision.m_Colliders[q].m_Traced = false;
collision.m_Colliders[q].m_ColliderInstanceID = -1;
collision.m_Colliders[q].m_RigidBodyOrColliderInstanceID = -1;
// build start/end points
Vector3f to = ps.position[q];
const Vector3f v = ps.velocity[q] + ps.animatedVelocity[q];
const Vector3f d = v * dt;
Vector3f from = to - d;
// convert to WC
if ( roState.useLocalSpace )
{
from = state.localToWorld.MultiplyPoint3(from);
to = state.localToWorld.MultiplyPoint3(to);
}
// lookup the cache
Plane plane;
int colliderInstanceID;
int rigidBodyOrColliderInstanceID;
if ( params.planeColliderCache->Find (from, to-from, plane, colliderInstanceID, rigidBodyOrColliderInstanceID, params.voxelSize) )
{
collision.m_Colliders[q].m_CollisionPlane = plane;
collision.m_Colliders[q].m_ColliderInstanceID = colliderInstanceID;
collision.m_Colliders[q].m_RigidBodyOrColliderInstanceID = rigidBodyOrColliderInstanceID;
numIntersections++;
}
}
return numIntersections;
}
// Perform ray casts. Ray casts are done in WC and results are transformed back into sim space if necessary.
// There are three sets of indices:
// [fromIndex ; params.nextParticleToTrace[ for these we do caching if the cache is available
// [params.nextParticleToTrace ; params.nextParticleToTrace + params.rayBudget[ for these we trace fresh rays
// [params.nextParticleToTrace + params.rayBudget ; toIndex[ for these we do caching if the cache is available
CollisionInfo WorldCollision(const ParticleSystemReadOnlyState& roState, const ParticleSystemState& state, const ParticleSystemParticles& ps, const ParticleSystemCollisionParameters& params, const size_t fromIndex, const int filter, const float dt)
{
CollisionInfo collisionCounter;
const bool approximate = ( params.planeColliderCache ? true : false );
size_t numIntersections = 0;
const size_t toIndex = ps.array_size();
// pre range that is cached
const size_t traceRangeFrom = approximate ? params.nextParticleToTrace : fromIndex;
const size_t traceRangeTo = approximate ? std::min(params.nextParticleToTrace+params.rayBudget, toIndex) : toIndex;
const size_t fromIndex0 = fromIndex;
const size_t toIndex0 = traceRangeFrom;
// range to actually ray trace
const size_t fromIndex1 = traceRangeFrom;
const size_t toIndex1 = traceRangeTo;
// post range that is cached
const size_t fromIndex2 = traceRangeTo;
const size_t toIndex2 = toIndex;
collisionCounter.m_Colliders = ALLOC_TEMP_MANUAL(ColliderInfo, ps.array_size());
collisionCounter.m_NumCachedCollisions = (toIndex0-fromIndex0)+(toIndex2-fromIndex2);
collisionCounter.m_NumWorldCollisions = toIndex1-fromIndex1;
if ( toIndex1-fromIndex1 > 0 )
{
// batch trace selected range
dynamic_array< BatchedRaycast > rayBatch(toIndex1-fromIndex1,kMemTempAlloc);
dynamic_array< BatchedRaycastResult > rayResults(toIndex1-fromIndex1,kMemTempAlloc);
// build request array
size_t i = 0;
for (size_t q = fromIndex1; q < toIndex1; ++q, ++i)
{
// build start/end points
const Vector3f to = ps.position[q];
const Vector3f v = ps.velocity[q] + ps.animatedVelocity[q];
const Vector3f d = v * dt;
const Vector3f from = to - d;
if ( approximate )
{
// extend ray to trace across the entire voxel (and then some)
const float voxSize = std::max(params.voxelSize,params.voxelSize*kVoxelHeightMultiplier);
const Vector3f displacement = to-from;
///@TODO: handle magnitude 0. Should we skip the raycast???
const Vector3f direction = NormalizeFast(displacement);
const Vector3f extendedTo = from + direction * voxSize;
// insert into batch
rayBatch[i] = BatchedRaycast(q,from,extendedTo);
}
else
rayBatch[i] = BatchedRaycast(q,from,to);
// initialise plane to value that guarantees no intersection
collisionCounter.m_Colliders[q].m_CollisionPlane.distance = FLT_MAX;
collisionCounter.m_Colliders[q].m_Traced = (!approximate);
collisionCounter.m_Colliders[q].m_ColliderInstanceID = -1;
collisionCounter.m_Colliders[q].m_RigidBodyOrColliderInstanceID = -1;
}
// convert to WC
if ( roState.useLocalSpace )
{
const Matrix4x4f m = state.localToWorld;
for (size_t i = 0; i < rayBatch.size(); ++i)
{
rayBatch[i].from = m.MultiplyPoint3(rayBatch[i].from);
rayBatch[i].to = m.MultiplyPoint3(rayBatch[i].to);
}
}
// trace the rays
const size_t numIx = params.raycaster->BatchIntersect( rayBatch, rayResults, filter, approximate );
// convert back to local space
if ( roState.useLocalSpace )
{
const Matrix4x4f m = state.worldToLocal;
for (size_t i = 0; i < numIx; ++i)
{
// the plane intersection was computed in WC, transform intersection to local space.
rayResults[i].hitInfo.intersection = m.MultiplyPoint3( rayResults[i].hitInfo.intersection );
rayResults[i].hitInfo.normal = m.MultiplyVector3( rayResults[i].hitInfo.normal );
}
}
// store planes in the particles that intersected something
for (size_t i = 0; i < numIx; ++i)
{
const size_t q = rayBatch[rayResults[i].index].index;
collisionCounter.m_Colliders[q].m_CollisionPlane.normal = rayResults[i].hitInfo.normal;
collisionCounter.m_Colliders[q].m_CollisionPlane.distance = -Dot(rayResults[i].hitInfo.intersection, rayResults[i].hitInfo.normal);
collisionCounter.m_Colliders[q].m_ColliderInstanceID = rayResults[i].hitInfo.colliderInstanceID;
collisionCounter.m_Colliders[q].m_RigidBodyOrColliderInstanceID = rayResults[i].hitInfo.rigidBodyOrColliderInstanceID;
}
// store intersections in cache
if (approximate)
{
for (size_t i = 0; i < numIx; ++i)
{
const size_t r = rayResults[i].index;
const size_t q = rayBatch[rayResults[i].index].index;
params.planeColliderCache->Replace (rayBatch[r].from, rayBatch[r].to-rayBatch[r].from, Plane(collisionCounter.m_Colliders[q].m_CollisionPlane), collisionCounter.m_Colliders[q].m_ColliderInstanceID, collisionCounter.m_Colliders[q].m_RigidBodyOrColliderInstanceID, params.voxelSize);
}
}
numIntersections += numIx;
}
// process pre cache range
if ( toIndex0-fromIndex0 > 0 )
{
numIntersections += ReadCache(roState, state, ps, params, collisionCounter, fromIndex0, toIndex0, dt);
}
// process post cache range
if ( toIndex2-fromIndex2 > 0 )
{
numIntersections += ReadCache(roState, state, ps, params, collisionCounter, fromIndex2, toIndex2, dt);
}
return collisionCounter;
}
// Plane collide all particles in simulation space (remember the cached planes are defined in sim space).
CollisionInfo PlaneCollision(const ParticleSystemReadOnlyState& roState, const ParticleSystemState& state, const ParticleSystemParticles& ps, const ParticleSystemCollisionParameters& params, const int fromIndex, const float dt)
{
CollisionInfo collisionInfo;
collisionInfo.m_Colliders = ALLOC_TEMP_MANUAL(ColliderInfo, ps.array_size());
const bool newBehaviour = IS_CONTENT_NEWER_OR_SAME(kUnityVersion4_0_a1);
size_t toIndex = ps.array_size();
for (size_t q = fromIndex; q < toIndex; ++q)
{
// initialise to value that guarantees no intersection
collisionInfo.m_Colliders[q].m_CollisionPlane.distance = FLT_MAX;
const Vector3f position = ps.position[q];
const Vector3f velocity = ps.velocity[q] + ps.animatedVelocity[q];
const Vector3f displacement = velocity * dt;
const Vector3f origin = position - displacement;
// walk the planes
for (unsigned i=0; i<state.numCachedCollisionPlanes; ++i)
{
const Plane plane = state.cachedCollisionPlanes[i];
if ( newBehaviour )
{
// new behaviour:
// plane collisions are single sided only, all particles 'behind' the plane will be forced onto the plane
const float dist = plane.GetDistanceToPoint(position);
if (dist > params.particleRadius)
continue;
}
else
{
// old (but fixed) behaviour, particles can collide with both front and back plane
const float d0 = plane.GetDistanceToPoint(origin);
const float d1 = plane.GetDistanceToPoint(position);
const bool sameSide = ( (d0 > 0.0f && d1 > 0.0f) || (d0 <= 0.0f && d1 <= 0.0f) );
const float aD0 = Abs(d0);
const float aD1 = Abs(d1);
if ( sameSide && aD0 > params.particleRadius && aD1 > params.particleRadius )
continue;
}
collisionInfo.m_Colliders[q].m_CollisionPlane = plane;
collisionInfo.m_Colliders[q].m_ColliderInstanceID = 0;
collisionInfo.m_Colliders[q].m_RigidBodyOrColliderInstanceID = 0;
collisionInfo.m_NumPlaneCollisions++;
break;
}
}
return collisionInfo;
}
// Compute the collision plane to use for each particle
CollisionInfo UpdateCollisionPlanes(bool worldCollision, UInt32 collisionFilter, const ParticleSystemReadOnlyState& roState, ParticleSystemState& state, const ParticleSystemCollisionParameters& params, ParticleSystemParticles& ps, size_t fromIndex, float dt)
{
if( worldCollision )
{
// Check if we support raycasting
if (params.raycaster == NULL)
return CollisionInfo();
////@TODO: dtPerParticle
return WorldCollision(roState, state, ps, params, fromIndex, collisionFilter, dt);
}
else
{
////@TODO: dtPerParticle
return PlaneCollision(roState, state, ps, params, fromIndex, dt);
}
}
// Collide the particles against their selected planes and update collision response - this is done purely in simulation space
static const float kEpsilon = 0.000001f;
static const float kRayEpsilon = 0.00001f;
void PerformPlaneCollisions(bool worldCollision, const ParticleSystemReadOnlyState& roState, ParticleSystemState& state, ParticleSystemParticles& ps, const ParticleSystemCollisionParameters& params, const CollisionInfo& collisionInfo, const int fromIndex, const float dt)
{
// for world collisions we use and epsilon but for plane intersections we use the particle radius
const float radius = worldCollision ? kRayEpsilon : params.particleRadius;
const bool newBehaviour = IS_CONTENT_NEWER_OR_SAME(kUnityVersion4_0_a1);
//const bool approximate = ( params.planeColliderCache ? true : false );
// collide with plane
size_t toIndex = ps.array_size();
for (size_t q = fromIndex; q < toIndex; q++)
{
// check if the actual ray was traced in which case we want to disable the ray testing. Note: does not apply to approximate mode as we trace longer rays to improve cache quality
const bool tracedParticle = collisionInfo.m_Colliders[q].m_Traced;
const Plane plane = collisionInfo.m_Colliders[q].m_CollisionPlane;
if ( plane.distance != FLT_MAX )
{
const Vector3f position = ps.position[q];
const Vector3f velocity = ps.velocity[q] + ps.animatedVelocity[q];
const Vector3f displacement = velocity * dt;
const Vector3f origin = position - displacement;
HitInfo hit;
hit.normal = plane.GetNormal();
hit.colliderInstanceID = collisionInfo.m_Colliders[q].m_ColliderInstanceID;
hit.rigidBodyOrColliderInstanceID = collisionInfo.m_Colliders[q].m_RigidBodyOrColliderInstanceID;
if ( worldCollision )
{
// plane ray dot product
const float VdN = Dot( plane.GetNormal(), displacement );
if ( !tracedParticle && VdN >= 0 )
continue; // only pick up front face intersections
// Recreate hit point.
const float t = -( Dot( origin, plane.GetNormal() ) + plane.distance ) / VdN;
if ( !tracedParticle && (t < 0 || t > 1) )
continue;
// build intersection description from t value and ray
hit.intersection = origin + displacement * t;
// Adjust intersection along normal to make sure the particle doesn't fall through geometry when it comes to rest.
// This is also an issue when dampen and bounce is zero in which case CalculateCollisionResponse will set the particle
// position to *exactly* the intersection point, which will then have issues next time the intersection is executed
// where it will try and compare two floating point numbers which are equal and the intersection test will come out
// either way depending on fp accuracy
//
// for world collisions we use and epsilon but for plane intersections we use the particle radius
hit.intersection += radius * hit.normal;
}
else
{
if (newBehaviour)
{
const float dist = plane.GetDistanceToPoint(position);
if (dist > radius)
continue;
const float VdN = Dot( plane.GetNormal(), velocity );
if (VdN == 0.0F || VdN == -0.0F)
continue;
const float t = -( Dot( position, plane.GetNormal() ) + plane.distance - radius ) / VdN;
hit.intersection = position + velocity * t;
}
else
{
const float OriginDotPlane = Dot (plane.GetNormal(), origin);
const float signedDistanceToOrigin = OriginDotPlane + plane.distance;
const float PositionDotPlane = Dot (plane.GetNormal(), position);
const float signedDistanceToPosition = PositionDotPlane + plane.distance;
const bool originInside = Abs(signedDistanceToOrigin)<radius;
const bool positionInside = Abs(signedDistanceToPosition)<=radius;
const bool oppositeSide = !( (signedDistanceToOrigin > 0.0f && signedDistanceToPosition > 0.0f) || (signedDistanceToOrigin <= 0.0f && signedDistanceToPosition <= 0.0f) );
// if the points are both inside or outside the radius we can bail if they're not on opposite sides outside the radius
if ( originInside==positionInside && !(oppositeSide && !originInside && !positionInside ) )
continue;
// compute the side of the face we are on - this determines if we are trying to intersect with the front or back face of the plane
const float signOrigin = signedDistanceToOrigin < 0.0 ? -1.f : 1.f;
const float signedRadius = radius*signOrigin;
// check the direction of the ray is opposite to the plane normal (the sign flips the normal as appropriate)
const float VdN = Dot( plane.GetNormal(), velocity );
if (VdN*signOrigin >= 0)
continue;
// calculate intersection point
const float t = -( signedDistanceToPosition - signedRadius ) / VdN;
hit.intersection = position + velocity * t;
}
}
// compute the bounce
CalculateCollisionResponse(roState, state, ps, q, params, ps.position[q], ps.velocity[q] + ps.animatedVelocity[q], hit);
// Kill particle?
const float speedSqr = SqrMagnitude(ps.velocity[q] + ps.animatedVelocity[q]);
if (ps.lifetime[q] < 0.0f || speedSqr < params.minKillSpeedSqr)
{
// when killing a particle the last element from the array is pulled into the position of the killed particle and toIndex is updated accordingly
// we do a q-- in order to make sure the new particle at q is also collided
collisionInfo.m_Colliders[q] = collisionInfo.m_Colliders[toIndex-1];
KillParticle(roState, state, ps, q, toIndex);
q--;
}
}
}
// resize array to account for killed particles
ps.array_resize(toIndex);
}
// Update collision for the particle system.
void CollisionModule::Update (const ParticleSystemReadOnlyState& roState, ParticleSystemState& state, ParticleSystemParticles& ps, size_t fromIndex, float dt )
{
// any work todo?
if (fromIndex == ps.array_size())
return;
ps.SetUsesCollisionEvents (m_CollisionMessages);
// setup params
ParticleSystemCollisionParameters params;
params.bounceFactor = 1.0f - m_Bounce;
params.energyLossOnCollision = m_EnergyLossOnCollision;
params.minKillSpeedSqr = m_MinKillSpeed * m_MinKillSpeed;
params.particleRadius = m_ParticleRadius;
params.dampen = 1.0f - m_Dampen;
params.planeColliderCache = ( IsApproximate() ? &m_ColliderCache : NULL );
params.raycaster = GetRaycastInterface();
params.rayBudget = state.rayBudget;
params.voxelSize = m_VoxelSize;
params.nextParticleToTrace = ( state.nextParticleToTrace >= ps.array_size() ? fromIndex : std::max(state.nextParticleToTrace,fromIndex) );
// update particle collision planes
const CollisionInfo collisionCounter = UpdateCollisionPlanes(m_Type != kPlaneCollision, m_CollidesWith.m_Bits, roState, state, params, ps, fromIndex, dt);
// update collider index
state.nextParticleToTrace = params.nextParticleToTrace + params.rayBudget;
// decrement ray budget
state.rayBudget = (state.rayBudget>collisionCounter.m_NumWorldCollisions ? state.rayBudget-collisionCounter.m_NumWorldCollisions : 0);
// early out if there were no collisions at all
if ( collisionCounter.AllCollisions() <= 0 )
{
FREE_TEMP_MANUAL(collisionCounter.m_Colliders);
return;
}
// perform plane collisions
PerformPlaneCollisions(m_Type != kPlaneCollision, roState, state, ps, params, collisionCounter, fromIndex, dt);
FREE_TEMP_MANUAL(collisionCounter.m_Colliders);
if (ps.GetUsesCollisionEvents ())
{
ps.collisionEvents.SortCollisionEventThreadArray ();
}
}
void CollisionModule::CheckConsistency ()
{
m_Dampen = clamp<float> (m_Dampen, 0.0f, 1.0f);
m_Bounce = clamp<float> (m_Bounce, 0.0f, 2.0f);
m_EnergyLossOnCollision = clamp<float> (m_EnergyLossOnCollision, 0.0f, 1.0f);
m_ParticleRadius = max<float>(m_ParticleRadius, 0.01f);
}
template<class TransferFunction>
void CollisionModule::Transfer (TransferFunction& transfer)
{
ParticleSystemModule::Transfer (transfer);
transfer.Transfer (m_Type, "type");
const char* kPrimitiveNames [kMaxNumPrimitives] = { "plane0", "plane1", "plane2", "plane3", "plane4", "plane5"};
for(int i = 0; i < kMaxNumPrimitives; i++)
transfer.Transfer (m_Primitives[i], kPrimitiveNames[i]);
transfer.Transfer (m_Dampen, "dampen");
transfer.Transfer (m_Bounce, "bounce");
transfer.Transfer (m_EnergyLossOnCollision, "energyLossOnCollision");
transfer.Transfer (m_MinKillSpeed, "minKillSpeed");
transfer.Transfer (m_ParticleRadius, "particleRadius");
transfer.Align();
transfer.Transfer (m_CollidesWith, "collidesWith");
transfer.Transfer (m_Quality, "quality");
transfer.Align();
transfer.Transfer (m_VoxelSize, "voxelSize");
transfer.Transfer (m_CollisionMessages, "collisionMessages");
}
INSTANTIATE_TEMPLATE_TRANSFER(CollisionModule)
|