1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
#include "UnityPrefix.h"
#include "ParticleSystemUtils.h"
#include "ParticleSystem.h"
#include "ParticleSystemCurves.h"
#include "Modules/ParticleSystemModule.h"
#include "Runtime/BaseClasses/IsPlaying.h"
#if UNITY_EDITOR
#include "Editor/Src/ParticleSystem/ParticleSystemEditor.h"
#endif
UInt32 randomSeed = 0x1337;
UInt32 GetGlobalRandomSeed ()
{
return ++randomSeed;
}
void ResetGlobalRandomSeed ()
{
randomSeed = 0x1337;
}
Vector2f CalculateInverseLerpOffsetScale (const Vector2f& range)
{
Assert (range.x < range.y);
float scale = 1.0F / (range.y - range.x);
return Vector2f (scale, -range.x * scale);
}
void CalculatePositionAndVelocity(Vector3f& initialPosition, Vector3f& initialVelocity, const ParticleSystemReadOnlyState& roState, const ParticleSystemState& state, const ParticleSystemParticles& ps, const size_t index)
{
initialPosition = ps.position[index];
initialVelocity = ps.velocity[index] + ps.animatedVelocity[index];
if(roState.useLocalSpace)
{
// If we are in local space, transform to world space to make independent of this emitters transform
initialPosition = state.localToWorld.MultiplyPoint3(initialPosition);
initialVelocity = state.localToWorld.MultiplyVector3(initialVelocity);
}
}
void KillParticle(const ParticleSystemReadOnlyState& roState, ParticleSystemState& state, ParticleSystemParticles& ps, size_t index, size_t& particleCount)
{
Assert(particleCount > 0);
for(int i = 0; i < state.numCachedSubDataDeath; i++)
{
ParticleSystemEmissionState emissionState;
RecordEmit(emissionState, state.cachedSubDataDeath[i], roState, state, ps, kParticleSystemSubTypeDeath, i, index, 0.0f, 0.0001f, 1.0f);
}
ps.element_assign (index, particleCount - 1);
--particleCount;
}
void RecordEmit(ParticleSystemEmissionState& emissionState, const ParticleSystemSubEmitterData& subEmitterData, const ParticleSystemReadOnlyState& roState, ParticleSystemState& state, ParticleSystemParticles& ps, ParticleSystemSubType type, int subEmitterIndex, size_t particleIndex, float t, float dt, float length)
{
size_t numContinuous = 0;
Vector3f initialPosition;
Vector3f initialVelocity;
CalculatePositionAndVelocity(initialPosition, initialVelocity, roState, state, ps, particleIndex);
int amountOfParticlesToEmit = ParticleSystem::EmitFromData (emissionState, numContinuous, subEmitterData.emissionData, initialVelocity, t, std::min(t + dt, length), dt, length);
if(amountOfParticlesToEmit)
{
if(!state.recordSubEmits)
ParticleSystem::Emit(*subEmitterData.emitter, SubEmitterEmitCommand(emissionState, initialPosition, initialVelocity, type, subEmitterIndex, amountOfParticlesToEmit, numContinuous, t, dt), kParticleSystemEMStaging);
else if(!state.subEmitterCommandBuffer.IsFull())
state.subEmitterCommandBuffer.AddCommand(emissionState, initialPosition, initialVelocity, type, subEmitterIndex, amountOfParticlesToEmit, numContinuous, t, dt);
}
}
bool GetTransformationMatrix(Matrix4x4f& output, const bool isSystemInWorld, const bool isCurveInWorld, const Matrix4x4f& localToWorld)
{
if(isCurveInWorld != isSystemInWorld)
{
if(isSystemInWorld)
output = localToWorld;
else
Matrix4x4f::Invert_General3D(localToWorld, output);
return true;
}
else
{
output = Matrix4x4f::identity;
return false;
}
}
bool GetTransformationMatrices(Matrix4x4f& output, Matrix4x4f& outputInverse, const bool isSystemInWorld, const bool isCurveInWorld, const Matrix4x4f& localToWorld)
{
if(isCurveInWorld != isSystemInWorld)
{
if(isSystemInWorld)
{
output = localToWorld;
Matrix4x4f::Invert_General3D(localToWorld, outputInverse);
}
else
{
Matrix4x4f::Invert_General3D(localToWorld, output);
outputInverse = localToWorld;
}
return true;
}
else
{
output = Matrix4x4f::identity;
outputInverse = Matrix4x4f::identity;
return false;
}
}
|