1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
#include "UnityPrefix.h"
#include "PolynomialCurve.h"
#include "Runtime/Math/Vector2.h"
#include "Runtime/Math/Polynomials.h"
#include "Runtime/Math/AnimationCurve.h"
static void DoubleIntegrateSegment (float* coeff)
{
coeff[0] /= 20.0F;
coeff[1] /= 12.0F;
coeff[2] /= 6.0F;
coeff[3] /= 2.0F;
}
static void IntegrateSegment (float* coeff)
{
coeff[0] /= 4.0F;
coeff[1] /= 3.0F;
coeff[2] /= 2.0F;
coeff[3] /= 1.0F;
}
void CalculateMinMax(Vector2f& minmax, float value)
{
minmax.x = std::min(minmax.x, value);
minmax.y = std::max(minmax.y, value);
}
void ConstrainToPolynomialCurve (AnimationCurve& curve)
{
const int max = OptimizedPolynomialCurve::kMaxPolynomialKeyframeCount;
// Maximum 3 keys
if (curve.GetKeyCount () > max)
curve.RemoveKeys(curve.begin() + max, curve.end());
// Clamp begin and end to 0...1 range
if (curve.GetKeyCount () >= 2)
{
curve.GetKey(0).time = 0;
curve.GetKey(curve.GetKeyCount ()-1).time = 1;
}
}
bool IsValidPolynomialCurve (const AnimationCurve& curve)
{
// Maximum 3 keys
if (curve.GetKeyCount () > OptimizedPolynomialCurve::kMaxPolynomialKeyframeCount)
return false;
// One constant key can always be representated
else if (curve.GetKeyCount () <= 1)
return true;
// First and last keyframe must be at 0 and 1 time
else
{
float beginTime = curve.GetKey(0).time;
float endTime = curve.GetKey(curve.GetKeyCount ()-1).time;
return CompareApproximately(beginTime, 0.0F, 0.0001F) && CompareApproximately(endTime, 1.0F, 0.0001F);
}
}
void SetPolynomialCurveToValue (AnimationCurve& a, OptimizedPolynomialCurve& c, float value)
{
AnimationCurve::Keyframe keys[2] = { AnimationCurve::Keyframe(0.0f, value), AnimationCurve::Keyframe(1.0f, value) };
a.Assign(keys, keys + 2);
c.BuildOptimizedCurve(a, 1.0f);
}
void SetPolynomialCurveToLinear (AnimationCurve& a, OptimizedPolynomialCurve& c)
{
AnimationCurve::Keyframe keys[2] = { AnimationCurve::Keyframe(0.0f, 0.0f), AnimationCurve::Keyframe(1.0f, 1.0f) };
keys[0].inSlope = 0.0f; keys[0].outSlope = 1.0f;
keys[1].inSlope = 1.0f; keys[1].outSlope = 0.0f;
a.Assign(keys, keys + 2);
c.BuildOptimizedCurve(a, 1.0f);
}
bool OptimizedPolynomialCurve::BuildOptimizedCurve (const AnimationCurve& editorCurve, float scale)
{
if (!IsValidPolynomialCurve(editorCurve))
return false;
const size_t keyCount = editorCurve.GetKeyCount ();
timeValue = 1.0F;
memset(segments, 0, sizeof(segments));
// Handle corner case 1 & 0 keyframes
if (keyCount == 0)
;
else if (keyCount == 1)
{
// Set constant value coefficient
for (int i=0;i<kSegmentCount;i++)
segments[i].coeff[3] = editorCurve.GetKey(0).value * scale;
}
else
{
float segmentStartTime[kSegmentCount];
for (int i=0;i<kSegmentCount;i++)
{
bool hasSegment = i+1 < keyCount;
if (hasSegment)
{
AnimationCurve::Cache cache;
editorCurve.CalculateCacheData(cache, i, i + 1, 0.0F);
memcpy(segments[i].coeff, cache.coeff, sizeof(Polynomial));
segmentStartTime[i] = editorCurve.GetKey(i).time;
}
else
{
memcpy(segments[i].coeff, segments[i-1].coeff, sizeof(Polynomial));
segmentStartTime[i] = 1.0F;//timeValue[i-1];
}
}
// scale curve
for (int i=0;i<kSegmentCount;i++)
{
segments[i].coeff[0] *= scale;
segments[i].coeff[1] *= scale;
segments[i].coeff[2] *= scale;
segments[i].coeff[3] *= scale;
}
// Timevalue 0 is always 0.0F. No need to store it.
timeValue = segmentStartTime[1];
#if !UNITY_RELEASE
// Check that UI editor curve matches polynomial curve except if the
// scale happens to be infinite (trying to subtract infinity values from
// each other yields NaN with IEEE floats).
if (scale != std::numeric_limits<float>::infinity () &&
scale != -std::numeric_limits<float>::infinity())
{
for (int i=0;i<=50;i++)
{
// The very last element at 1.0 can be different when using step curves.
// The AnimationCurve implementation will sample the position of the last key.
// The OptimizedPolynomialCurve will keep value of the previous key (Continuing the trajectory of the segment)
// In practice this is probably not a problem, since you don't sample 1.0 because then the particle will be dead.
// thus we just don't do the automatic assert when the curves are not in sync in that case.
float t = std::min(i / 50.0F, 0.99999F);
float dif;
DebugAssert((dif = Abs(Evaluate(t) - editorCurve.Evaluate(t) * scale)) < 0.01F);
}
}
#endif
}
return true;
}
void OptimizedPolynomialCurve::Integrate ()
{
for (int i=0;i<kSegmentCount;i++)
IntegrateSegment(segments[i].coeff);
}
void OptimizedPolynomialCurve::DoubleIntegrate ()
{
Polynomial velocity0 = segments[0];
IntegrateSegment (velocity0.coeff);
velocityValue = Polynomial::EvalSegment(timeValue, velocity0.coeff) * timeValue;
for (int i=0;i<kSegmentCount;i++)
DoubleIntegrateSegment(segments[i].coeff);
}
Vector2f OptimizedPolynomialCurve::FindMinMaxDoubleIntegrated() const
{
// Because of velocityValue * t, this becomes a quartic polynomial (4th order polynomial).
// TODO: Find all roots of quartic polynomial
Vector2f result = Vector2f::zero;
const int numSteps = 20;
const float delta = 1.0f / float(numSteps);
float acc = delta;
for(int i = 0; i < numSteps; i++)
{
CalculateMinMax(result, EvaluateDoubleIntegrated(acc));
acc += delta;
}
return result;
}
// Find the maximum of the integrated curve (x: min, y: max)
Vector2f OptimizedPolynomialCurve::FindMinMaxIntegrated() const
{
Vector2f result = Vector2f::zero;
float start[kSegmentCount] = {0.0f, timeValue};
float end[kSegmentCount] = {timeValue, 1.0f};
for(int i = 0; i < kSegmentCount; i++)
{
// Differentiate coefficients
float a = 4.0f*segments[i].coeff[0];
float b = 3.0f*segments[i].coeff[1];
float c = 2.0f*segments[i].coeff[2];
float d = 1.0f*segments[i].coeff[3];
float roots[3];
int numRoots = CubicPolynomialRootsGeneric(roots, a, b, c, d);
for(int r = 0; r < numRoots; r++)
{
float root = roots[r] + start[i];
if((root >= start[i]) && (root < end[i]))
CalculateMinMax(result, EvaluateIntegrated(root));
}
// TODO: Don't use eval integrated, use eval segment (and integrate in loop)
CalculateMinMax(result, EvaluateIntegrated(end[i]));
}
return result;
}
// Find the maximum of a double integrated curve (x: min, y: max)
Vector2f PolynomialCurve::FindMinMaxDoubleIntegrated() const
{
// Because of velocityValue * t, this becomes a quartic polynomial (4th order polynomial).
// TODO: Find all roots of quartic polynomial
Vector2f result = Vector2f::zero;
const int numSteps = 20;
const float delta = 1.0f / float(numSteps);
float acc = delta;
for(int i = 0; i < numSteps; i++)
{
CalculateMinMax(result, EvaluateDoubleIntegrated(acc));
acc += delta;
}
return result;
}
Vector2f PolynomialCurve::FindMinMaxIntegrated() const
{
Vector2f result = Vector2f::zero;
float prevTimeValue = 0.0f;
for(int i = 0; i < segmentCount; i++)
{
// Differentiate coefficients
float a = 4.0f*segments[i].coeff[0];
float b = 3.0f*segments[i].coeff[1];
float c = 2.0f*segments[i].coeff[2];
float d = 1.0f*segments[i].coeff[3];
float roots[3];
int numRoots = CubicPolynomialRootsGeneric(roots, a, b, c, d);
for(int r = 0; r < numRoots; r++)
{
float root = roots[r] + prevTimeValue;
if((root >= prevTimeValue) && (root < times[i]))
CalculateMinMax(result, EvaluateIntegrated(root));
}
// TODO: Don't use eval integrated, use eval segment (and integrate in loop)
CalculateMinMax(result, EvaluateIntegrated(times[i]));
prevTimeValue = times[i];
}
return result;
}
bool PolynomialCurve::IsValidCurve(const AnimationCurve& editorCurve)
{
int keyCount = editorCurve.GetKeyCount();
int segmentCount = keyCount - 1;
if(editorCurve.GetKey(0).time != 0.0f)
segmentCount++;
if(editorCurve.GetKey(keyCount-1).time != 1.0f)
segmentCount++;
return segmentCount <= kMaxNumSegments;
}
bool PolynomialCurve::BuildCurve(const AnimationCurve& editorCurve, float scale)
{
int keyCount = editorCurve.GetKeyCount();
segmentCount = 1;
const float kMaxTime = 1.01f;
memset(segments, 0, sizeof(segments));
memset(integrationCache, 0, sizeof(integrationCache));
memset(doubleIntegrationCache, 0, sizeof(doubleIntegrationCache));
memset(times, 0, sizeof(times));
times[0] = kMaxTime;
// Handle corner case 1 & 0 keyframes
if (keyCount == 0)
;
else if (keyCount == 1)
{
// Set constant value coefficient
segments[0].coeff[3] = editorCurve.GetKey(0).value * scale;
}
else
{
segmentCount = keyCount - 1;
int segmentOffset = 0;
// Add extra key to start if it doesn't match up
if(editorCurve.GetKey(0).time != 0.0f)
{
segments[0].coeff[3] = editorCurve.GetKey(0).value;
times[0] = editorCurve.GetKey(0).time;
segmentOffset = 1;
}
for (int i = 0;i<segmentCount;i++)
{
DebugAssert(i+1 < keyCount);
AnimationCurve::Cache cache;
editorCurve.CalculateCacheData(cache, i, i + 1, 0.0F);
memcpy(segments[i+segmentOffset].coeff, cache.coeff, 4 * sizeof(float));
times[i+segmentOffset] = editorCurve.GetKey(i+1).time;
}
segmentCount += segmentOffset;
// Add extra key to start if it doesn't match up
if(editorCurve.GetKey(keyCount-1).time != 1.0f)
{
segments[segmentCount].coeff[3] = editorCurve.GetKey(keyCount-1).value;
segmentCount++;
}
// Fixup last key time value
times[segmentCount-1] = kMaxTime;
for (int i = 0;i<segmentCount;i++)
{
segments[i].coeff[0] *= scale;
segments[i].coeff[1] *= scale;
segments[i].coeff[2] *= scale;
segments[i].coeff[3] *= scale;
}
}
DebugAssert(segmentCount <= kMaxNumSegments);
#if !UNITY_RELEASE
// Check that UI editor curve matches polynomial curve
for (int i=0;i<=10;i++)
{
// The very last element at 1.0 can be different when using step curves.
// The AnimationCurve implementation will sample the position of the last key.
// The PolynomialCurve will keep value of the previous key (Continuing the trajectory of the segment)
// In practice this is probably not a problem, since you don't sample 1.0 because then the particle will be dead.
// thus we just don't do the automatic assert when the curves are not in sync in that case.
float t = std::min(i / 50.0F, 0.99999F);
float dif;
DebugAssert((dif = Abs(Evaluate(t) - editorCurve.Evaluate(t) * scale)) < 0.01F);
}
#endif
return true;
}
void GenerateIntegrationCache(PolynomialCurve& curve)
{
curve.integrationCache[0] = 0.0f;
float prevTimeValue0 = curve.times[0];
float prevTimeValue1 = 0.0f;
for (int i=1;i<curve.segmentCount;i++)
{
float coeff[4];
memcpy(coeff, curve.segments[i-1].coeff, 4*sizeof(float));
IntegrateSegment (coeff);
float time = prevTimeValue0 - prevTimeValue1;
curve.integrationCache[i] = curve.integrationCache[i-1] + Polynomial::EvalSegment(time, coeff) * time;
prevTimeValue1 = prevTimeValue0;
prevTimeValue0 = curve.times[i];
}
}
// Expects double integrated segments and valid integration cache
void GenerateDoubleIntegrationCache(PolynomialCurve& curve)
{
float sum = 0.0f;
float prevTimeValue = 0.0f;
for(int i = 0; i < curve.segmentCount; i++)
{
curve.doubleIntegrationCache[i] = sum;
float time = curve.times[i] - prevTimeValue;
time = std::max(time, 0.0f);
sum += Polynomial::EvalSegment(time, curve.segments[i].coeff) * time * time + curve.integrationCache[i] * time;
prevTimeValue = curve.times[i];
}
}
void PolynomialCurve::Integrate ()
{
GenerateIntegrationCache(*this);
for (int i=0;i<segmentCount;i++)
IntegrateSegment(segments[i].coeff);
}
void PolynomialCurve::DoubleIntegrate ()
{
GenerateIntegrationCache(*this);
for (int i=0;i<segmentCount;i++)
DoubleIntegrateSegment(segments[i].coeff);
GenerateDoubleIntegrationCache(*this);
}
|