1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
#ifndef QUATERNION_H
#define QUATERNION_H
#include "Matrix3x3.h"
#include "Matrix4x4.h"
#include "Vector3.h"
#include "FloatConversion.h"
#include <algorithm>
#include <vector>
#include "Runtime/Modules/ExportModules.h"
class Quaternionf
{
public:
float x, y, z, w;
DEFINE_GET_TYPESTRING_IS_ANIMATION_CHANNEL (Quaternionf)
template<class TransferFunction> void Transfer (TransferFunction& transfer);
Quaternionf () {}
Quaternionf (float inX, float inY, float inZ, float inW);
explicit Quaternionf (const float* array) { x = array[0]; y = array[1]; z = array[2]; w = array[3]; }
// methods
const float* GetPtr ()const { return &x; }
float* GetPtr () { return &x; }
const float& operator [] (int i)const { return GetPtr ()[i]; }
float& operator [] (int i) { return GetPtr ()[i]; }
void Set (float inX, float inY, float inZ, float inW);
void Set (const Quaternionf& aQuat);
void Set (const float* array) { x = array[0]; y = array[1]; z = array[2]; w = array[3]; }
friend Quaternionf Normalize(const Quaternionf& q) { return q / Magnitude (q); }
friend Quaternionf NormalizeSafe(const Quaternionf& q);
friend Quaternionf Conjugate(const Quaternionf& q);
friend Quaternionf Inverse (const Quaternionf& q);
friend float SqrMagnitude (const Quaternionf& q);
friend float Magnitude (const Quaternionf& q);
bool operator == (const Quaternionf& q)const { return x == q.x && y == q.y && z == q.z && w == q.w; }
bool operator != (const Quaternionf& q)const { return x != q.x || y != q.y || z != q.z || w != q.w; }
Quaternionf& operator += (const Quaternionf& aQuat);
Quaternionf& operator -= (const Quaternionf& aQuat);
Quaternionf& operator *= (const float aScalar);
Quaternionf& operator *= (const Quaternionf& aQuat);
Quaternionf& operator /= (const float aScalar);
friend Quaternionf operator + (const Quaternionf& lhs, const Quaternionf& rhs)
{
Quaternionf q (lhs);
return q += rhs;
}
friend Quaternionf operator - (const Quaternionf& lhs, const Quaternionf& rhs)
{
Quaternionf t (lhs);
return t -= rhs;
}
Quaternionf operator - () const
{
return Quaternionf(-x, -y, -z, -w);
}
Quaternionf operator * (const float s) const
{
return Quaternionf (x*s, y*s, z*s, w*s);
}
friend Quaternionf operator * (const float s, const Quaternionf& q)
{
Quaternionf t (q);
return t *= s;
}
friend Quaternionf operator / (const Quaternionf& q, const float s)
{
Quaternionf t (q);
return t /= s;
}
inline friend Quaternionf operator * (const Quaternionf& lhs, const Quaternionf& rhs)
{
return Quaternionf (
lhs.w*rhs.x + lhs.x*rhs.w + lhs.y*rhs.z - lhs.z*rhs.y,
lhs.w*rhs.y + lhs.y*rhs.w + lhs.z*rhs.x - lhs.x*rhs.z,
lhs.w*rhs.z + lhs.z*rhs.w + lhs.x*rhs.y - lhs.y*rhs.x,
lhs.w*rhs.w - lhs.x*rhs.x - lhs.y*rhs.y - lhs.z*rhs.z);
}
static Quaternionf identity () { return Quaternionf (0.0F, 0.0F, 0.0F, 1.0F); }
};
bool CompareApproximately (const Quaternionf& q1, const Quaternionf& q2, float epsilon = Vector3f::epsilon);
Quaternionf Lerp( const Quaternionf& q1, const Quaternionf& q2, float t );
Quaternionf EXPORT_COREMODULE Slerp( const Quaternionf& q1, const Quaternionf& q2, float t );
float Dot( const Quaternionf& q1, const Quaternionf& q2 );
Vector3f EXPORT_COREMODULE QuaternionToEuler (const Quaternionf& quat);
std::vector<Vector3f> GetEquivalentEulerAngles (const Quaternionf& quat);
Quaternionf EulerToQuaternion (const Vector3f& euler);
void EXPORT_COREMODULE QuaternionToMatrix (const Quaternionf& q, Matrix3x3f& m);
void EXPORT_COREMODULE MatrixToQuaternion (const Matrix3x3f& m, Quaternionf& q);
void EXPORT_COREMODULE MatrixToQuaternion (const Matrix4x4f& m, Quaternionf& q);
void QuaternionToMatrix (const Quaternionf& q, Matrix4x4f& m);
void QuaternionToAxisAngle (const Quaternionf& q, Vector3f* axis, float* targetAngle);
Quaternionf AxisAngleToQuaternion (const Vector3f& axis, float angle);
/// Generates a Right handed Quat from a look rotation. Returns if conversion was successful.
bool LookRotationToQuaternion (const Vector3f& viewVec, const Vector3f& upVec, Quaternionf* res);
inline Vector3f RotateVectorByQuat (const Quaternionf& lhs, const Vector3f& rhs)
{
// Matrix3x3f m;
// QuaternionToMatrix (lhs, &m);
// Vector3f restest = m.MultiplyVector3 (rhs);
float x = lhs.x * 2.0F;
float y = lhs.y * 2.0F;
float z = lhs.z * 2.0F;
float xx = lhs.x * x;
float yy = lhs.y * y;
float zz = lhs.z * z;
float xy = lhs.x * y;
float xz = lhs.x * z;
float yz = lhs.y * z;
float wx = lhs.w * x;
float wy = lhs.w * y;
float wz = lhs.w * z;
Vector3f res;
res.x = (1.0f - (yy + zz)) * rhs.x + (xy - wz) * rhs.y + (xz + wy) * rhs.z;
res.y = (xy + wz) * rhs.x + (1.0f - (xx + zz)) * rhs.y + (yz - wx) * rhs.z;
res.z = (xz - wy) * rhs.x + (yz + wx) * rhs.y + (1.0f - (xx + yy)) * rhs.z;
// AssertIf (!CompareApproximately (restest, res));
return res;
}
// operator overloads
// inlines
inline Quaternionf::Quaternionf(float inX, float inY, float inZ, float inW)
{
x = inX;
y = inY;
z = inZ;
w = inW;
}
template<class TransferFunction> inline
void Quaternionf::Transfer (TransferFunction& transfer)
{
transfer.AddMetaFlag (kTransferUsingFlowMappingStyle);
TRANSFER (x);
TRANSFER (y);
TRANSFER (z);
TRANSFER (w);
}
inline void Quaternionf::Set (float inX, float inY, float inZ, float inW)
{
x = inX;
y = inY;
z = inZ;
w = inW;
}
inline void Quaternionf::Set (const Quaternionf& aQuat )
{
x = aQuat.x;
y = aQuat.y;
z = aQuat.z;
w = aQuat.w;
}
inline Quaternionf Conjugate (const Quaternionf& q)
{
return Quaternionf (-q.x, -q.y, -q.z, q.w);
}
inline Quaternionf Inverse (const Quaternionf& q)
{
// Is it necessary to divide by SqrMagnitude???
Quaternionf res = Conjugate (q);
return res;
}
inline float Magnitude(const Quaternionf& q)
{
return SqrtImpl (SqrMagnitude (q));
}
inline float SqrMagnitude(const Quaternionf& q)
{
return Dot (q, q);
}
inline Quaternionf& Quaternionf::operator+= (const Quaternionf& aQuat)
{
x += aQuat.x;
y += aQuat.y;
z += aQuat.z;
w += aQuat.w;
return *this;
}
inline Quaternionf& Quaternionf::operator-= (const Quaternionf& aQuat)
{
x -= aQuat.x;
y -= aQuat.y;
z -= aQuat.z;
w -= aQuat.w;
return *this;
}
inline Quaternionf& Quaternionf::operator *= (float aScalar)
{
x *= aScalar;
y *= aScalar;
z *= aScalar;
w *= aScalar;
return *this;
}
inline Quaternionf& Quaternionf::operator /= (const float aScalar)
{
AssertIf (CompareApproximately (aScalar, 0.0F));
x /= aScalar;
y /= aScalar;
z /= aScalar;
w /= aScalar;
return *this;
}
inline Quaternionf& Quaternionf::operator *= (const Quaternionf& rhs)
{
float tempx = w*rhs.x + x*rhs.w + y*rhs.z - z*rhs.y;
float tempy = w*rhs.y + y*rhs.w + z*rhs.x - x*rhs.z;
float tempz = w*rhs.z + z*rhs.w + x*rhs.y - y*rhs.x;
float tempw = w*rhs.w - x*rhs.x - y*rhs.y - z*rhs.z;
x = tempx; y = tempy; z = tempz; w = tempw;
return *this;
}
inline Quaternionf Lerp( const Quaternionf& q1, const Quaternionf& q2, float t )
{
Quaternionf tmpQuat;
// if (dot < 0), q1 and q2 are more than 360 deg apart.
// The problem is that quaternions are 720deg of freedom.
// so we - all components when lerping
if (Dot (q1, q2) < 0.0F)
{
tmpQuat.Set(q1.x + t * (-q2.x - q1.x),
q1.y + t * (-q2.y - q1.y),
q1.z + t * (-q2.z - q1.z),
q1.w + t * (-q2.w - q1.w));
}
else
{
tmpQuat.Set(q1.x + t * (q2.x - q1.x),
q1.y + t * (q2.y - q1.y),
q1.z + t * (q2.z - q1.z),
q1.w + t * (q2.w - q1.w));
}
return Normalize (tmpQuat);
}
inline float Dot( const Quaternionf& q1, const Quaternionf& q2 )
{
return (q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w);
}
float AngularDistance (const Quaternionf& lhs, const Quaternionf& rhs);
inline void QuaternionToAxisAngle (const Quaternionf& q, Vector3f* axis, float* targetAngle)
{
AssertIf (! CompareApproximately(SqrMagnitude (q), 1.0F));
*targetAngle = 2.0f* acos(q.w);
if (CompareApproximately (*targetAngle, 0.0F))
{
*axis = Vector3f::xAxis;
return;
}
float div = 1.0f / sqrt(1.0f - Sqr (q.w));
axis->Set( q.x*div, q.y*div, q.z*div );
}
inline Quaternionf AxisAngleToQuaternion (const Vector3f& axis, float angle)
{
Quaternionf q;
AssertIf (!CompareApproximately (SqrMagnitude (axis), 1.0F));
float halfAngle = angle * 0.5F;
float s = sin (halfAngle);
q.w = cos (halfAngle);
q.x = s * axis.x;
q.y = s * axis.y;
q.z = s * axis.z;
return q;
}
inline Quaternionf AngularVelocityToQuaternion (const Vector3f& axis, float deltaTime)
{
float w = Magnitude(axis);
if (w > Vector3f::epsilon)
{
float v = deltaTime * w * 0.5f;
float q = cos(v);
float s = sin(v) / w;
Quaternionf integrated;
integrated.w = q;
integrated.x = s * axis.x;
integrated.y = s * axis.y;
integrated.z = s * axis.z;
return NormalizeSafe(integrated);
}
else
{
return Quaternionf::identity();
}
}
inline Quaternionf AxisAngleToQuaternionSafe (const Vector3f& axis, float angle)
{
Quaternionf q;
float mag = Magnitude (axis);
if (mag > 0.000001F)
{
float halfAngle = angle * 0.5F;
q.w = cos (halfAngle);
float s = sin (halfAngle) / mag;
q.x = s * axis.x;
q.y = s * axis.y;
q.z = s * axis.z;
return q;
}
else
{
return Quaternionf::identity ();
}
}
// Generates a quaternion that rotates lhs into rhs.
Quaternionf FromToQuaternionSafe (const Vector3f& lhs, const Vector3f& rhs);
// from and to are assumed to be normalized
Quaternionf FromToQuaternion (const Vector3f& from, const Vector3f& to);
inline bool CompareApproximately (const Quaternionf& q1, const Quaternionf& q2, float epsilon)
{
//return SqrMagnitude (q1 - q2) < epsilon * epsilon;
return (SqrMagnitude (q1 - q2) < epsilon * epsilon) || (SqrMagnitude (q1 + q2) < epsilon * epsilon);
//return Abs (Dot (q1, q2)) > (1 - epsilon * epsilon);
}
inline Quaternionf NormalizeSafe (const Quaternionf& q)
{
float mag = Magnitude (q);
if (mag < Vector3f::epsilon)
return Quaternionf::identity ();
else
return q / mag;
}
inline Quaternionf NormalizeFastEpsilonZero (const Quaternionf& q)
{
float m = SqrMagnitude (q);
if (m < Vector3f::epsilon)
return Quaternionf(0.0F, 0.0F, 0.0F, 0.0F);
else
return q * FastInvSqrt(m);
}
inline bool IsFinite (const Quaternionf& f)
{
return IsFinite(f.x) & IsFinite(f.y) & IsFinite(f.z) & IsFinite(f.w);
}
#endif
|