summaryrefslogtreecommitdiff
path: root/Runtime/Math/Simd/fpu.h
blob: 20bd80072cb094ad1993fafc0cbb5a6a1725684e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#ifndef SIMD_FPU_H
#define SIMD_FPU_H

// vector 4 packed 
struct vec4f
{
	vec4f(float s = 0.0f){m128_f32[0] = m128_f32[1] = m128_f32[2] = m128_f32[3]= s;}
	vec4f(float x, float y, float z, float w){m128_f32[0] = x; m128_f32[1] = y; m128_f32[2] = z; m128_f32[3]= w;}

	float m128_f32[4];
};
typedef vec4f 		vec4fs;	// vector 4 scalar

// vector 4 bool packed
struct vec4b
{
	vec4b(bool s = false){m128_f32[0] = m128_f32[1] = m128_f32[2] = m128_f32[3]= s;}
	vec4b(bool x, bool y, bool z, bool w){m128_f32[0] = x; m128_f32[1] = y; m128_f32[2] = z; m128_f32[3]= w;}

	bool m128_f32[4];
};

typedef vec4b		vec4bs; // vector 4 bool scalar

#define cvec4f(name, x,y,z,w) static const vec4f name((x),(y),(z),(w))
#define cvec4b(name, x,y,z,w) static const vec4b name((x),(y),(z),(w))
#define cvec4fs(name, s)      static const vec4fs name(s)


#define SWZ_MASK(x, y, z, w)	(((w) << 6) | ((z) << 4) | ((y) << 2) | ((x)))
#define SWZ_X(MASK)				(((MASK) >> 0) & 3)
#define SWZ_Y(MASK)				(((MASK) >> 2) & 3)
#define SWZ_Z(MASK)				(((MASK) >> 4) & 3)
#define SWZ_W(MASK)				(((MASK) >> 6) & 3)
#define SWZ_I(MASK, I)			(((MASK) >> (I*2)) & 3)

enum simd_mask
{
	kXYZW = SWZ_MASK(0,1,2,3),
	kXXXX = SWZ_MASK(0,0,0,0),
	kYYYY = SWZ_MASK(1,1,1,1),
	kZZZZ = SWZ_MASK(2,2,2,2),
	kWWWW = SWZ_MASK(3,3,3,3),
	
	kXWYZ = SWZ_MASK(0,3,1,2),
	kXZWY = SWZ_MASK(0,2,3,1),

	kYZWX = SWZ_MASK(1,2,3,0),
	kYXZW = SWZ_MASK(1,0,2,3),
	kYWZX = SWZ_MASK(1,3,2,0),
	kYZXW = SWZ_MASK(1,2,0,3),
	kYXWZ = SWZ_MASK(1,0,3,2),

    kZWXY = SWZ_MASK(2,3,0,1),
	kZYXW = SWZ_MASK(2,1,0,3),
	kZYWX = SWZ_MASK(2,1,3,0),
	kZXYW = SWZ_MASK(2,0,1,3),
	
	kWYZX = SWZ_MASK(3,1,2,0),
	kWXZY = SWZ_MASK(3,0,2,1),
	kWYXZ = SWZ_MASK(3,1,0,2),
	kWWWZ = SWZ_MASK(3,3,3,2),
	kWWZZ = SWZ_MASK(3,3,2,2),
	kWZYX = SWZ_MASK(3,2,1,0),
};

#define Vzero() vec4f(0.f)
#define Vone() vec4f(1.f)
	
static MECANIM_FORCE_INLINE vec4f Vpermute(vec4f v, int mask) 
{
	return vec4f(v.m128_f32[SWZ_X(mask)], v.m128_f32[SWZ_Y(mask)], v.m128_f32[SWZ_Z(mask)], v.m128_f32[SWZ_W(mask)]);
}

#define Vmove(l, r) vec4f(r.m128_f32[0], l.m128_f32[1], l.m128_f32[2], l.m128_f32[3])

// This template is part of the back-end because some instruction set support some swizzle operation that could be specialized, like xbox vmx rotate instruction that is use in dot product
template<int SWZ> struct Vswizzle 
{
	static MECANIM_FORCE_INLINE vec4f rhs(vec4f r)
	{
		return Vpermute(r, SWZ);
	}

	static MECANIM_FORCE_INLINE vec4f lhs(vec4f l, vec4f r)
	{
		return Vswizzle<SWZ>::rhs(Vmove(Vswizzle<SWZ>::rhs(l), r));
	}
};

template<> struct Vswizzle<kXYZW> 
{
	static MECANIM_FORCE_INLINE vec4f rhs(vec4f r)
	{
		return r;
	}
	static MECANIM_FORCE_INLINE vec4f lhs(vec4f l, vec4f r)
	{
		return Vmove(l, r);
	}
};


// Aligned store, store vector at address base as 4 float
#define Vstorepf(v, base, offset) memcpy( (base)+(offset), &v.m128_f32[0], sizeof(v))

// Return component x as a float
#define Vstoresf(r) r.m128_f32[0]

// Return component x as a bool
#define Vstoresb(r) r.m128_f32[0]		

// Aligned store, store vector at address base as 4 bool 
static MECANIM_FORCE_INLINE void Vstorepb(vec4b v, bool* r)
{
	r[0] = v.m128_f32[0];
	r[1] = v.m128_f32[1];
	r[2] = v.m128_f32[2];
	r[3] = v.m128_f32[3];
}

// Aligned load, load 4 float at address v in vector register
static MECANIM_FORCE_INLINE vec4f Vloadpf(float const* v, int offset)
{
	float const* p = v+offset;
	return vec4f( p[0], p[1], p[2], p[3] );
}

// Load float value in vector register and replicate value in all component
#define Vloadsf(s) vec4f(s)

// Load bool value in vector register and replicate value in all component
#define Vloadsb(s) vec4bs(s)

// Load 4 float value in vector register
#define Vload4sf(x, y, z, w) vec4f(x,y,z,w)

// Load 4 bool value in vector register
#define Vload4sb(x, y, z, w) vec4b(x,y,z,w)

static MECANIM_FORCE_INLINE vec4f Vadd(vec4f l, vec4f r)
{
	return vec4f(l.m128_f32[0]+r.m128_f32[0], l.m128_f32[1]+r.m128_f32[1], l.m128_f32[2]+r.m128_f32[2], l.m128_f32[3]+r.m128_f32[3]);
}

static MECANIM_FORCE_INLINE vec4f Vsub(vec4f l, vec4f r)
{
	return vec4f(l.m128_f32[0]-r.m128_f32[0], l.m128_f32[1]-r.m128_f32[1], l.m128_f32[2]-r.m128_f32[2], l.m128_f32[3]-r.m128_f32[3]);
}

static MECANIM_FORCE_INLINE vec4f Vmul( vec4f l,  vec4f r)
{
	return vec4f(l.m128_f32[0]*r.m128_f32[0], l.m128_f32[1]*r.m128_f32[1], l.m128_f32[2]*r.m128_f32[2], l.m128_f32[3]*r.m128_f32[3]);
}

static MECANIM_FORCE_INLINE vec4f Vdiv( vec4f l,  vec4f r)
{
	return vec4f(l.m128_f32[0]/r.m128_f32[0], l.m128_f32[1]/r.m128_f32[1], l.m128_f32[2]/r.m128_f32[2], l.m128_f32[3]/r.m128_f32[3]);
}

#define Vmadd( a,  b,  c) vec4f(a.m128_f32[0]*b.m128_f32[0] + c.m128_f32[0], a.m128_f32[1]*b.m128_f32[1] + c.m128_f32[1], a.m128_f32[2]*b.m128_f32[2] + c.m128_f32[2], a.m128_f32[3]*b.m128_f32[3] + c.m128_f32[3])
#define Vmsub( a,  b,  c) vec4f(a.m128_f32[0]*b.m128_f32[0] - c.m128_f32[0], a.m128_f32[1]*b.m128_f32[1] - c.m128_f32[1], a.m128_f32[2]*b.m128_f32[2] - c.m128_f32[2], a.m128_f32[3]*b.m128_f32[3] - c.m128_f32[3])
#define Vneg(r)  vec4f(-r.m128_f32[0], -r.m128_f32[1], -r.m128_f32[2], -r.m128_f32[3])

// Vector sgn: return -1, 1
#define Vsgn(r) vec4f( r.m128_f32[0] < 0 ? -1.f : 1.f, r.m128_f32[1] < 0 ? -1.f : 1.f, r.m128_f32[2] < 0 ? -1.f : 1.f, r.m128_f32[3] < 0 ? -1.f : 1.f)

// Vector sgn: return -1, 0, 1
static MECANIM_FORCE_INLINE vec4f Vsign(vec4f r)
{
	return vec4f( r.m128_f32[0] < 0 ? -1.f : r.m128_f32[0] > 0 ? 1.f : 0.f,
		r.m128_f32[1] < 0 ? -1.f : r.m128_f32[1] > 0 ? 1.f : 0.f, 
		r.m128_f32[2] < 0 ? -1.f : r.m128_f32[2] > 0 ? 1.f : 0.f, 
		r.m128_f32[3] < 0 ? -1.f : r.m128_f32[3] > 0 ? 1.f : 0.f);
}

#define Vinc(r) Vadd( (r), Vone())
#define Vdec(r) Vsub( (r), Vone())
#define Vabs(r) vec4f( abs(r.m128_f32[0]), abs(r.m128_f32[1]), abs(r.m128_f32[2]), abs(r.m128_f32[3]))
#define Vmax( l,  r) vec4f( l.m128_f32[0] > r.m128_f32[0] ? l.m128_f32[0] : r.m128_f32[0], l.m128_f32[1] > r.m128_f32[1] ? l.m128_f32[1] : r.m128_f32[1], l.m128_f32[2] > r.m128_f32[2] ? l.m128_f32[2] : r.m128_f32[2], l.m128_f32[3] > r.m128_f32[3] ? l.m128_f32[3] : r.m128_f32[3])
#define Vmin( l,  r) vec4f( l.m128_f32[0] < r.m128_f32[0] ? l.m128_f32[0] : r.m128_f32[0], l.m128_f32[1] < r.m128_f32[1] ? l.m128_f32[1] : r.m128_f32[1], l.m128_f32[2] < r.m128_f32[2] ? l.m128_f32[2] : r.m128_f32[2], l.m128_f32[3] < r.m128_f32[3] ? l.m128_f32[3] : r.m128_f32[3])

// Return the largest of the 4 component
static MECANIM_FORCE_INLINE vec4fs Vlargest(vec4f r)
{
	r = Vmax(r, Vswizzle<kYZWX>::rhs(r));
	r = Vmax(r, Vswizzle<kZWXY>::rhs(r));
	return r.m128_f32[0];
}

// Return the smallest of the 4 component
static MECANIM_FORCE_INLINE vec4fs Vsmallest(vec4f r)
{
	r = Vmin(r, Vswizzle<kYZWX>::rhs(r));
	r = Vmin(r, Vswizzle<kZWXY>::rhs(r));
	return r.m128_f32[0];;
}

static MECANIM_FORCE_INLINE vec4fs Vsum(vec4f r)
{
	r = Vadd(r, Vswizzle<kYZWX>::rhs(r) );
	r = Vadd(r, Vswizzle<kZWXY>::rhs(r) );
	r = Vswizzle<kXXXX>::rhs(r);
	return r.m128_f32[0];
}

#define Vdot( l,  r) Vsum( Vmul((l), (r)) )
	
#define Vsqrt(r) vec4f( sqrt(r.m128_f32[0]), sqrt(r.m128_f32[1]), sqrt(r.m128_f32[2]), sqrt(r.m128_f32[3]))

static MECANIM_FORCE_INLINE vec4f Vrsqrt(vec4f r)
{
	vec4f const e = Vdiv(vec4f(1.f), Vsqrt(r));
	return Vmul(Vmul(e, Vsub(vec4f(3.0f), Vmul(Vmul(e,e),r))), vec4f(.5f));
}

static MECANIM_FORCE_INLINE vec4f Vrcp(vec4f r)
{
	return Vdiv(vec4f(1.f), r );
}


// Merge 4 vector low bytes
#define Vcombine(x,y,z,w) vec4f(x.m128_f32[0], y.m128_f32[0], z.m128_f32[0], w.m128_f32[0])

// Vector comparison	
#define Vcmpeq( a,  b) vec4b(a.m128_f32[0] == b.m128_f32[0], a.m128_f32[1] == b.m128_f32[1], a.m128_f32[2] == b.m128_f32[2], a.m128_f32[3] == b.m128_f32[3])
#define Vcmpneq( a,  b) vec4b(a.m128_f32[0] != b.m128_f32[0], a.m128_f32[1] != b.m128_f32[1], a.m128_f32[2] != b.m128_f32[2], a.m128_f32[3] != b.m128_f32[3])
#define Vcmpgt( a,  b) vec4b(a.m128_f32[0] > b.m128_f32[0], a.m128_f32[1] > b.m128_f32[1], a.m128_f32[2] > b.m128_f32[2], a.m128_f32[3] > b.m128_f32[3])
#define Vcmpge( a,  b) vec4b(a.m128_f32[0] >= b.m128_f32[0], a.m128_f32[1] >= b.m128_f32[1], a.m128_f32[2] >= b.m128_f32[2], a.m128_f32[3] >= b.m128_f32[3])
#define Vcmplt( a,  b) vec4b(a.m128_f32[0] < b.m128_f32[0], a.m128_f32[1] < b.m128_f32[1], a.m128_f32[2] < b.m128_f32[2], a.m128_f32[3] < b.m128_f32[3])
#define Vcmple( a,  b) vec4b(a.m128_f32[0] <= b.m128_f32[0], a.m128_f32[1] <= b.m128_f32[1], a.m128_f32[2] <= b.m128_f32[2], a.m128_f32[3] <= b.m128_f32[3])

#define Vsel( c,  a,  b) vec4f(c.m128_f32[0] ? a.m128_f32[0] : b.m128_f32[0], c.m128_f32[1] ? a.m128_f32[1] : b.m128_f32[1], c.m128_f32[2] ? a.m128_f32[2] : b.m128_f32[2], c.m128_f32[3] ? a.m128_f32[3] : b.m128_f32[3])

//	vector logics 
#define Vnot(r) vec4b(!r.m128_f32[0], !r.m128_f32[1], !r.m128_f32[2], !r.m128_f32[3])
#define Vxnor( a,  b) vec4b(!(a.m128_f32[0] ^ b.m128_f32[0]), !(a.m128_f32[1] ^ b.m128_f32[1]), !(a.m128_f32[2] ^ b.m128_f32[2]), !(a.m128_f32[3] ^ b.m128_f32[3]))
#define Vxor( a,  b) vec4b(a.m128_f32[0] ^ b.m128_f32[0], a.m128_f32[1] ^ b.m128_f32[1], a.m128_f32[2] ^ b.m128_f32[2], a.m128_f32[3] ^ b.m128_f32[3])
#define Vand( a,  b) vec4b(a.m128_f32[0] && b.m128_f32[0], a.m128_f32[1] && b.m128_f32[1], a.m128_f32[2] && b.m128_f32[2], a.m128_f32[3] && b.m128_f32[3])
#define Vor( a,  b) vec4b(a.m128_f32[0] || b.m128_f32[0], a.m128_f32[1] || b.m128_f32[1], a.m128_f32[2] || b.m128_f32[2], a.m128_f32[3] || b.m128_f32[3])
#define Vall(a) (a.m128_f32[0] && a.m128_f32[1] && a.m128_f32[2] && a.m128_f32[3])
#define Vany(a) (a.m128_f32[0] || a.m128_f32[1] || a.m128_f32[2] || a.m128_f32[3])

#endif // SIMD_FPU_H