1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
#ifndef SIMD_QUATERNION_H
#define SIMD_QUATERNION_H
#include "Runtime/Math/Simd/math.h"
namespace math
{
static inline float4 quatIdentity()
{
cvec4f(id, 0,0,0,1);
return float4(id);
}
static inline float4 quatConj(float4 const& q)
{
cvec4f(conj, -1,-1,-1,1);
return float4(Vmul(q.eval(), conj));
}
static inline float4 quatMul(float4 const& a, float4 const& b)
{
return quatConj(a.zxyw()*b.yzxw() - a.ywzx()*b.zywx() - a.wyxz()*b.xwyz() - a.xzwy()*b.wxzy());
}
static inline float4 quatMulVec(float4 const& q, float4 const& v1)
{
const float4 v = math::vector(v1 + v1);
const float4 qv = q*v;
return q.w()*(cross(q, v) + q.w()*v) + q*(qv + qv.yzxw() + qv.zxyw()) + quatConj(v1);
}
static inline float4 quatLerp(float4 const& p, float4 const& q, float1 const& blend)
{
return normalize(p + blend*(q*sgn(dot(p, q)) - p));
}
static inline float4 quatArcRotate(float4 const& a, float4 const& b)
{
float4 q = cross(a, b);
q.w() = dot(a, b) + math::sqrt( float1(dot(a)*dot(b)) );
return q;
}
static inline float4 quatArcRotateX(float4 const& n)
{
return float4(float1::zero(),-n.z(),n.y(),n.x()+float1::one());
}
static inline float4 quatXcos(float4 const &qn)
{
const float4 qw = qn.w()*qn - float4(0, 0, 0, .5f);
const float4 u = qn.x()*qn + float4(1, 1, -1, -1) * qw.wzyx();
return u + u;
}
static inline float4 quatYcos(float4 const &qn)
{
const float4 qw = qn.w()*qn - float4(0, 0, 0, .5f);
const float4 v = qn.y()*qn + float4(-1, 1, 1, -1)*qw.zwxy();
return v + v;
}
static inline float4 quatZcos(float4 const &qn)
{
const float4 qw = qn.w()*qn - float4(0, 0, 0, .5f);
const float4 w = qn.z()*qn + float4(1, -1, 1, -1)*qw.yxwz();
return w + w;
}
static inline float4 quatEulerToQuat(float4 const& euler)
{
float4 s, c; sincos( float1(0.5f)*euler, s, c);
const float4 t = float4(s.x()*c.z(), s.x()*s.z(), c.x()*s.z(), c.x()*c.z());
constant_float4( mask, -1.f, 1.f, -1.f, 1.f);
return c.y()*t + s.y()*mask*t.zwxy();
}
static inline float4 quatQuatToEuler(float4 const& q)
{
float4 euler;
const float4 x = q.x()*q;
const float4 y = q.y()*q;
const float1 discr = x.z() - y.w();
if(discr >= float1(.5f - M_EPSF))
{
float1 _y = x.w() - y.z();
float1 _x = -x.z() - y.w();
euler = float4( atan2( _y.tofloat(), _x.tofloat() ), -M_PI_2f, 0.f, 0.f);
}
else
{
const float4 w = q.wwwz()*q.wwzz() - float4(.5f, 0.f, 0.f, 0.f);
if(discr <= float1(M_EPSF - .5f))
{
float1 _y = x.y() - w.z();
float1 _x = y.y() + w.x();
euler = float4( atan2( _y.tofloat(), _x.tofloat() ), M_PI_2f, 0.f, 0.f);
}
else
{
float1 _yX = x.w() + y.z();
float1 _xX = w.w() + w.x();
float1 discr2 = discr + discr;
float1 _yZ = x.y() + w.z();
float1 _xZ = x.x() + w.x();
euler = float4( atan2( _yX.tofloat(), _xX.tofloat() ), -asin( discr2.tofloat() ), atan2( _yZ.tofloat(), _xZ.tofloat() ), 0.f);
}
}
return euler;
}
// get unit quaternion from rotation matrix
static inline float4 quatMatrixToQuat(float4 const& u, float4 const& v, float4 const& w)
{
float4 q;
if(u.x() >= float1::zero())
{
const float1 t = v.y() + w.z();
if(t >= float1::zero())
{
float1 x(v.z() - w.y());
float1 y(w.x() - u.z());
float1 z(u.y() - v.x());
float1 ww(float1::one() + u.x() + t);
q = float4(x, y, z, ww);
// Android doesn't like this expression, it does generate the wrong assembly
//q = float4(v.z() - w.y(), w.x() - u.z(), u.y() - v.x(), float1::one() + u.x() + t);
}
else
{
float1 x(float1::one() + u.x() - t);
float1 y(u.y() + v.x());
float1 z(w.x() + u.z());
float1 ww(v.z() - w.y());
q = float4(x, y, z, ww);
// Android doesn't like this expression, it does generate the wrong assembly
//q = float4(float1::one() + u.x() - t, u.y() + v.x(), w.x() + u.z(), v.z() - w.y());
}
}
else
{
const float1 t = v.y() - w.z();
if(t >= float1::zero())
{
float1 x(u.y() + v.x());
float1 y(float1::one() - u.x() + t);
float1 z(v.z() + w.y());
float1 ww(w.x() - u.z());
q = float4(x, y, z, ww);
// Android doesn't like this expression, it does generate the wrong assembly
//q = float4(u.y() + v.x(), float1::one() - u.x() + t, v.z() + w.y(), w.x() - u.z());
}
else
{
float1 x(w.x() + u.z());
float1 y(v.z() + w.y());
float1 z(float1::one() - u.x() - t);
float1 ww(u.y() - v.x());
q = float4(x, y, z, ww);
// Android doesn't like this expression, it does generate the wrong assembly
//q = float4(w.x() + u.z(), v.z() + w.y(), float1::one() - u.x() - t, u.y() - v.x());
}
}
return normalize(q);
}
static inline float4 quatProjOnYPlane(float4 const& q)
{
constant_float4(yMask, 0,1,0,0);
constant_float4(ywMask, 0,1,0,1);
const float4 lQAlignUp = quatArcRotate(quatYcos(q), yMask );
return normalize( quatMul(lQAlignUp,q) * ywMask);
}
static inline float4 quatClamp(const float4 &q,float maxAngle)
{
float4 ret = q;
float1 halfCosMaxAnlge = float1(math::cos(0.5f*maxAngle));
float4 qn = normalize(q);
qn = cond(qn.w() < float1::zero(), -qn, qn);
if(qn.w() < halfCosMaxAnlge)
{
float1 fact = (halfCosMaxAnlge - qn.w()) / halfCosMaxAnlge;
ret = qn * (float1::one() - fact);
ret.w() = lerp(halfCosMaxAnlge, float1::one(), fact);
}
return ret;
}
static inline float4 quatWeight(float4 const& q, float1 const& w)
{
return normalize(float4(q.x()*w,q.y()*w,q.z()*w,q.w()));
}
static inline float4 quat2Qtan(float4 const& q)
{
float1 w = q.w();
w = cond(w == float1::zero(), float1(M_EPSF), w);
return math::vector(q/w);
}
static inline float4 qtan2Quat(float4 const& q)
{
float4 qn = q;
qn.w() = float1::one();
return normalize(qn);
}
static inline float4 ZYRoll2Quat(float4 const& zyroll)
{
return normalize(float4(zyroll.x(),zyroll.y()+zyroll.x()*zyroll.z(),zyroll.z()-zyroll.x()*zyroll.y(), float1::one()));
}
static inline float4 quat2ZYRoll(float4 const& q)
{
const float4 qtan = quat2Qtan(q);
const float1 qtanx = qtan.x();
const float1 x2p1 = float1::one()+qtanx*qtanx;
return float4(qtanx,(qtan.y()-qtanx*qtan.z())/x2p1,(qtan.z()+qtanx*qtan.y())/x2p1,float1::zero());
}
static inline float4 RollZY2Quat(float4 const& zyroll)
{
return normalize(float4(zyroll.x(),zyroll.y()-zyroll.x()*zyroll.z(),zyroll.z()+zyroll.x()*zyroll.y(),float1::one()));
}
static inline float4 quat2RollZY(float4 const& q)
{
const float4 qtan = quat2Qtan(q);
const float1 qtanx = qtan.x();
const float1 x2p1 = float1::one()+qtanx*qtanx;
return float4(qtanx,(qtan.y()+qtanx*qtan.z())/x2p1,(qtan.z()-qtanx*qtan.y())/x2p1,float1::zero());
}
}
#endif
|