summaryrefslogtreecommitdiff
path: root/Runtime/NavMesh/NavMeshTileCarving.cpp
blob: 24565aa1f49d129272fd1ffe85d0b9ede7af95a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#include "UnityPrefix.h"
#include "NavMeshTileCarving.h"
#include "NavMeshTileConversion.h"
#include "DynamicMesh.h"
#include "DetourNavMesh.h"
#include "Runtime/Math/Matrix4x4.h"
#include "Runtime/Geometry/AABB.h"
#include "DetourCommon.h"
#include "DetourAlloc.h"

// TODO:
// Sort carving objects spatially - so carving order does not depend on carve index

static inline Vector3f TileMidpoint (const dtMeshHeader* tileHeader);
static bool CalculateHull (DynamicMesh::Hull& carveHull, const Matrix4x4f& transform, const Vector3f& size, const MinMaxAABB& aabb, const Vector3f& tileOffset, const float carveWidth, const float carveDepth);
static Vector3f CalculateCarveOffsetScale (const Vector3f& axis);

// Replaces a single tile in the detour navmesh with a carved tile.
void CarveNavMeshTile (const dtMeshTile* tile, dtNavMesh* navmesh, size_t count, const Matrix4x4f* transforms, const Vector3f* sizes, const MinMaxAABB* aabbs)
{
	if (count == 0 || tile == NULL || tile->header == NULL)
	{
		return;
	}

	const Vector3f tileOffset = TileMidpoint (tile->header);
	const float carveWidth = tile->header->walkableRadius;
	const float carveDepth = tile->header->walkableHeight;

	DynamicMesh::HullContainer carveHulls;
	for (size_t i = 0; i < count; ++i)
	{
		DynamicMesh::Hull carveHull;
		if (CalculateHull (carveHull, transforms[i], sizes[i], aabbs[i], tileOffset, carveWidth, carveDepth))
		{
			carveHulls.push_back (carveHull);
		}
	}

	DynamicMesh dynamicMesh;
	if (!TileToDynamicMesh (tile, dynamicMesh, tileOffset))
	{
		return;
	}
	if (!dynamicMesh.ClipPolys (carveHulls))
	{
		return;
	}

	dynamicMesh.FindNeighbors ();

	int newTileSize = 0;
	unsigned char* newTile = DynamicMeshToTile (&newTileSize, dynamicMesh, tile, tileOffset);

	dtPolyRef tileRef = navmesh->getTileRef (tile);
	navmesh->removeTile (tileRef, 0, 0);
	dtStatus status = navmesh->addTile (newTile, newTileSize, DT_TILE_FREE_DATA, tileRef, 0);
	if (dtStatusFailed (status))
	{
		dtFree (newTile);
	}
}

static inline Vector3f TileMidpoint (const dtMeshHeader* tileHeader)
{
	if (!tileHeader)
	{
		return Vector3f::zero;
	}
	return 0.5f * (Vector3f (tileHeader->bmin) + Vector3f (tileHeader->bmax));
}

static inline bool AreColinear (const Vector3f& v, const Vector3f& u, const float cosAngleAccept)
{
	DebugAssert (IsNormalized (v));
	DebugAssert (IsNormalized (u));
	return Abs (Dot (v, u)) > cosAngleAccept;
}

// Compute the set of planes defining an extruded bounding box.
// Bounding box is represented by transform and size.
// Extrusion is based on 'carveWidth' horizontally and 'carveDepth' vertically down.
// Everyting is translated relative to 'tileOffset'.
static bool CalculateHull (DynamicMesh::Hull& carveHull, const Matrix4x4f& transform, const Vector3f& size, const MinMaxAABB& aabb, const Vector3f& tileOffset, const float carveWidth, const float carveDepth)
{
	carveHull.resize_uninitialized (12);

	const float cosAngleConsiderAxisAligned = Cos (Deg2Rad (10.0f)); // Consider colinear if within 10 degrees
	bool isAlmostAxisAlignedX = false;
	bool isAlmostAxisAlignedY = false;
	bool isAlmostAxisAlignedZ = false;

	// First add the six planes from the OBB
	const Vector3f carveLocalOffset = Vector3f (carveWidth, carveDepth, carveWidth);
	const Vector3f position = transform.GetPosition () - tileOffset;
	Vector3f axis, offset, planeOffset;

	axis = transform.GetAxisX ();
	if (CompareApproximately (axis, Vector3f::zero, 0.0001f))
	{
		return false;
	}
	offset = size.x * axis;
	axis = Normalize (axis);
	planeOffset = Scale (CalculateCarveOffsetScale (-axis), carveLocalOffset) - offset;
	carveHull[0].SetNormalAndPosition (-axis, position + planeOffset);
	planeOffset = Scale (CalculateCarveOffsetScale (axis), carveLocalOffset) + offset;
	carveHull[1].SetNormalAndPosition (axis, position + planeOffset);
	isAlmostAxisAlignedX = isAlmostAxisAlignedX || AreColinear (axis, Vector3f::xAxis, cosAngleConsiderAxisAligned);
	isAlmostAxisAlignedY = isAlmostAxisAlignedY || AreColinear (axis, Vector3f::yAxis, cosAngleConsiderAxisAligned);
	isAlmostAxisAlignedZ = isAlmostAxisAlignedZ || AreColinear (axis, Vector3f::zAxis, cosAngleConsiderAxisAligned);

	axis = transform.GetAxisY ();
	if (CompareApproximately (axis, Vector3f::zero, 0.0001f))
	{
		return false;
	}
	offset = size.y * axis;
	axis = Normalize (axis);
	planeOffset = Scale (CalculateCarveOffsetScale (-axis), carveLocalOffset) - offset;
	carveHull[2].SetNormalAndPosition (-axis, position + planeOffset);
	planeOffset = Scale (CalculateCarveOffsetScale (axis), carveLocalOffset) + offset;
	carveHull[3].SetNormalAndPosition (axis, position + planeOffset);
	isAlmostAxisAlignedX = isAlmostAxisAlignedX || AreColinear (axis, Vector3f::xAxis, cosAngleConsiderAxisAligned);
	isAlmostAxisAlignedY = isAlmostAxisAlignedY || AreColinear (axis, Vector3f::yAxis, cosAngleConsiderAxisAligned);
	isAlmostAxisAlignedZ = isAlmostAxisAlignedZ || AreColinear (axis, Vector3f::zAxis, cosAngleConsiderAxisAligned);

	axis = transform.GetAxisZ ();
	if (CompareApproximately (axis, Vector3f::zero, 0.0001f))
	{
		return false;
	}
	offset = size.z * axis;
	axis = Normalize (axis);
	planeOffset = Scale (CalculateCarveOffsetScale (-axis), carveLocalOffset) - offset;
	carveHull[4].SetNormalAndPosition (-axis, position + planeOffset);
	planeOffset = Scale (CalculateCarveOffsetScale (axis), carveLocalOffset) + offset;
	carveHull[5].SetNormalAndPosition (axis, position + planeOffset);
	isAlmostAxisAlignedX = isAlmostAxisAlignedX || AreColinear (axis, Vector3f::xAxis, cosAngleConsiderAxisAligned);
	isAlmostAxisAlignedY = isAlmostAxisAlignedY || AreColinear (axis, Vector3f::yAxis, cosAngleConsiderAxisAligned);
	isAlmostAxisAlignedZ = isAlmostAxisAlignedZ || AreColinear (axis, Vector3f::zAxis, cosAngleConsiderAxisAligned);

	int planeCount = 6;

	// The add the six planes from the containing AABB
	const Vector3f min = aabb.m_Min - tileOffset;
	const Vector3f max = aabb.m_Max - tileOffset;
	if (!isAlmostAxisAlignedX)
	{
		carveHull[planeCount++].SetNormalAndPosition (-Vector3f::xAxis, min - carveWidth*Vector3f::xAxis);
		carveHull[planeCount++].SetNormalAndPosition (Vector3f::xAxis, max + carveWidth*Vector3f::xAxis);
	}
	if (!isAlmostAxisAlignedY)
	{
		carveHull[planeCount++].SetNormalAndPosition (-Vector3f::yAxis, min - carveDepth*Vector3f::yAxis);
		carveHull[planeCount++].SetNormalAndPosition (Vector3f::yAxis, max);
	}
	if (!isAlmostAxisAlignedZ)
	{
		carveHull[planeCount++].SetNormalAndPosition (-Vector3f::zAxis, min - carveWidth*Vector3f::zAxis);
		carveHull[planeCount++].SetNormalAndPosition (Vector3f::zAxis, max + carveWidth*Vector3f::zAxis);
	}

	carveHull.resize_uninitialized (planeCount);
	return true;
}

// Returns the general plane offset direction given the plane axis
static Vector3f CalculateCarveOffsetScale (const Vector3f& axis)
{
	Vector3f res;
	res.x = Sign (axis.x);
	res.y = std::min (0.0f, Sign (axis.y));
	res.z = Sign (axis.z);
	return res;
}