1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
#ifndef MEMORY_POOL_H_
#define MEMORY_POOL_H_
#include "Runtime/Allocator/MemoryMacros.h"
#include "Runtime/Utilities/dynamic_array.h"
#include "Runtime/Utilities/LogAssert.h"
#include "Runtime/Modules/ExportModules.h"
#if ENABLE_THREAD_CHECK_IN_ALLOCS
#include "Runtime/Threads/Thread.h"
#endif
// --------------------------------------------------------------------------
// A free-list based fixed size allocator.
//
// To override new/delete per class use DECLARE_POOLED_ALLOC and DEFINE_POOLED_ALLOC.
//
// memory_pool<T> is an STL allocator that only supports allocating a single element
// at a time. So it can be used with list, map, set but not with vector or string.
//
// Allocator creates "bubbles" of objects, each containin a free-list inside. When a bubble
// is full, it allocates a new one. Empty bubbles are NOT destroyed.
// --------------------------------------------------------------------------
class EXPORT_COREMODULE MemoryPool {
public:
MemoryPool( bool threadCheck, const char* name, int blockSize, int allocatedSizeHint, MemLabelId label = kMemPoolAlloc );
~MemoryPool();
/// Allocate single block
void* Allocate();
/// Allocate less than single block
void* Allocate( size_t amount );
/// Deallocate
void Deallocate( void *ptr );
/// Deallocate everything
void DeallocateAll();
#if !DEPLOY_OPTIMIZED
size_t GetBubbleCount() const { return m_Bubbles.size(); }
int GetAllocCount() const { return m_AllocCount; }
#endif
int GetAllocatedBytes() { return m_Bubbles.size () * m_BlocksPerBubble * m_BlockSize; }
#if DEBUGMODE
int GetAllocatedObjectsCount() { return m_AllocCount; }
#endif
void PreallocateMemory(int size);
void SetAllocateMemoryAutomatically (bool allocateMemoryAuto) { m_AllocateMemoryAutomatically = allocateMemoryAuto; }
static void StaticInitialize();
static void StaticDestroy();
static void RegisterStaticMemoryPool(MemoryPool* pool);
private:
void AllocNewBubble();
struct Bubble
{
char data[1]; // actually byteCount
};
typedef dynamic_array<Bubble*> Bubbles;
void Reset();
private:
int m_BlockSize;
int m_BubbleSize;
int m_BlocksPerBubble;
Bubbles m_Bubbles;
void* m_HeadOfFreeList;
bool m_AllocateMemoryAutomatically;
MemLabelId m_AllocLabel;
int m_AllocCount; // number of blocks currently allocated
#if DEBUGMODE
int m_PeakAllocCount; // stats
const char* m_Name; // for debugging
#endif
#if ENABLE_THREAD_CHECK_IN_ALLOCS
bool m_ThreadCheck;
#endif
static UNITY_VECTOR(kMemPoolAlloc,MemoryPool*)* s_MemoryPools;
};
// --------------------------------------------------------------------------
// Macros for class fixed-size pooled allocations:
// DECLARE_POOLED_ALLOC in the .h file, in a private section of a class,
// DEFINE_POOLED_ALLOC in the .cpp file
#define ENABLE_MEMORY_POOL 1
#if ENABLE_MEMORY_POOL
#define STATIC_INITIALIZE_POOL( _clazz ) _clazz::s_PoolAllocator = UNITY_NEW(MemoryPool, kMemPoolAlloc)(true, #_clazz, sizeof(_clazz), _clazz::s_PoolSize)
#define STATIC_DESTROY_POOL( _clazz ) UNITY_DELETE(_clazz::s_PoolAllocator, kMemPoolAlloc)
#define DECLARE_POOLED_ALLOC( _clazz ) \
public: \
inline void* operator new( size_t size ) { return s_PoolAllocator->Allocate(size); } \
inline void operator delete( void* p ) { s_PoolAllocator->Deallocate(p); } \
static MemoryPool *s_PoolAllocator; \
static int s_PoolSize; \
private:
#define DEFINE_POOLED_ALLOC( _clazz, _bubbleSize ) \
MemoryPool* _clazz::s_PoolAllocator = NULL; \
int _clazz::s_PoolSize = _bubbleSize;
#else
#define STATIC_INITIALIZE_POOL( _clazz )
#define STATIC_DESTROY_POOL( _clazz )
#define DECLARE_POOLED_ALLOC( _clazz )
#define DEFINE_POOLED_ALLOC( _clazz, _bubbleSize )
#endif
// --------------------------------------------------------------------------
template<int SIZE>
struct memory_pool_impl
{
struct AutoPoolWrapper
{
AutoPoolWrapper( int size)
{
SET_ALLOC_OWNER(NULL);
pool = UNITY_NEW(MemoryPool( true, "mempoolalloc", size, 32 * 1024, kMemPoolAlloc ), kMemPoolAlloc);
MemoryPool::RegisterStaticMemoryPool(pool);
}
~AutoPoolWrapper()
{
}
MemoryPool* pool;
};
static MemoryPool& get_pool () {
static AutoPoolWrapper pool( SIZE );
return *(pool.pool);
}
};
/*
THIS IS NOT THREAD SAFE. sharing of pools is by size, thus pools might randomly be shared from different threads.
*/
template<typename T>
class memory_pool
{
public:
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef memory_pool<U> other; };
memory_pool() { }
memory_pool( const memory_pool<T>& ) { }
template<class B> memory_pool(const memory_pool<B>&) { } // construct from a related allocator
template<class B> memory_pool<T>& operator=(const memory_pool<B>&) { return *this; } // assign from a related allocator
~memory_pool() throw() { }
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const { return &x; }
size_type max_size() const throw() {return size_t(-1) / sizeof(value_type);}
void construct(pointer p, const T& val) { ::new((void*)p) T(val); }
void destroy(pointer p) { p->~T(); }
pointer allocate(size_type n, std::allocator<void>::const_pointer /*hint*/ = 0)
{
if(n==1)
return reinterpret_cast<pointer>( memory_pool_impl<sizeof(T)>::get_pool ().Allocate(n * sizeof(T)) );
else
return reinterpret_cast<pointer>(UNITY_MALLOC(kMemPoolAlloc,n*sizeof(T)));
}
void deallocate(pointer p, size_type n)
{
if(n==1)
return memory_pool_impl<sizeof(T)>::get_pool ().Deallocate( p );
else
return UNITY_FREE(kMemPoolAlloc,p);
}
};
template<typename T>
class memory_pool_explicit
{
public:
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef memory_pool_explicit<U> other; };
MemoryPool* m_Pool;
memory_pool_explicit(MemoryPool& pool) { m_Pool = &pool; }
memory_pool_explicit() { m_Pool = NULL; }
memory_pool_explicit( const memory_pool_explicit<T>& b) { m_Pool = b.m_Pool; }
template<class B> memory_pool_explicit(const memory_pool_explicit<B>& b) { m_Pool = b.m_Pool; } // construct from a related allocator
template<class B> memory_pool_explicit<T>& operator=(const memory_pool_explicit<B>& b) { m_Pool = b.m_Pool; return *this; } // assign from a related allocator
~memory_pool_explicit() throw() { }
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const { return &x; }
size_type max_size() const throw() {return size_t(-1) / sizeof(value_type);}
void construct(pointer p, const T& val) { ::new((void*)p) T(val); }
void destroy(pointer p) { p->~T(); }
pointer allocate(size_type n, std::allocator<void>::const_pointer /*hint*/ = 0)
{
DebugAssertIf(n != 1);
AssertIf(m_Pool == NULL);
return reinterpret_cast<pointer>( m_Pool->Allocate(n * sizeof(T)) );
}
void deallocate(pointer p, size_type n)
{
DebugAssertIf(n != 1);
AssertIf(m_Pool == NULL);
m_Pool->Deallocate( p );
}
};
template<typename A, typename B>
inline bool operator==( const memory_pool<A>&, const memory_pool<B>& )
{
// test for allocator equality (always true)
return true;
}
template<typename A, typename B>
inline bool operator!=( const memory_pool<A>&, const memory_pool<B>& )
{
// test for allocator inequality (always false)
return false;
}
template<typename A, typename B>
inline bool operator==( const memory_pool_explicit<A>& lhs, const memory_pool_explicit<B>& rhs)
{
// test for allocator equality (always true)
return lhs.m_Pool == rhs.m_Pool;
}
template<typename A, typename B>
inline bool operator!=( const memory_pool_explicit<A>& lhs, const memory_pool_explicit<B>& rhs)
{
// test for allocator inequality (always false)
return lhs.m_Pool != rhs.m_Pool;
}
#endif
|