1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
#ifndef VECTOR_MAP_H
#define VECTOR_MAP_H
#include "sorted_vector.h"
#include <functional>
// vector_map offers the same functionality as std::set
// but it is implemented using sorted vectors.
// sorted_vectors are smaller in used memory and can be faster due to cache coherence
// However inserting or erasing elements can be O (N) instead of O (logN)
// Usually you will want to use vector_set when you have a set which you use
// much more often to find values than inserting them or if the set you use is very small
// vector_map also offers the vector function reserve.
// - also note that if you store an iterator to an element you are NOT guaranteed that this iterator
// remains valid after you insert/erase other elements
// - vector_map«s key is not const, but you are still not allowed to change the key without erasing/inserting it.
template<class Key, class T, class Compare = std::less<Key>,
class Allocator = std::allocator<std::pair<Key, T> > >
class vector_map
{
public:
typedef Key key_type;
typedef T mapped_type;
typedef std::pair<Key,T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
class value_compare
: public std::binary_function<value_type,value_type,bool>
{
public:
bool operator()(const value_type& x, const value_type& y) const
{
return comp(x.first, y.first);
}
bool operator()(const key_type& x, const value_type& y) const
{
return comp(x, y.first);
}
bool operator()(const value_type& x, const key_type& y) const
{
return comp(x.first, y);
}
value_compare() {}
value_compare(Compare c) : comp(c) {}
protected:
Compare comp;
friend class vector_map;
};
typedef sorted_vector<value_type, value_compare, Allocator> container;
typedef typename container::container vector_container;
typedef typename container::iterator iterator;
typedef typename container::const_iterator const_iterator;
typedef typename container::reverse_iterator reverse_iterator;
typedef typename container::const_reverse_iterator const_reverse_iterator;
public:
// ctors
vector_map (const Compare& comp = Compare (), const Allocator& a = Allocator ())
: c (value_compare(comp), a)
{ }
template <class InputIterator>
vector_map(InputIterator first, InputIterator last, const Compare& comp = Compare (), const Allocator& a = Allocator ())
: c (value_compare(comp), a)
{ insert_one (first, last); }
// iterators
iterator begin() { return c.begin (); }
const_iterator begin() const { return c.begin (); }
iterator end() { return c.end (); }
const_iterator end() const { return c.end (); }
reverse_iterator rbegin() { return c.rbegin (); }
const_reverse_iterator rbegin() const { return c.rbegin (); }
reverse_iterator rend() { return c.rend (); }
const_reverse_iterator rend() const { return c.rend (); }
// capacity:
bool empty() const { return c.empty (); }
size_type size() const { return c.size (); }
size_type max_size() const { return c.max_size (); }
// modifiers:
std::pair<iterator, bool> insert(const value_type& x) { return c.insert_one (x); }
template <class InputIterator>
void insert(InputIterator first, InputIterator last) { c.insert_one(first, last); }
void erase(iterator position) { c.erase (position); }
size_type erase(const key_type& x) { return c.erase_one (x); }
void erase(iterator first, iterator last) { c.erase (first, last); }
void swap(vector_map& x) { c.swap (x.c); }
void clear() { c.clear (); }
// observers:
key_compare key_comp() const { return c.value_comp ().comp; }
value_compare value_comp() const { return c.value_comp (); }
// lib.map.ops map operations:
// CW has problems with the straightforward version
// mapped_type& operator[] (const key_type& x) { return c.find_or_insert<key_type, mapped_type> (x); }
mapped_type& operator[] (const key_type& x) { mapped_type* temp; c.find_or_insert (temp, x); return *temp; }
iterator find(const key_type& x) { return c.find (x); }
const_iterator find(const key_type& x) const { return c.find (x); }
size_type count(const key_type& x) const { return c.count_one (x); }
iterator lower_bound(const key_type& x) { return c.lower_bound (x); }
const_iterator lower_bound(const key_type& x) const{ return c.lower_bound (x); }
iterator upper_bound(const key_type& x) { return c.upper_bound (x); }
const_iterator upper_bound(const key_type& x) const{ return c.upper_bound (x); }
std::pair<iterator,iterator> equal_range(const key_type& x) { return c.equal_range (x); }
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const { return c.equal_range (x); }
// vector specific operations
void reserve (size_type n) { c.reserve (n); }
vector_container& get_vector () { return c.c; }
void push_unsorted (const key_type& x, const mapped_type& value)
{
get_vector().push_back(std::make_pair(x, value));
}
void sort ()
{
std::sort(c.c.begin(), c.c.end(), c.value_comp ());
c.verify_duplicates_and_sorted ();
}
void verify_duplicates_and_sorted () const
{
c.verify_duplicates_and_sorted ();
}
private:
container c;
};
template<class Key, class T, class Compare = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T> > >
class us_vector_map
{
public:
typedef Key key_type;
typedef T mapped_type;
typedef std::pair<Key,T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
class value_compare
: public std::binary_function<value_type,value_type,bool>
{
public:
bool operator()(const value_type& x, const value_type& y) const
{
return comp(x.first, y.first);
}
bool operator()(const key_type& x, const value_type& y) const
{
return comp(x, y.first);
}
bool operator()(const value_type& x, const key_type& y) const
{
return comp(x.first, y);
}
protected:
Compare comp;
value_compare() {}
value_compare(Compare c) : comp(c) {}
friend class us_vector_map;
};
typedef unsorted_vector<value_type, value_compare, Allocator> container;
typedef typename container::container vector_container;
typedef typename container::iterator iterator;
typedef typename container::const_iterator const_iterator;
typedef typename container::reverse_iterator reverse_iterator;
typedef typename container::const_reverse_iterator const_reverse_iterator;
public:
// ctors
us_vector_map (const Compare& comp = Compare (), const Allocator& a = Allocator ())
: c (value_compare(comp), a)
{ }
template <class InputIterator>
us_vector_map(InputIterator first, InputIterator last, const Compare& comp = Compare (), const Allocator& a = Allocator ())
: c (value_compare(comp), a)
{ insert_one (first, last); }
// iterators
iterator begin() { return c.begin (); }
const_iterator begin() const { return c.begin (); }
iterator end() { return c.end (); }
const_iterator end() const { return c.end (); }
reverse_iterator rbegin() { return c.rbegin (); }
const_reverse_iterator rbegin() const { return c.rbegin (); }
reverse_iterator rend() { return c.rend (); }
const_reverse_iterator rend() const { return c.rend (); }
// capacity:
bool empty() const { return c.empty (); }
size_type size() const { return c.size (); }
size_type max_size() const { return c.max_size (); }
// modifiers:
std::pair<iterator, bool> insert(const value_type& x){ return c.insert_one (x); }
template <class InputIterator>
void insert(InputIterator first, InputIterator last) { c.insert_one(first, last); }
void erase(iterator position) { c.erase (position); }
size_type erase(const key_type& x) { return c.erase_one (x); }
void swap(us_vector_map& x) { c.swap (x.c);}
void clear() { c.clear (); }
// observers:
key_compare key_comp() const { return c.value_comp ().comp; }
value_compare value_comp() const { return c.value_comp (); }
// lib.map.ops map operations:
// CW has problems with the straightforward version
// mapped_type& operator[] (const key_type& x) { return c.find_or_insert<key_type, mapped_type> (x); }
mapped_type& operator[] (const key_type& x) { mapped_type* temp; c.find_or_insert (temp, x); return *temp; }
iterator find(const key_type& x) { return c.find (x); }
const_iterator find(const key_type& x) const { return c.find (x); }
size_type count(const key_type& x) const { return c.count_one (x); }
// vector specific operations
void reserve (size_type n) { c.reserve (n); }
vector_container& get_vector () { return c.c; }
private:
container c;
};
#endif
|