summaryrefslogtreecommitdiff
path: root/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/AstarMath.cs
diff options
context:
space:
mode:
authorchai <215380520@qq.com>2024-05-23 10:08:29 +0800
committerchai <215380520@qq.com>2024-05-23 10:08:29 +0800
commit8722a9920c1f6119bf6e769cba270e63097f8e25 (patch)
tree2eaf9865de7fb1404546de4a4296553d8f68cc3b /Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/AstarMath.cs
parent3ba4020b69e5971bb0df7ee08b31d10ea4d01937 (diff)
+ astar project
Diffstat (limited to 'Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/AstarMath.cs')
-rw-r--r--Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/AstarMath.cs1954
1 files changed, 1954 insertions, 0 deletions
diff --git a/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/AstarMath.cs b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/AstarMath.cs
new file mode 100644
index 0000000..696037f
--- /dev/null
+++ b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/AstarMath.cs
@@ -0,0 +1,1954 @@
+using UnityEngine;
+using System.Collections.Generic;
+using System;
+
+namespace Pathfinding {
+ using Pathfinding.Util;
+ using Unity.Mathematics;
+ using Unity.Burst;
+ using Pathfinding.Graphs.Navmesh;
+
+ /// <summary>Contains various spline functions.</summary>
+ public static class AstarSplines {
+ public static Vector3 CatmullRom (Vector3 previous, Vector3 start, Vector3 end, Vector3 next, float elapsedTime) {
+ // References used:
+ // p.266 GemsV1
+ //
+ // tension is often set to 0.5 but you can use any reasonable value:
+ // http://www.cs.cmu.edu/~462/projects/assn2/assn2/catmullRom.pdf
+ //
+ // bias and tension controls:
+ // http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/interpolation/
+
+ float percentComplete = elapsedTime;
+ float percentCompleteSquared = percentComplete * percentComplete;
+ float percentCompleteCubed = percentCompleteSquared * percentComplete;
+
+ return
+ previous * (-0.5F*percentCompleteCubed +
+ percentCompleteSquared -
+ 0.5F*percentComplete) +
+
+ start *
+ (1.5F*percentCompleteCubed +
+ -2.5F*percentCompleteSquared + 1.0F) +
+
+ end *
+ (-1.5F*percentCompleteCubed +
+ 2.0F*percentCompleteSquared +
+ 0.5F*percentComplete) +
+
+ next *
+ (0.5F*percentCompleteCubed -
+ 0.5F*percentCompleteSquared);
+ }
+
+ /// <summary>Returns a point on a cubic bezier curve. t is clamped between 0 and 1</summary>
+ public static Vector3 CubicBezier (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
+ t = Mathf.Clamp01(t);
+ float t2 = 1-t;
+ return t2*t2*t2 * p0 + 3 * t2*t2 * t * p1 + 3 * t2 * t*t * p2 + t*t*t * p3;
+ }
+
+ /// <summary>Returns the derivative for a point on a cubic bezier curve. t is clamped between 0 and 1</summary>
+ public static Vector3 CubicBezierDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
+ t = Mathf.Clamp01(t);
+ float t2 = 1-t;
+ return 3*t2*t2*(p1-p0) + 6*t2*t*(p2 - p1) + 3*t*t*(p3 - p2);
+ }
+
+ /// <summary>Returns the second derivative for a point on a cubic bezier curve. t is clamped between 0 and 1</summary>
+ public static Vector3 CubicBezierSecondDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
+ t = Mathf.Clamp01(t);
+ float t2 = 1-t;
+ return 6*t2*(p2 - 2*p1 + p0) + 6*t*(p3 - 2*p2 + p1);
+ }
+ }
+
+ /// <summary>
+ /// Various vector math utility functions.
+ /// Version: A lot of functions in the Polygon class have been moved to this class
+ /// the names have changed slightly and everything now consistently assumes a left handed
+ /// coordinate system now instead of sometimes using a left handed one and sometimes
+ /// using a right handed one. This is why the 'Left' methods in the Polygon class redirect
+ /// to methods named 'Right'. The functionality is exactly the same.
+ ///
+ /// Note the difference between segments and lines. Lines are infinitely
+ /// long but segments have only a finite length.
+ /// </summary>
+ public static class VectorMath {
+ /// <summary>
+ /// Complex number multiplication.
+ /// Returns: a * b
+ ///
+ /// Used to rotate vectors in an efficient way.
+ ///
+ /// See: https://en.wikipedia.org/wiki/Complex_number<see cref="Multiplication_and_division"/>
+ /// </summary>
+ public static Vector2 ComplexMultiply (Vector2 a, Vector2 b) {
+ return new Vector2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
+ }
+
+ /// <summary>
+ /// Complex number multiplication.
+ /// Returns: a * b
+ ///
+ /// Used to rotate vectors in an efficient way.
+ ///
+ /// See: https://en.wikipedia.org/wiki/Complex_number<see cref="Multiplication_and_division"/>
+ /// </summary>
+ public static float2 ComplexMultiply (float2 a, float2 b) {
+ return a.x*b + a.y*new float2(-b.y, b.x);
+ }
+
+ /// <summary>
+ /// Complex number multiplication.
+ /// Returns: a * conjugate(b)
+ ///
+ /// Used to rotate vectors in an efficient way.
+ ///
+ /// See: https://en.wikipedia.org/wiki/Complex_number<see cref="Multiplication_and_division"/>
+ /// See: https://en.wikipedia.org/wiki/Complex_conjugate
+ /// </summary>
+ public static float2 ComplexMultiplyConjugate (float2 a, float2 b) {
+ return new float2(a.x * b.x + a.y * b.y, a.y * b.x - a.x * b.y);
+ }
+
+ /// <summary>
+ /// Complex number multiplication.
+ /// Returns: a * conjugate(b)
+ ///
+ /// Used to rotate vectors in an efficient way.
+ ///
+ /// See: https://en.wikipedia.org/wiki/Complex_number<see cref="Multiplication_and_division"/>
+ /// See: https://en.wikipedia.org/wiki/Complex_conjugate
+ /// </summary>
+ public static Vector2 ComplexMultiplyConjugate (Vector2 a, Vector2 b) {
+ return new Vector2(a.x * b.x + a.y * b.y, a.y * b.x - a.x * b.y);
+ }
+
+ /// <summary>
+ /// Returns the closest point on the line.
+ /// The line is treated as infinite.
+ /// See: ClosestPointOnSegment
+ /// See: ClosestPointOnLineFactor
+ /// </summary>
+ public static Vector3 ClosestPointOnLine (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
+ Vector3 lineDirection = Vector3.Normalize(lineEnd - lineStart);
+ float dot = Vector3.Dot(point - lineStart, lineDirection);
+
+ return lineStart + (dot*lineDirection);
+ }
+
+ /// <summary>
+ /// Factor along the line which is closest to the point.
+ /// Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
+ /// The closest point can be calculated using (end-start)*factor + start.
+ ///
+ /// See: ClosestPointOnLine
+ /// See: ClosestPointOnSegment
+ /// </summary>
+ public static float ClosestPointOnLineFactor (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
+ var dir = lineEnd - lineStart;
+ float sqrMagn = dir.sqrMagnitude;
+
+ if (sqrMagn <= 0.000001f) return 0;
+
+ return Vector3.Dot(point - lineStart, dir) / sqrMagn;
+ }
+
+ /// <summary>
+ /// Factor along the line which is closest to the point.
+ /// Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
+ /// The closest point can be calculated using (end-start)*factor + start
+ /// </summary>
+ public static float ClosestPointOnLineFactor (float3 lineStart, float3 lineEnd, float3 point) {
+ var lineDirection = lineEnd - lineStart;
+ var sqrMagn = math.dot(lineDirection, lineDirection);
+ return math.select(0, math.dot(point - lineStart, lineDirection) / sqrMagn, sqrMagn > 0.000001f);
+ }
+
+ /// <summary>
+ /// Factor along the line which is closest to the point.
+ /// Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
+ /// The closest point can be calculated using (end-start)*factor + start
+ /// </summary>
+ public static float ClosestPointOnLineFactor (Int3 lineStart, Int3 lineEnd, Int3 point) {
+ var lineDirection = lineEnd - lineStart;
+ float magn = lineDirection.sqrMagnitude;
+
+ float closestPoint = (float)Int3.DotLong(point - lineStart, lineDirection);
+
+ if (magn != 0) closestPoint /= magn;
+
+ return closestPoint;
+ }
+
+ /// <summary>
+ /// Factor of the nearest point on the segment.
+ /// Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
+ /// The closest point can be calculated using (end-start)*factor + start;
+ /// </summary>
+ public static float ClosestPointOnLineFactor (Int2 lineStart, Int2 lineEnd, Int2 point) {
+ var lineDirection = lineEnd - lineStart;
+ double magn = lineDirection.sqrMagnitudeLong;
+
+ double closestPoint = Int2.DotLong(point - lineStart, lineDirection);
+
+ if (magn != 0) closestPoint /= magn;
+
+ return (float)closestPoint;
+ }
+
+ /// <summary>
+ /// Returns the closest point on the segment.
+ /// The segment is NOT treated as infinite.
+ /// See: ClosestPointOnLine
+ /// See: ClosestPointOnSegmentXZ
+ /// </summary>
+ public static Vector3 ClosestPointOnSegment (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
+ var dir = lineEnd - lineStart;
+ float sqrMagn = dir.sqrMagnitude;
+
+ if (sqrMagn <= 0.000001) return lineStart;
+
+ float factor = Vector3.Dot(point - lineStart, dir) / sqrMagn;
+ return lineStart + Mathf.Clamp01(factor)*dir;
+ }
+
+ /// <summary>
+ /// Returns the closest point on the segment in the XZ plane.
+ /// The y coordinate of the result will be the same as the y coordinate of the point parameter.
+ ///
+ /// The segment is NOT treated as infinite.
+ /// See: ClosestPointOnSegment
+ /// See: ClosestPointOnLine
+ /// </summary>
+ public static Vector3 ClosestPointOnSegmentXZ (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
+ lineStart.y = point.y;
+ lineEnd.y = point.y;
+ Vector3 fullDirection = lineEnd-lineStart;
+ Vector3 fullDirection2 = fullDirection;
+ fullDirection2.y = 0;
+ float magn = fullDirection2.magnitude;
+ Vector3 lineDirection = magn > float.Epsilon ? fullDirection2/magn : Vector3.zero;
+
+ float closestPoint = Vector3.Dot((point-lineStart), lineDirection);
+ return lineStart+(Mathf.Clamp(closestPoint, 0.0f, fullDirection2.magnitude)*lineDirection);
+ }
+
+ /// <summary>
+ /// Returns the approximate shortest squared distance between x,z and the segment p-q.
+ /// The segment is not considered infinite.
+ /// This function is not entirely exact, but it is about twice as fast as DistancePointSegment2.
+ /// TODO: Is this actually approximate? It looks exact.
+ /// </summary>
+ public static float SqrDistancePointSegmentApproximate (int x, int z, int px, int pz, int qx, int qz) {
+ float pqx = (float)(qx - px);
+ float pqz = (float)(qz - pz);
+ float dx = (float)(x - px);
+ float dz = (float)(z - pz);
+ float d = pqx*pqx + pqz*pqz;
+ float t = pqx*dx + pqz*dz;
+
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = px + t*pqx - x;
+ dz = pz + t*pqz - z;
+
+ return dx*dx + dz*dz;
+ }
+
+ /// <summary>
+ /// Returns the approximate shortest squared distance between x,z and the segment p-q.
+ /// The segment is not considered infinite.
+ /// This function is not entirely exact, but it is about twice as fast as DistancePointSegment2.
+ /// TODO: Is this actually approximate? It looks exact.
+ /// </summary>
+ public static float SqrDistancePointSegmentApproximate (Int3 a, Int3 b, Int3 p) {
+ float pqx = (float)(b.x - a.x);
+ float pqz = (float)(b.z - a.z);
+ float dx = (float)(p.x - a.x);
+ float dz = (float)(p.z - a.z);
+ float d = pqx*pqx + pqz*pqz;
+ float t = pqx*dx + pqz*dz;
+
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = a.x + t*pqx - p.x;
+ dz = a.z + t*pqz - p.z;
+
+ return dx*dx + dz*dz;
+ }
+
+ /// <summary>
+ /// Returns the squared distance between p and the segment a-b.
+ /// The line is not considered infinite.
+ /// </summary>
+ public static float SqrDistancePointSegment (Vector3 a, Vector3 b, Vector3 p) {
+ var nearest = ClosestPointOnSegment(a, b, p);
+
+ return (nearest-p).sqrMagnitude;
+ }
+
+ /// <summary>
+ /// 3D minimum distance between 2 segments.
+ /// Input: two 3D line segments S1 and S2
+ /// Returns: the shortest squared distance between S1 and S2
+ /// </summary>
+ public static float SqrDistanceSegmentSegment (Vector3 s1, Vector3 e1, Vector3 s2, Vector3 e2) {
+ Vector3 dir1 = e1 - s1;
+ Vector3 dir2 = e2 - s2;
+ Vector3 startOffset = s1 - s2;
+ double dir1sq = Vector3.Dot(dir1, dir1); // always >= 0
+ double b = Vector3.Dot(dir1, dir2);
+ double dir2sq = Vector3.Dot(dir2, dir2); // always >= 0
+ double d = Vector3.Dot(dir1, startOffset);
+ double e = Vector3.Dot(dir2, startOffset);
+ double D = dir1sq*dir2sq - b*b; // always >= 0
+ double sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0
+ double tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0
+
+ // compute the line parameters of the two closest points
+ // D is approximately |dir1|^2|dir2|^2*(1-cos^2 alpha), where alpha is the angle between the lines
+ if (D < 0.000001 * dir1sq*dir2sq) { // the lines are almost parallel
+ sN = 0.0f; // force using point P0 on segment S1
+ sD = 1.0f; // to prevent possible division by 0.0 later
+ tN = e;
+ tD = dir2sq;
+ } else { // get the closest points on the infinite lines
+ sN = (b*e - dir2sq*d);
+ tN = (dir1sq*e - b*d);
+ if (sN < 0.0) { // sc < 0 => the s=0 edge is visible
+ sN = 0.0;
+ tN = e;
+ tD = dir2sq;
+ } else if (sN > sD) { // sc > 1 => the s=1 edge is visible
+ sN = sD;
+ tN = e + b;
+ tD = dir2sq;
+ }
+ }
+
+ if (tN < 0.0) { // tc < 0 => the t=0 edge is visible
+ tN = 0.0;
+ // recompute sc for this edge
+ if (-d < 0.0f)
+ sN = 0.0f;
+ else if (-d > dir1sq)
+ sN = sD;
+ else {
+ sN = -d;
+ sD = dir1sq;
+ }
+ } else if (tN > tD) { // tc > 1 => the t=1 edge is visible
+ tN = tD;
+ // recompute sc for this edge
+ if ((-d + b) < 0.0f)
+ sN = 0;
+ else if ((-d + b) > dir1sq)
+ sN = sD;
+ else {
+ sN = (-d + b);
+ sD = dir1sq;
+ }
+ }
+
+ // finally do the division to get sc and tc
+ sc = (Math.Abs(sN) < 0.00001f ? 0.0 : sN / sD);
+ tc = (Math.Abs(tN) < 0.00001f ? 0.0 : tN / tD);
+
+ // get the difference of the two closest points
+ Vector3 dP = startOffset + ((float)sc * dir1) - ((float)tc * dir2); // = S1(sc) - S2(tc)
+
+ return dP.sqrMagnitude; // return the closest distance
+ }
+
+ /// <summary>
+ /// Determinant of the 2x2 matrix [c1, c2].
+ ///
+ /// This is useful for many things, like calculating distances between lines and points.
+ ///
+ /// Equivalent to Cross(new float3(c1, 0), new float 3(c2, 0)).z
+ /// </summary>
+ public static float Determinant (float2 c1, float2 c2) {
+ return c1.x*c2.y - c1.y*c2.x;
+ }
+
+ /// <summary>Squared distance between two points in the XZ plane</summary>
+ public static float SqrDistanceXZ (Vector3 a, Vector3 b) {
+ var delta = a-b;
+
+ return delta.x*delta.x+delta.z*delta.z;
+ }
+
+ /// <summary>
+ /// Signed area of a triangle in the XZ plane multiplied by 2.
+ /// This will be negative for clockwise triangles and positive for counter-clockwise ones
+ /// </summary>
+ public static long SignedTriangleAreaTimes2XZ (Int3 a, Int3 b, Int3 c) {
+ return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z);
+ }
+
+ /// <summary>
+ /// Signed area of a triangle in the XZ plane multiplied by 2.
+ /// This will be negative for clockwise triangles and positive for counter-clockwise ones.
+ /// </summary>
+ public static float SignedTriangleAreaTimes2XZ (Vector3 a, Vector3 b, Vector3 c) {
+ return (b.x - a.x) * (c.z - a.z) - (c.x - a.x) * (b.z - a.z);
+ }
+
+ /// <summary>
+ /// Returns if p lies on the right side of the line a - b.
+ /// Uses XZ space. Does not return true if the points are colinear.
+ /// </summary>
+ public static bool RightXZ (Vector3 a, Vector3 b, Vector3 p) {
+ return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) < -float.Epsilon;
+ }
+
+ /// <summary>
+ /// Returns if p lies on the right side of the line a - b.
+ /// Uses XZ space. Does not return true if the points are colinear.
+ /// </summary>
+ public static bool RightXZ (Int3 a, Int3 b, Int3 p) {
+ return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) < 0;
+ }
+
+ /// <summary>
+ /// Returns which side of the line a - b that p lies on.
+ /// Uses XZ space.
+ /// </summary>
+ public static Side SideXZ (Int3 a, Int3 b, Int3 p) {
+ var s = (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z);
+
+ return s > 0 ? Side.Left : (s < 0 ? Side.Right : Side.Colinear);
+ }
+
+ /// <summary>
+ /// Returns if p lies on the right side of the line a - b.
+ /// Also returns true if the points are colinear.
+ /// </summary>
+ public static bool RightOrColinear (Vector2 a, Vector2 b, Vector2 p) {
+ return (b.x - a.x) * (p.y - a.y) - (p.x - a.x) * (b.y - a.y) <= 0;
+ }
+
+ /// <summary>
+ /// Returns if p lies on the right side of the line a - b.
+ /// Also returns true if the points are colinear.
+ /// </summary>
+ public static bool RightOrColinear (Int2 a, Int2 b, Int2 p) {
+ return (long)(b.x - a.x) * (long)(p.y - a.y) - (long)(p.x - a.x) * (long)(b.y - a.y) <= 0;
+ }
+
+ /// <summary>
+ /// Returns if p lies on the left side of the line a - b.
+ /// Uses XZ space. Also returns true if the points are colinear.
+ /// </summary>
+ public static bool RightOrColinearXZ (Vector3 a, Vector3 b, Vector3 p) {
+ return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) <= 0;
+ }
+
+ /// <summary>
+ /// Returns if p lies on the left side of the line a - b.
+ /// Uses XZ space. Also returns true if the points are colinear.
+ /// </summary>
+ public static bool RightOrColinearXZ (Int3 a, Int3 b, Int3 p) {
+ return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) <= 0;
+ }
+
+ /// <summary>
+ /// Returns if the points a in a clockwise order.
+ /// Will return true even if the points are colinear or very slightly counter-clockwise
+ /// (if the signed area of the triangle formed by the points has an area less than or equals to float.Epsilon)
+ /// </summary>
+ public static bool IsClockwiseMarginXZ (Vector3 a, Vector3 b, Vector3 c) {
+ return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) <= float.Epsilon;
+ }
+
+ /// <summary>Returns if the points a in a clockwise order</summary>
+ public static bool IsClockwiseXZ (Vector3 a, Vector3 b, Vector3 c) {
+ return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) < 0;
+ }
+
+ /// <summary>Returns if the points a in a clockwise order</summary>
+ public static bool IsClockwiseXZ (Int3 a, Int3 b, Int3 c) {
+ return RightXZ(a, b, c);
+ }
+
+ /// <summary>Returns true if the points a in a clockwise order or if they are colinear</summary>
+ public static bool IsClockwiseOrColinearXZ (Int3 a, Int3 b, Int3 c) {
+ return RightOrColinearXZ(a, b, c);
+ }
+
+ /// <summary>Returns true if the points a in a clockwise order or if they are colinear</summary>
+ public static bool IsClockwiseOrColinear (Int2 a, Int2 b, Int2 c) {
+ return RightOrColinear(a, b, c);
+ }
+
+ /// <summary>Returns if the points are colinear (lie on a straight line)</summary>
+ public static bool IsColinear (Vector3 a, Vector3 b, Vector3 c) {
+ var lhs = b - a;
+ var rhs = c - a;
+ // Take the cross product of lhs and rhs
+ // The magnitude of the cross product will be zero if the points a,b,c are colinear
+ float x = lhs.y * rhs.z - lhs.z * rhs.y;
+ float y = lhs.z * rhs.x - lhs.x * rhs.z;
+ float z = lhs.x * rhs.y - lhs.y * rhs.x;
+ float v = x*x + y*y + z*z;
+ float lengthsq = lhs.sqrMagnitude * rhs.sqrMagnitude;
+
+ // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small.
+ return v <= math.sqrt(lengthsq) * 0.0001f || lengthsq == 0.0f;
+ }
+
+ /// <summary>Returns if the points are colinear (lie on a straight line)</summary>
+ public static bool IsColinear (Vector2 a, Vector2 b, Vector2 c) {
+ float v = (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
+
+ // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small.
+ return v <= 0.0001f && v >= -0.0001f;
+ }
+
+ /// <summary>Returns if the points are colinear (lie on a straight line)</summary>
+ public static bool IsColinearXZ (Int3 a, Int3 b, Int3 c) {
+ return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z) == 0;
+ }
+
+ /// <summary>Returns if the points are colinear (lie on a straight line)</summary>
+ public static bool IsColinearXZ (Vector3 a, Vector3 b, Vector3 c) {
+ float v = (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z);
+
+ // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small.
+ return v <= 0.0000001f && v >= -0.0000001f;
+ }
+
+ /// <summary>Returns if the points are colinear (lie on a straight line)</summary>
+ public static bool IsColinearAlmostXZ (Int3 a, Int3 b, Int3 c) {
+ long v = (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z);
+
+ return v > -1 && v < 1;
+ }
+
+ /// <summary>
+ /// Returns if the line segment start2 - end2 intersects the line segment start1 - end1.
+ /// If only the endpoints coincide, the result is undefined (may be true or false).
+ /// </summary>
+ public static bool SegmentsIntersect (Int2 start1, Int2 end1, Int2 start2, Int2 end2) {
+ return RightOrColinear(start1, end1, start2) != RightOrColinear(start1, end1, end2) && RightOrColinear(start2, end2, start1) != RightOrColinear(start2, end2, end1);
+ }
+
+ /// <summary>
+ /// Returns if the line segment start2 - end2 intersects the line segment start1 - end1.
+ /// If only the endpoints coincide, the result is undefined (may be true or false).
+ ///
+ /// Note: XZ space
+ /// </summary>
+ public static bool SegmentsIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
+ return RightOrColinearXZ(start1, end1, start2) != RightOrColinearXZ(start1, end1, end2) && RightOrColinearXZ(start2, end2, start1) != RightOrColinearXZ(start2, end2, end1);
+ }
+
+ /// <summary>
+ /// Returns if the two line segments intersects. The lines are NOT treated as infinite (just for clarification)
+ /// See: IntersectionPoint
+ /// </summary>
+ public static bool SegmentsIntersectXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
+ Vector3 dir1 = end1-start1;
+ Vector3 dir2 = end2-start2;
+
+ float den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ return false;
+ }
+
+ float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
+ float u = nom/den;
+ float u2 = nom2/den;
+
+ if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) {
+ return false;
+ }
+
+ return true;
+ }
+
+ /// <summary>
+ /// Calculates the intersection points between a "capsule" (segment expanded by a radius), and a line.
+ ///
+ /// Returns: (t1, t2), the intersection points on the form lineStart + lineDir*t. Where t2 >= t1. If t2 < t1 then there are no intersections.
+ /// </summary>
+ /// <param name="capsuleStart">Center of the capsule's first circle</param>
+ /// <param name="capsuleDir">Main axis of the capsule. Must be normalized.</param>
+ /// <param name="capsuleLength">Distance betwen the capsule's circle centers.</param>
+ /// <param name="lineStart">A point on the line</param>
+ /// <param name="lineDir">The (normalized) direction of the line.</param>
+ /// <param name="radius">The radius of the circle.</param>
+ public static float2 CapsuleLineIntersectionFactors (float2 capsuleStart, float2 capsuleDir, float capsuleLength, float2 lineStart, float2 lineDir, float radius) {
+ var cosAlpha = math.dot(capsuleDir, lineDir);
+ var sinAlpha = math.sqrt(1.0f - cosAlpha*cosAlpha);
+ var tmin = float.PositiveInfinity;
+ var tmax = float.NegativeInfinity;
+
+ if (LineCircleIntersectionFactors(lineStart - capsuleStart, lineDir, radius, out float t11, out float t12)) {
+ tmin = math.min(tmin, t11);
+ tmax = math.max(tmax, t12);
+ }
+ if (LineCircleIntersectionFactors(lineStart - (capsuleStart + capsuleDir*capsuleLength), lineDir, radius, out float t21, out float t22)) {
+ tmin = math.min(tmin, t21);
+ tmax = math.max(tmax, t22);
+ }
+
+ if (LineLineIntersectionFactor(capsuleStart, capsuleDir, lineStart, lineDir, out float ucenter)) {
+ var normal = new float2(-capsuleDir.y, capsuleDir.x);
+ var offset = radius * cosAlpha / sinAlpha;
+ var side = math.sign(capsuleDir.y*lineDir.x - capsuleDir.x*lineDir.y);
+ var ustraight1 = ucenter + offset*side;
+ var ustraight2 = ucenter - offset*side;
+ if (ustraight1 >= 0 && ustraight1 <= capsuleLength) {
+ var p = capsuleStart + capsuleDir * ustraight1 - normal * radius;
+ var tstraight1 = math.dot(p - lineStart, lineDir);
+ tmin = math.min(tmin, tstraight1);
+ tmax = math.max(tmax, tstraight1);
+ }
+ if (ustraight2 >= 0 && ustraight2 <= capsuleLength) {
+ var p = capsuleStart + capsuleDir * ustraight2 + normal * radius;
+ var tstraight2 = math.dot(p - lineStart, lineDir);
+ tmin = math.min(tmin, tstraight2);
+ tmax = math.max(tmax, tstraight2);
+ }
+ } else {
+ // Parallel, or almost parallel.
+ // In this case we can just rely on the circle intersection checks.
+ }
+
+ return new float2(tmin, tmax);
+ }
+
+ /// <summary>
+ /// Calculates the point start1 + dir1*t where the two infinite lines intersect.
+ /// Returns false if the lines are close to parallel.
+ /// </summary>
+ public static bool LineLineIntersectionFactor (float2 start1, float2 dir1, float2 start2, float2 dir2, out float t) {
+ float den = dir2.y*dir1.x - dir2.x * dir1.y;
+
+ if (math.abs(den) < 0.0001f) {
+ t = 0;
+ return false;
+ }
+
+ float nom = dir2.x*(start1.y-start2.y) - dir2.y*(start1.x-start2.x);
+ t = nom/den;
+ return true;
+ }
+
+ /// <summary>
+ /// Calculates the point start1 + dir1*factor1 == start2 + dir2*factor2 where the two infinite lines intersect.
+ /// Returns false if the lines are close to parallel.
+ /// </summary>
+ public static bool LineLineIntersectionFactors (float2 start1, float2 dir1, float2 start2, float2 dir2, out float factor1, out float factor2) {
+ float den = dir2.y*dir1.x - dir2.x * dir1.y;
+
+ if (math.abs(den) < 0.0001f) {
+ factor1 = factor2 = 0;
+ return false;
+ }
+
+ float nom1 = dir2.x*(start1.y-start2.y) - dir2.y*(start1.x-start2.x);
+ float nom2 = dir1.x*(start1.y-start2.y) - dir1.y*(start1.x - start2.x);
+ factor1 = nom1/den;
+ factor2 = nom2/den;
+ return true;
+ }
+
+ /// <summary>
+ /// Intersection point between two infinite lines.
+ /// Note that start points and directions are taken as parameters instead of start and end points.
+ /// Lines are treated as infinite. If the lines are parallel 'start1' will be returned.
+ /// Intersections are calculated on the XZ plane.
+ ///
+ /// See: LineIntersectionPointXZ
+ /// </summary>
+ public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2) {
+ float den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ return start1;
+ }
+
+ float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ float u = nom/den;
+
+ return start1 + dir1*u;
+ }
+
+ /// <summary>
+ /// Intersection point between two infinite lines.
+ /// Note that start points and directions are taken as parameters instead of start and end points.
+ /// Lines are treated as infinite. If the lines are parallel 'start1' will be returned.
+ /// Intersections are calculated on the XZ plane.
+ ///
+ /// See: LineIntersectionPointXZ
+ /// </summary>
+ public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2, out bool intersects) {
+ float den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ intersects = false;
+ return start1;
+ }
+
+ float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ float u = nom/den;
+
+ intersects = true;
+ return start1 + dir1*u;
+ }
+
+ /// <summary>
+ /// Returns if the ray (start1, end1) intersects the segment (start2, end2).
+ /// false is returned if the lines are parallel.
+ /// Only the XZ coordinates are used.
+ /// TODO: Double check that this actually works
+ /// </summary>
+ public static bool RaySegmentIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
+ Int3 dir1 = end1-start1;
+ Int3 dir2 = end2-start2;
+
+ long den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ return false;
+ }
+
+ long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
+
+ //factor1 < 0
+ // If both have the same sign, then nom/den < 0 and thus the segment cuts the ray before the ray starts
+ if (!(nom < 0 ^ den < 0)) {
+ return false;
+ }
+
+ //factor2 < 0
+ if (!(nom2 < 0 ^ den < 0)) {
+ return false;
+ }
+
+ if ((den >= 0 && nom2 > den) || (den < 0 && nom2 <= den)) {
+ return false;
+ }
+
+ return true;
+ }
+
+ /// <summary>
+ /// Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line start - end where the other line intersects it.
+ /// <code> intersectionPoint = start1 + factor1 * (end1-start1) </code>
+ /// <code> intersectionPoint2 = start2 + factor2 * (end2-start2) </code>
+ /// Lines are treated as infinite.
+ /// false is returned if the lines are parallel and true if they are not.
+ /// Only the XZ coordinates are used.
+ /// </summary>
+ public static bool LineIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2, out float factor1, out float factor2) {
+ Int3 dir1 = end1-start1;
+ Int3 dir2 = end2-start2;
+
+ long den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ factor1 = 0;
+ factor2 = 0;
+ return false;
+ }
+
+ long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
+
+ factor1 = (float)nom/den;
+ factor2 = (float)nom2/den;
+
+ return true;
+ }
+
+ /// <summary>
+ /// Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line start - end where the other line intersects it.
+ /// <code> intersectionPoint = start1 + factor1 * (end1-start1) </code>
+ /// <code> intersectionPoint2 = start2 + factor2 * (end2-start2) </code>
+ /// Lines are treated as infinite.
+ /// false is returned if the lines are parallel and true if they are not.
+ /// Only the XZ coordinates are used.
+ /// </summary>
+ public static bool LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out float factor1, out float factor2) {
+ Vector3 dir1 = end1-start1;
+ Vector3 dir2 = end2-start2;
+
+ float den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den <= 0.00001f && den >= -0.00001f) {
+ factor1 = 0;
+ factor2 = 0;
+ return false;
+ }
+
+ float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
+
+ float u = nom/den;
+ float u2 = nom2/den;
+
+ factor1 = u;
+ factor2 = u2;
+
+ return true;
+ }
+
+ /// <summary>
+ /// Returns the intersection factor for line 1 with ray 2.
+ /// The intersection factors is a factor distance along the line start - end where the other line intersects it.
+ /// <code> intersectionPoint = start1 + factor * (end1-start1) </code>
+ /// Lines are treated as infinite.
+ ///
+ /// The second "line" is treated as a ray, meaning only matches on start2 or forwards towards end2 (and beyond) will be returned
+ /// If the point lies on the wrong side of the ray start, Nan will be returned.
+ ///
+ /// NaN is returned if the lines are parallel.
+ /// </summary>
+ public static float LineRayIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
+ Int3 dir1 = end1-start1;
+ Int3 dir2 = end2-start2;
+
+ int den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ return float.NaN;
+ }
+
+ int nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ int nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
+
+ if ((float)nom2/den < 0) {
+ return float.NaN;
+ }
+ return (float)nom/den;
+ }
+
+ /// <summary>
+ /// Returns the intersection factor for line 1 with line 2.
+ /// The intersection factor is a distance along the line start1 - end1 where the line start2 - end2 intersects it.
+ /// <code> intersectionPoint = start1 + intersectionFactor * (end1-start1) </code>.
+ /// Lines are treated as infinite.
+ /// -1 is returned if the lines are parallel (note that this is a valid return value if they are not parallel too)
+ /// </summary>
+ public static float LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
+ Vector3 dir1 = end1-start1;
+ Vector3 dir2 = end2-start2;
+
+ float den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ return -1;
+ }
+
+ float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ float u = nom/den;
+
+ return u;
+ }
+
+ /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary>
+ public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
+ bool s;
+
+ return LineIntersectionPointXZ(start1, end1, start2, end2, out s);
+ }
+
+ /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary>
+ public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) {
+ Vector3 dir1 = end1-start1;
+ Vector3 dir2 = end2-start2;
+
+ float den = dir2.z*dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ intersects = false;
+ return start1;
+ }
+
+ float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+
+ float u = nom/den;
+
+ intersects = true;
+ return start1 + dir1*u;
+ }
+
+ /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary>
+ public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2) {
+ bool s;
+
+ return LineIntersectionPoint(start1, end1, start2, end2, out s);
+ }
+
+ /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary>
+ public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2, out bool intersects) {
+ Vector2 dir1 = end1-start1;
+ Vector2 dir2 = end2-start2;
+
+ float den = dir2.y*dir1.x - dir2.x * dir1.y;
+
+ if (den == 0) {
+ intersects = false;
+ return start1;
+ }
+
+ float nom = dir2.x*(start1.y-start2.y)- dir2.y*(start1.x-start2.x);
+
+ float u = nom/den;
+
+ intersects = true;
+ return start1 + dir1*u;
+ }
+
+ /// <summary>
+ /// Returns the intersection point between the two line segments in XZ space.
+ /// Lines are NOT treated as infinite. start1 is returned if the line segments do not intersect
+ /// The point will be returned along the line [start1, end1] (this matters only for the y coordinate).
+ /// </summary>
+ public static Vector3 SegmentIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) {
+ Vector3 dir1 = end1-start1;
+ Vector3 dir2 = end2-start2;
+
+ float den = dir2.z * dir1.x - dir2.x * dir1.z;
+
+ if (den == 0) {
+ intersects = false;
+ return start1;
+ }
+
+ float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
+ float nom2 = dir1.x*(start1.z-start2.z) - dir1.z*(start1.x-start2.x);
+ float u = nom/den;
+ float u2 = nom2/den;
+
+ if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) {
+ intersects = false;
+ return start1;
+ }
+
+ intersects = true;
+ return start1 + dir1*u;
+ }
+
+ /// <summary>
+ /// Does the line segment intersect the bounding box.
+ /// The line is NOT treated as infinite.
+ /// \author Slightly modified code from http://www.3dkingdoms.com/weekly/weekly.php?a=21
+ /// </summary>
+ public static bool SegmentIntersectsBounds (Bounds bounds, Vector3 a, Vector3 b) {
+ // Put segment in box space
+ a -= bounds.center;
+ b -= bounds.center;
+
+ // Get line midpoint and extent
+ var LMid = (a + b) * 0.5F;
+ var L = (a - LMid);
+ var LExt = new Vector3(Math.Abs(L.x), Math.Abs(L.y), Math.Abs(L.z));
+
+ Vector3 extent = bounds.extents;
+
+ // Use Separating Axis Test
+ // Separation vector from box center to segment center is LMid, since the line is in box space
+ if (Math.Abs(LMid.x) > extent.x + LExt.x) return false;
+ if (Math.Abs(LMid.y) > extent.y + LExt.y) return false;
+ if (Math.Abs(LMid.z) > extent.z + LExt.z) return false;
+ // Crossproducts of line and each axis
+ if (Math.Abs(LMid.y * L.z - LMid.z * L.y) > (extent.y * LExt.z + extent.z * LExt.y)) return false;
+ if (Math.Abs(LMid.x * L.z - LMid.z * L.x) > (extent.x * LExt.z + extent.z * LExt.x)) return false;
+ if (Math.Abs(LMid.x * L.y - LMid.y * L.x) > (extent.x * LExt.y + extent.y * LExt.x)) return false;
+ // No separating axis, the line intersects
+ return true;
+ }
+
+ /// <summary>
+ /// Calculates the two intersection points (point + direction*t) on the line where it intersects with a circle at the origin.
+ ///
+ /// t1 will always be less than or equal to t2 if there are intersections.
+ ///
+ /// Returns false if there are no intersections.
+ /// </summary>
+ /// <param name="point">A point on the line</param>
+ /// <param name="direction">The normalized direction of the line</param>
+ /// <param name="radius">The radius of the circle at the origin.</param>
+ /// <param name="t1">The first intersection (if any).</param>
+ /// <param name="t2">The second intersection (if any).</param>
+ public static bool LineCircleIntersectionFactors (float2 point, float2 direction, float radius, out float t1, out float t2) {
+ // Distance from the closest point on the line (from the origin) to line.point
+ float dot = math.dot(point, direction);
+ // Squared distance from the origin to the closest point on the line
+ float distanceToLine = math.lengthsq(point) - dot*dot;
+ // Calculate the intersection of the line with the circle.
+ // This is the squared length of half the chord that intersects the circle.
+ float discriminant = radius*radius - distanceToLine;
+
+ if (discriminant < 0.0f) {
+ // The line is completely outside the circle
+ t1 = float.PositiveInfinity;
+ t2 = float.NegativeInfinity;
+ return false;
+ }
+
+ var sqrtDiscriminant = math.sqrt(discriminant);
+ t1 = -dot - sqrtDiscriminant;
+ t2 = -dot + sqrtDiscriminant;
+ return true;
+ }
+
+ /// <summary>
+ /// Calculates the two intersection points (lerp(point1, point2, t)) on the segment where it intersects with a circle at the origin.
+ ///
+ /// t1 will always be less than or equal to t2 if there are intersections.
+ ///
+ /// Returns false if there are no intersections.
+ /// </summary>
+ /// <param name="point1">Start of the segment</param>
+ /// <param name="point2">End of the segment</param>
+ /// <param name="radiusSq">The squared radius of the circle at the origin.</param>
+ /// <param name="t1">The first intersection (if any). Between 0 and 1.</param>
+ /// <param name="t2">The second intersection (if any). Between 0 and 1.</param>
+ public static bool SegmentCircleIntersectionFactors (float2 point1, float2 point2, float radiusSq, out float t1, out float t2) {
+ // Distance from the closest point on the line (from the origin) to line.point
+ var dir = point2 - point1;
+ var dirSq = math.lengthsq(dir);
+ float dot = math.dot(point1, dir) / dirSq;
+ // Proportional to the squared distance from the origin to the closest point on the line
+ float distanceToLine = math.lengthsq(point1) / dirSq - dot*dot;
+ float discriminant = radiusSq/dirSq - distanceToLine;
+
+ if (discriminant < 0.0f) {
+ // The line is completely outside the circle
+ t1 = float.PositiveInfinity;
+ t2 = float.NegativeInfinity;
+ return false;
+ }
+
+ var sqrtDiscriminant = math.sqrt(discriminant);
+ t1 = -dot - sqrtDiscriminant;
+ t2 = -dot + sqrtDiscriminant;
+ t1 = math.max(0, t1);
+ t2 = math.min(1, t2);
+
+ if (t1 >= 1 || t2 <= 0) return false;
+ return true;
+ }
+
+ /// <summary>
+ /// Intersection of a line and a circle.
+ /// Returns the greatest t such that segmentStart+t*(segmentEnd-segmentStart) lies on the circle.
+ ///
+ /// In case the line does not intersect with the circle, the closest point on the line
+ /// to the circle will be returned.
+ ///
+ /// Note: Works for line and sphere in 3D space as well.
+ ///
+ /// See: http://mathworld.wolfram.com/Circle-LineIntersection.html
+ /// See: https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry)<see cref="A_line_and_a_circle"/>
+ /// </summary>
+ public static float LineCircleIntersectionFactor (Vector3 circleCenter, Vector3 linePoint1, Vector3 linePoint2, float radius) {
+ float segmentLength;
+ var normalizedDirection = Normalize(linePoint2 - linePoint1, out segmentLength);
+ var dirToStart = linePoint1 - circleCenter;
+
+ var dot = Vector3.Dot(dirToStart, normalizedDirection);
+ var discriminant = dot * dot - (dirToStart.sqrMagnitude - radius*radius);
+
+ if (discriminant < 0) {
+ // No intersection, pick closest point on segment
+ discriminant = 0;
+ }
+
+ var t = -dot + Mathf.Sqrt(discriminant);
+ // Note: the default value of 1 is important for the PathInterpolator.MoveToCircleIntersection2D
+ // method to work properly. Maybe find some better abstraction where this default value is more obvious.
+ return segmentLength > 0.00001f ? t / segmentLength : 1f;
+ }
+
+ /// <summary>
+ /// True if the matrix will reverse orientations of faces.
+ ///
+ /// Scaling by a negative value along an odd number of axes will reverse
+ /// the orientation of e.g faces on a mesh. This must be counter adjusted
+ /// by for example the recast rasterization system to be able to handle
+ /// meshes with negative scales properly.
+ ///
+ /// We can find out if they are flipped by finding out how the signed
+ /// volume of a unit cube is transformed when applying the matrix
+ ///
+ /// If the (signed) volume turns out to be negative
+ /// that also means that the orientation of it has been reversed.
+ ///
+ /// See: https://en.wikipedia.org/wiki/Normal_(geometry)
+ /// See: https://en.wikipedia.org/wiki/Parallelepiped
+ /// </summary>
+ public static bool ReversesFaceOrientations (Matrix4x4 matrix) {
+ var dX = matrix.MultiplyVector(new Vector3(1, 0, 0));
+ var dY = matrix.MultiplyVector(new Vector3(0, 1, 0));
+ var dZ = matrix.MultiplyVector(new Vector3(0, 0, 1));
+
+ // Calculate the signed volume of the parallelepiped
+ var volume = Vector3.Dot(Vector3.Cross(dX, dY), dZ);
+
+ return volume < 0;
+ }
+
+ /// <summary>
+ /// Normalize vector and also return the magnitude.
+ /// This is more efficient than calculating the magnitude and normalizing separately
+ /// </summary>
+ public static Vector3 Normalize (Vector3 v, out float magnitude) {
+ magnitude = v.magnitude;
+ // This is the same constant that Unity uses
+ if (magnitude > 1E-05f) {
+ return v / magnitude;
+ } else {
+ return Vector3.zero;
+ }
+ }
+
+ /// <summary>
+ /// Normalize vector and also return the magnitude.
+ /// This is more efficient than calculating the magnitude and normalizing separately
+ /// </summary>
+ public static Vector2 Normalize (Vector2 v, out float magnitude) {
+ magnitude = v.magnitude;
+ // This is the same constant that Unity uses
+ if (magnitude > 1E-05f) {
+ return v / magnitude;
+ } else {
+ return Vector2.zero;
+ }
+ }
+
+ /* Clamp magnitude along the X and Z axes.
+ * The y component will not be changed.
+ */
+ public static Vector3 ClampMagnitudeXZ (Vector3 v, float maxMagnitude) {
+ float squaredMagnitudeXZ = v.x*v.x + v.z*v.z;
+
+ if (squaredMagnitudeXZ > maxMagnitude*maxMagnitude && maxMagnitude > 0) {
+ var factor = maxMagnitude / Mathf.Sqrt(squaredMagnitudeXZ);
+ v.x *= factor;
+ v.z *= factor;
+ }
+ return v;
+ }
+
+ /* Magnitude in the XZ plane */
+ public static float MagnitudeXZ (Vector3 v) {
+ return Mathf.Sqrt(v.x*v.x + v.z*v.z);
+ }
+
+ /// <summary>
+ /// Number of radians that this quaternion rotates around its axis of rotation.
+ /// Will be in the range [-PI, PI].
+ ///
+ /// Note: A quaternion of q and -q represent the same rotation, but their axis of rotation point in opposite directions, so the angle will be different.
+ /// </summary>
+ public static float QuaternionAngle (quaternion rot) {
+ return 2 * math.atan2(math.length(rot.value.xyz), rot.value.w);
+ }
+ }
+
+ /// <summary>
+ /// Utility functions for working with numbers and strings.
+ ///
+ /// See: Polygon
+ /// See: VectorMath
+ /// </summary>
+ public static class AstarMath {
+ static Unity.Mathematics.Random GlobalRandom = Unity.Mathematics.Random.CreateFromIndex(0);
+ static object GlobalRandomLock = new object();
+
+ public static float ThreadSafeRandomFloat () {
+ lock (GlobalRandomLock) {
+ return GlobalRandom.NextFloat();
+ }
+ }
+
+ public static float2 ThreadSafeRandomFloat2 () {
+ lock (GlobalRandomLock) {
+ return GlobalRandom.NextFloat2();
+ }
+ }
+
+ /// <summary>Converts a non-negative float to a long, saturating at long.MaxValue if the value is too large</summary>
+ public static long SaturatingConvertFloatToLong(float v) => v > (float)long.MaxValue ? long.MaxValue : (long)v;
+
+ /// <summary>Maps a value between startMin and startMax to be between targetMin and targetMax</summary>
+ public static float MapTo (float startMin, float startMax, float targetMin, float targetMax, float value) {
+ return Mathf.Lerp(targetMin, targetMax, Mathf.InverseLerp(startMin, startMax, value));
+ }
+
+ /// <summary>
+ /// Returns bit number b from int a. The bit number is zero based. Relevant b values are from 0 to 31.
+ /// Equals to (a >> b) & 1
+ /// </summary>
+ static int Bit (int a, int b) {
+ return (a >> b) & 1;
+ }
+
+ /// <summary>
+ /// Returns a nice color from int i with alpha a. Got code from the open-source Recast project, works really well.
+ /// Seems like there are only 64 possible colors from studying the code
+ /// </summary>
+ public static Color IntToColor (int i, float a) {
+ int r = Bit(i, 2) + Bit(i, 3) * 2 + 1;
+ int g = Bit(i, 1) + Bit(i, 4) * 2 + 1;
+ int b = Bit(i, 0) + Bit(i, 5) * 2 + 1;
+
+ return new Color(r*0.25F, g*0.25F, b*0.25F, a);
+ }
+
+ /// <summary>
+ /// Converts an HSV color to an RGB color.
+ /// According to the algorithm described at http://en.wikipedia.org/wiki/HSL_and_HSV
+ ///
+ /// @author Wikipedia
+ /// @return the RGB representation of the color.
+ /// </summary>
+ public static Color HSVToRGB (float h, float s, float v) {
+ float r = 0, g = 0, b = 0;
+
+ float Chroma = s * v;
+ float Hdash = h / 60.0f;
+ float X = Chroma * (1.0f - System.Math.Abs((Hdash % 2.0f) - 1.0f));
+
+ if (Hdash < 1.0f) {
+ r = Chroma;
+ g = X;
+ } else if (Hdash < 2.0f) {
+ r = X;
+ g = Chroma;
+ } else if (Hdash < 3.0f) {
+ g = Chroma;
+ b = X;
+ } else if (Hdash < 4.0f) {
+ g = X;
+ b = Chroma;
+ } else if (Hdash < 5.0f) {
+ r = X;
+ b = Chroma;
+ } else if (Hdash < 6.0f) {
+ r = Chroma;
+ b = X;
+ }
+
+ float Min = v - Chroma;
+
+ r += Min;
+ g += Min;
+ b += Min;
+
+ return new Color(r, g, b);
+ }
+
+ /// <summary>
+ /// Calculates the shortest difference between two given angles given in radians.
+ ///
+ /// The return value will be between -pi/2 and +pi/2.
+ /// </summary>
+ public static float DeltaAngle (float angle1, float angle2) {
+ float diff = (angle2 - angle1 + math.PI) % (2*math.PI) - math.PI;
+ return math.select(diff, diff + 2*math.PI, diff < -math.PI);
+ }
+ }
+
+ /// <summary>
+ /// Utility functions for working with polygons, lines, and other vector math.
+ /// All functions which accepts Vector3s but work in 2D space uses the XZ space if nothing else is said.
+ ///
+ /// Version: A lot of functions in this class have been moved to the VectorMath class
+ /// the names have changed slightly and everything now consistently assumes a left handed
+ /// coordinate system now instead of sometimes using a left handed one and sometimes
+ /// using a right handed one. This is why the 'Left' methods redirect to methods
+ /// named 'Right'. The functionality is exactly the same.
+ /// </summary>
+ [BurstCompile]
+ public static class Polygon {
+ /// <summary>
+ /// Returns if the triangle ABC contains the point p in XZ space.
+ /// The triangle vertices are assumed to be laid out in clockwise order.
+ /// </summary>
+ public static bool ContainsPointXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) {
+ return VectorMath.IsClockwiseMarginXZ(a, b, p) && VectorMath.IsClockwiseMarginXZ(b, c, p) && VectorMath.IsClockwiseMarginXZ(c, a, p);
+ }
+
+ /// <summary>
+ /// Returns if the triangle ABC contains the point p.
+ /// The triangle vertices are assumed to be laid out in clockwise order.
+ /// </summary>
+ public static bool ContainsPointXZ (Int3 a, Int3 b, Int3 c, Int3 p) {
+ return VectorMath.IsClockwiseOrColinearXZ(a, b, p) && VectorMath.IsClockwiseOrColinearXZ(b, c, p) && VectorMath.IsClockwiseOrColinearXZ(c, a, p);
+ }
+
+ /// <summary>
+ /// Returns if the triangle ABC contains the point p.
+ /// The triangle vertices are assumed to be laid out in clockwise order.
+ /// </summary>
+ public static bool ContainsPoint (Int2 a, Int2 b, Int2 c, Int2 p) {
+ return VectorMath.IsClockwiseOrColinear(a, b, p) && VectorMath.IsClockwiseOrColinear(b, c, p) && VectorMath.IsClockwiseOrColinear(c, a, p);
+ }
+
+ /// <summary>
+ /// Checks if p is inside the polygon.
+ /// \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5)
+ /// </summary>
+ public static bool ContainsPoint (Vector2[] polyPoints, Vector2 p) {
+ int j = polyPoints.Length-1;
+ bool inside = false;
+
+ for (int i = 0; i < polyPoints.Length; j = i++) {
+ if (((polyPoints[i].y <= p.y && p.y < polyPoints[j].y) || (polyPoints[j].y <= p.y && p.y < polyPoints[i].y)) &&
+ (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.y - polyPoints[i].y) / (polyPoints[j].y - polyPoints[i].y) + polyPoints[i].x))
+ inside = !inside;
+ }
+ return inside;
+ }
+
+ /// <summary>
+ /// Checks if p is inside the polygon (XZ space).
+ /// \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5)
+ /// </summary>
+ public static bool ContainsPointXZ (Vector3[] polyPoints, Vector3 p) {
+ int j = polyPoints.Length-1;
+ bool inside = false;
+
+ for (int i = 0; i < polyPoints.Length; j = i++) {
+ if (((polyPoints[i].z <= p.z && p.z < polyPoints[j].z) || (polyPoints[j].z <= p.z && p.z < polyPoints[i].z)) &&
+ (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.z - polyPoints[i].z) / (polyPoints[j].z - polyPoints[i].z) + polyPoints[i].x))
+ inside = !inside;
+ }
+ return inside;
+ }
+
+ /// <summary>
+ /// Returns if the triangle contains the point p when projected on the movement plane.
+ /// The triangle vertices may be clockwise or counter-clockwise.
+ ///
+ /// This method is numerically robust, as in, if the point is contained in exactly one of two adjacent triangles, then this
+ /// function will return true for at least one of them (both if the point is exactly on the edge between them).
+ /// If it was less numerically robust, it could conceivably return false for both of them if the point was on the edge between them, which would be bad.
+ /// </summary>
+ [BurstCompile]
+ public static bool ContainsPoint (ref int3 aWorld, ref int3 bWorld, ref int3 cWorld, ref int3 pWorld, ref NativeMovementPlane movementPlane) {
+ // Extract the coordinate axes of the movement plane
+ var m = new float3x3(movementPlane.rotation.value);
+ var m2D = math.transpose(new float3x2(m.c0, m.c2));
+ return ContainsPoint(ref aWorld, ref bWorld, ref cWorld, ref pWorld, in m2D);
+ }
+
+ /// <summary>
+ /// Returns if the triangle contains the point p when projected on a plane using the given projection.
+ /// The triangle vertices may be clockwise or counter-clockwise.
+ ///
+ /// This method is numerically robust, as in, if the point is contained in exactly one of two adjacent triangles, then this
+ /// function will return true for at least one of them (both if the point is exactly on the edge between them).
+ /// If it was less numerically robust, it could conceivably return false for both of them if the point was on the edge between them, which would be bad.
+ /// </summary>
+ public static bool ContainsPoint (ref int3 aWorld, ref int3 bWorld, ref int3 cWorld, ref int3 pWorld, in float2x3 planeProjection) {
+ const int QUANTIZATION = 1024;
+ var m = new int2x3(planeProjection * QUANTIZATION);
+ // Project all the points onto the movement plane using SIMD
+ var xs = new int4(aWorld.x, bWorld.x, cWorld.x, pWorld.x);
+ var ys = new int4(aWorld.y, bWorld.y, cWorld.y, pWorld.y);
+ var zs = new int4(aWorld.z, bWorld.z, cWorld.z, pWorld.z);
+ // Subtract the first point from all the other points
+ // This ensures that large coordinates will not overflow due to using 32 bits here.
+ // Since we multiply all coordinates by QUANTIZATION, and Int3 coordinates are already multiplied by 1000,
+ // coordinates would otherwise be liable to start overflowing at unity world coordinates above around 2000.
+ // TODO: We could still get bad results if pWorld is very far away from the triangle (about 4000 units).
+ xs -= xs.x;
+ ys -= ys.x;
+ zs -= zs.x;
+ // Projected X and Y coordinates
+ var px = (xs * m.c0.x + ys * m.c1.x + zs * m.c2.x) / QUANTIZATION;
+ var py = (xs * m.c0.y + ys * m.c1.y + zs * m.c2.y) / QUANTIZATION;
+
+ // Do 3 cross products to check if the point is inside the triangle
+ var v1 = px.yzx - px.xyz;
+ var v2 = py.www - py.xyz;
+ var v3 = px.www - px.xyz;
+ var v4 = py.yzx - py.xyz;
+ long check1 = (long)v1.x * (long)v2.x - (long)v3.x * (long)v4.x;
+ long check2 = (long)v1.y * (long)v2.y - (long)v3.y * (long)v4.y;
+ long check3 = (long)v1.z * (long)v2.z - (long)v3.z * (long)v4.z;
+ // Allow for both clockwise and counter-clockwise triangle layouts.
+ // This can be important sometimes on spherical worlds where the "upside-down" triangles
+ // will be seen as having the reverse winding order when projected onto a plane.
+ // We take care to include points right on the edge of the triangle.
+ return (check1 >= 0 & check2 >= 0 & check3 >= 0) | (check1 <= 0 & check2 <= 0 & check3 <= 0);
+
+ // Note: It might be tempting to try to use SIMD-like code for this. But the following requires a lot more instructions, as it turns out.
+ // return math.all(new bool3(check1 >= 0, check2 >= 0, check3 >= 0)) || math.all(new bool3(check1 <= 0, check2 <= 0, check3 <= 0));
+ }
+
+ /// <summary>
+ /// Sample Y coordinate of the triangle (p1, p2, p3) at the point p in XZ space.
+ /// The y coordinate of p is ignored.
+ ///
+ /// Returns: The interpolated y coordinate unless the triangle is degenerate in which case a DivisionByZeroException will be thrown
+ ///
+ /// See: https://en.wikipedia.org/wiki/Barycentric_coordinate_system
+ /// </summary>
+ public static int SampleYCoordinateInTriangle (Int3 p1, Int3 p2, Int3 p3, Int3 p) {
+ double det = ((double)(p2.z - p3.z)) * (p1.x - p3.x) + ((double)(p3.x - p2.x)) * (p1.z - p3.z);
+
+ double lambda1 = ((((double)(p2.z - p3.z)) * (p.x - p3.x) + ((double)(p3.x - p2.x)) * (p.z - p3.z)) / det);
+ double lambda2 = ((((double)(p3.z - p1.z)) * (p.x - p3.x) + ((double)(p1.x - p3.x)) * (p.z - p3.z)) / det);
+
+ return (int)Math.Round(lambda1 * p1.y + lambda2 * p2.y + (1 - lambda1 - lambda2) * p3.y);
+ }
+
+ /// <summary>
+ /// Calculates convex hull in XZ space for the points.
+ /// Implemented using the very simple Gift Wrapping Algorithm
+ /// which has a complexity of O(nh) where n is the number of points and h is the number of points on the hull,
+ /// so it is in the worst case quadratic.
+ /// </summary>
+ public static Vector3[] ConvexHullXZ (Vector3[] points) {
+ if (points.Length == 0) return new Vector3[0];
+
+ var hull = Pathfinding.Util.ListPool<Vector3>.Claim();
+
+ int pointOnHull = 0;
+ for (int i = 1; i < points.Length; i++) if (points[i].x < points[pointOnHull].x) pointOnHull = i;
+
+ int startpoint = pointOnHull;
+ int counter = 0;
+
+ do {
+ hull.Add(points[pointOnHull]);
+ int endpoint = 0;
+ for (int i = 0; i < points.Length; i++) if (endpoint == pointOnHull || !VectorMath.RightOrColinearXZ(points[pointOnHull], points[endpoint], points[i])) endpoint = i;
+
+ pointOnHull = endpoint;
+
+ counter++;
+ if (counter > 10000) {
+ Debug.LogWarning("Infinite Loop in Convex Hull Calculation");
+ break;
+ }
+ } while (pointOnHull != startpoint);
+
+ var result = hull.ToArray();
+
+ // Return to pool
+ Pathfinding.Util.ListPool<Vector3>.Release(hull);
+ return result;
+ }
+
+ /// <summary>
+ /// Closest point on the triangle abc to the point p.
+ /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
+ /// </summary>
+ public static Vector2 ClosestPointOnTriangle (Vector2 a, Vector2 b, Vector2 c, Vector2 p) {
+ // Check if p is in vertex region outside A
+ var ab = b - a;
+ var ac = c - a;
+ var ap = p - a;
+
+ var d1 = Vector2.Dot(ab, ap);
+ var d2 = Vector2.Dot(ac, ap);
+
+ // Barycentric coordinates (1,0,0)
+ if (d1 <= 0 && d2 <= 0) {
+ return a;
+ }
+
+ // Check if p is in vertex region outside B
+ var bp = p - b;
+ var d3 = Vector2.Dot(ab, bp);
+ var d4 = Vector2.Dot(ac, bp);
+
+ // Barycentric coordinates (0,1,0)
+ if (d3 >= 0 && d4 <= d3) {
+ return b;
+ }
+
+ // Check if p is in edge region outside AB, if so return a projection of p onto AB
+ if (d1 >= 0 && d3 <= 0) {
+ var vc = d1 * d4 - d3 * d2;
+ if (vc <= 0) {
+ // Barycentric coordinates (1-v, v, 0)
+ var v = d1 / (d1 - d3);
+ return a + ab*v;
+ }
+ }
+
+ // Check if p is in vertex region outside C
+ var cp = p - c;
+ var d5 = Vector2.Dot(ab, cp);
+ var d6 = Vector2.Dot(ac, cp);
+
+ // Barycentric coordinates (0,0,1)
+ if (d6 >= 0 && d5 <= d6) {
+ return c;
+ }
+
+ // Check if p is in edge region of AC, if so return a projection of p onto AC
+ if (d2 >= 0 && d6 <= 0) {
+ var vb = d5 * d2 - d1 * d6;
+ if (vb <= 0) {
+ // Barycentric coordinates (1-v, 0, v)
+ var v = d2 / (d2 - d6);
+ return a + ac*v;
+ }
+ }
+
+ // Check if p is in edge region of BC, if so return projection of p onto BC
+ if ((d4 - d3) >= 0 && (d5 - d6) >= 0) {
+ var va = d3 * d6 - d5 * d4;
+ if (va <= 0) {
+ var v = (d4 - d3) / ((d4 - d3) + (d5 - d6));
+ return b + (c - b) * v;
+ }
+ }
+
+ return p;
+ }
+
+ /// <summary>
+ /// Closest point on the triangle abc to the point p when seen from above.
+ /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
+ /// </summary>
+ public static Vector3 ClosestPointOnTriangleXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) {
+ // Check if p is in vertex region outside A
+ var ab = new Vector2(b.x - a.x, b.z - a.z);
+ var ac = new Vector2(c.x - a.x, c.z - a.z);
+ var ap = new Vector2(p.x - a.x, p.z - a.z);
+
+ var d1 = Vector2.Dot(ab, ap);
+ var d2 = Vector2.Dot(ac, ap);
+
+ // Barycentric coordinates (1,0,0)
+ if (d1 <= 0 && d2 <= 0) {
+ return a;
+ }
+
+ // Check if p is in vertex region outside B
+ var bp = new Vector2(p.x - b.x, p.z - b.z);
+ var d3 = Vector2.Dot(ab, bp);
+ var d4 = Vector2.Dot(ac, bp);
+
+ // Barycentric coordinates (0,1,0)
+ if (d3 >= 0 && d4 <= d3) {
+ return b;
+ }
+
+ // Check if p is in edge region outside AB, if so return a projection of p onto AB
+ var vc = d1 * d4 - d3 * d2;
+ if (d1 >= 0 && d3 <= 0 && vc <= 0) {
+ // Barycentric coordinates (1-v, v, 0)
+ var v = d1 / (d1 - d3);
+ return (1-v)*a + v*b;
+ }
+
+ // Check if p is in vertex region outside C
+ var cp = new Vector2(p.x - c.x, p.z - c.z);
+ var d5 = Vector2.Dot(ab, cp);
+ var d6 = Vector2.Dot(ac, cp);
+
+ // Barycentric coordinates (0,0,1)
+ if (d6 >= 0 && d5 <= d6) {
+ return c;
+ }
+
+ // Check if p is in edge region of AC, if so return a projection of p onto AC
+ var vb = d5 * d2 - d1 * d6;
+ if (d2 >= 0 && d6 <= 0 && vb <= 0) {
+ // Barycentric coordinates (1-v, 0, v)
+ var v = d2 / (d2 - d6);
+ return (1-v)*a + v*c;
+ }
+
+ // Check if p is in edge region of BC, if so return projection of p onto BC
+ var va = d3 * d6 - d5 * d4;
+ if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) {
+ var v = (d4 - d3) / ((d4 - d3) + (d5 - d6));
+ return b + (c - b) * v;
+ } else {
+ // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w)
+ // Note that the x and z coordinates will be exactly the same as P's x and z coordinates
+ var denom = 1f / (va + vb + vc);
+ var v = vb * denom;
+ var w = vc * denom;
+
+ return new Vector3(p.x, (1 - v - w)*a.y + v*b.y + w*c.y, p.z);
+ }
+ }
+
+ /// <summary>
+ /// Closest point on the triangle abc to the point p.
+ /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
+ /// </summary>
+ public static float3 ClosestPointOnTriangle (float3 a, float3 b, float3 c, float3 p) {
+ ClosestPointOnTriangleByRef(in a, in b, in c, in p, out var output);
+ return output;
+ }
+
+ /// <summary>
+ /// Closest point on the triangle abc to the point p.
+ ///
+ /// Takes arguments by reference to be able to be burst-compiled.
+ ///
+ /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
+ ///
+ /// Returns: True if the point is inside the triangle, false otherwise, after the point has been projected on the plane that the triangle is in.
+ /// </summary>
+ [BurstCompile]
+ public static bool ClosestPointOnTriangleByRef (in float3 a, in float3 b, in float3 c, in float3 p, [NoAlias] out float3 output) {
+ // Check if p is in vertex region outside A
+ var ab = b - a;
+ var ac = c - a;
+ var ap = p - a;
+
+ var d1 = math.dot(ab, ap);
+ var d2 = math.dot(ac, ap);
+
+ // Barycentric coordinates (1,0,0)
+ if (d1 <= 0 && d2 <= 0) {
+ output = a;
+ return false;
+ }
+
+ // Check if p is in vertex region outside B
+ var bp = p - b;
+ var d3 = math.dot(ab, bp);
+ var d4 = math.dot(ac, bp);
+
+ // Barycentric coordinates (0,1,0)
+ if (d3 >= 0 && d4 <= d3) {
+ output = b;
+ return false;
+ }
+
+ // Check if p is in edge region outside AB, if so return a projection of p onto AB
+ var vc = d1 * d4 - d3 * d2;
+ if (d1 >= 0 && d3 <= 0 && vc <= 0) {
+ // Barycentric coordinates (1-v, v, 0)
+ var v = d1 / (d1 - d3);
+ output = a + ab * v;
+ return false;
+ }
+
+ // Check if p is in vertex region outside C
+ var cp = p - c;
+ var d5 = math.dot(ab, cp);
+ var d6 = math.dot(ac, cp);
+
+ // Barycentric coordinates (0,0,1)
+ if (d6 >= 0 && d5 <= d6) {
+ output = c;
+ return false;
+ }
+
+ // Check if p is in edge region of AC, if so return a projection of p onto AC
+ var vb = d5 * d2 - d1 * d6;
+ if (d2 >= 0 && d6 <= 0 && vb <= 0) {
+ // Barycentric coordinates (1-v, 0, v)
+ var v = d2 / (d2 - d6);
+ output = a + ac * v;
+ return false;
+ }
+
+ // Check if p is in edge region of BC, if so return projection of p onto BC
+ var va = d3 * d6 - d5 * d4;
+ if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) {
+ var v = (d4 - d3) / ((d4 - d3) + (d5 - d6));
+ output = b + (c - b) * v;
+ return false;
+ } else {
+ // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w)
+ var denom = 1f / (va + vb + vc);
+ var v = vb * denom;
+ var w = vc * denom;
+
+ // This is equal to: u*a + v*b + w*c, u = va*denom = 1 - v - w;
+ output = a + ab * v + ac * w;
+ return true;
+ }
+ }
+
+ /// <summary>
+ /// Closest point on the triangle abc to the point p as barycentric coordinates.
+ ///
+ /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
+ /// </summary>
+ public static float3 ClosestPointOnTriangleBarycentric (float2 a, float2 b, float2 c, float2 p) {
+ // Check if p is in vertex region outside A
+ var ab = b - a;
+ var ac = c - a;
+ var ap = p - a;
+
+ var d1 = math.dot(ab, ap);
+ var d2 = math.dot(ac, ap);
+
+ // Barycentric coordinates (1,0,0)
+ if (d1 <= 0 && d2 <= 0) {
+ return new float3(1, 0, 0);
+ }
+
+ // Check if p is in vertex region outside B
+ var bp = p - b;
+ var d3 = math.dot(ab, bp);
+ var d4 = math.dot(ac, bp);
+
+ // Barycentric coordinates (0,1,0)
+ if (d3 >= 0 && d4 <= d3) {
+ return new float3(0, 1, 0);
+ }
+
+ // Check if p is in edge region outside AB, if so return a projection of p onto AB
+ var vc = d1 * d4 - d3 * d2;
+ if (d1 >= 0 && d3 <= 0 && vc <= 0) {
+ // Barycentric coordinates (1-v, v, 0)
+ var v = d1 / (d1 - d3);
+ return new float3(1-v, v, 0);
+ }
+
+ // Check if p is in vertex region outside C
+ var cp = p - c;
+ var d5 = math.dot(ab, cp);
+ var d6 = math.dot(ac, cp);
+
+ // Barycentric coordinates (0,0,1)
+ if (d6 >= 0 && d5 <= d6) {
+ return new float3(0, 0, 1);
+ }
+
+ // Check if p is in edge region of AC, if so return a projection of p onto AC
+ var vb = d5 * d2 - d1 * d6;
+ if (d2 >= 0 && d6 <= 0 && vb <= 0) {
+ // Barycentric coordinates (1-v, 0, v)
+ var v = d2 / (d2 - d6);
+ return new float3(1 - v, 0, v);
+ }
+
+ // Check if p is in edge region of BC, if so return projection of p onto BC
+ var va = d3 * d6 - d5 * d4;
+ if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) {
+ var v = (d4 - d3) / ((d4 - d3) + (d5 - d6));
+ return new float3(0, 1 - v, v);
+ } else {
+ // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w)
+ var denom = 1f / (va + vb + vc);
+ var v = vb * denom;
+ var w = vc * denom;
+ return new float3(1 - v - w, v, w);
+
+ // This is equal to: u*a + v*b + w*c, u = va*denom = 1 - v - w;
+ // return a + ab * v + ac * w;
+ }
+ }
+
+ /// <summary>
+ /// Closest point on a triangle when one axis is scaled.
+ ///
+ /// Project the triangle onto the plane defined by the projection axis.
+ /// Then find the closest point on the triangle in the plane.
+ /// Calculate the distance to the closest point in the plane, call that D1.
+ /// Convert the closest point into 3D space, and calculate the distance to the
+ /// query point along the plane's normal, call that D2.
+ /// The final cost for a given point is D1 + D2 * distanceScaleAlongProjectionDirection.
+ ///
+ /// This will form a diamond shape of equivalent cost points around the query point (x).
+ /// The ratio of the width of this diamond to the height is equal to distanceScaleAlongProjectionDirection.
+ ///
+ /// ^
+ /// / \
+ /// / \
+ /// / x \
+ /// \ /
+ /// \ /
+ /// \ /
+ /// v
+ ///
+ /// See: <see cref="DistanceMetric.ClosestAsSeenFromAboveSoft(Vector3)"/>
+ /// </summary>
+ /// <param name="vi1">First vertex of the triangle, in graph space.</param>
+ /// <param name="vi2">Second vertex of the triangle, in graph space.</param>
+ /// <param name="vi3">Third vertex of the triangle, in graph space.</param>
+ /// <param name="projection">Projection parameters that are for example constructed from a movement plane.</param>
+ /// <param name="point">Point to find the closest point to.</param>
+ /// <param name="closest">Closest point on the triangle to the point.</param>
+ /// <param name="sqrDist">Squared cost from the point to the closest point on the triangle.</param>
+ /// <param name="distAlongProjection">Distance from the point to the closest point on the triangle along the projection axis.</param>
+ [BurstCompile]
+ public static void ClosestPointOnTriangleProjected (ref Int3 vi1, ref Int3 vi2, ref Int3 vi3, ref BBTree.ProjectionParams projection, ref float3 point, [NoAlias] out float3 closest, [NoAlias] out float sqrDist, [NoAlias] out float distAlongProjection) {
+ var v1 = (float3)vi1;
+ var v2 = (float3)vi2;
+ var v3 = (float3)vi3;
+ var v1proj = math.mul(projection.planeProjection, v1);
+ var v2proj = math.mul(projection.planeProjection, v2);
+ var v3proj = math.mul(projection.planeProjection, v3);
+ // TODO: Can be cached
+ var pointProj = math.mul(projection.planeProjection, point);
+ var closestBarycentric = ClosestPointOnTriangleBarycentric(v1proj, v2proj, v3proj, pointProj);
+ closest = v1*closestBarycentric.x + v2*closestBarycentric.y + v3*closestBarycentric.z;
+ var closestProj = v1proj*closestBarycentric.x + v2proj*closestBarycentric.y + v3proj*closestBarycentric.z;
+ distAlongProjection = math.abs(math.dot(closest - point, projection.projectionAxis));
+ var distInPlane = math.length(closestProj - pointProj);
+ if (distInPlane < 0.01f) {
+ // If we are very close to being inside the triangle,
+ // check if we are actually inside the triangle using a more numerically robust method.
+ // If we are, set the in-plane-distance to 0.
+ // This is particularly important if distanceScaleAlongProjectionAxis is zero,
+ // as otherwise tie breaking may not work due to numerical issues.
+ var ci1 = (int3)vi1;
+ var ci2 = (int3)vi2;
+ var ci3 = (int3)vi3;
+ // wow, ugly
+ var pi = (int3)(Int3)(Vector3)point;
+ if (ContainsPoint(ref ci1, ref ci2, ref ci3, ref pi, in projection.planeProjection)) {
+ distInPlane = 0;
+ }
+ }
+ var dist = distInPlane + distAlongProjection*projection.distanceScaleAlongProjectionAxis;
+ sqrDist = dist*dist;
+ }
+
+ /// <summary>Cached dictionary to avoid excessive allocations</summary>
+ static readonly Dictionary<Int3, int> cached_Int3_int_dict = new Dictionary<Int3, int>();
+
+ /// <summary>
+ /// Compress the mesh by removing duplicate vertices.
+ ///
+ /// Vertices that differ by only 1 along the y coordinate will also be merged together.
+ /// Warning: This function is not threadsafe. It uses some cached structures to reduce allocations.
+ /// </summary>
+ /// <param name="vertices">Vertices of the input mesh</param>
+ /// <param name="triangles">Triangles of the input mesh</param>
+ /// <param name="tags">Tags of the input mesh. One for each triangle.</param>
+ /// <param name="outVertices">Vertices of the output mesh.</param>
+ /// <param name="outTriangles">Triangles of the output mesh.</param>
+ /// <param name="outTags">Tags of the output mesh. One for each triangle.</param>
+ public static void CompressMesh (List<Int3> vertices, List<int> triangles, List<uint> tags, out Int3[] outVertices, out int[] outTriangles, out uint[] outTags) {
+ Dictionary<Int3, int> firstVerts = cached_Int3_int_dict;
+
+ firstVerts.Clear();
+
+ // Use cached array to reduce memory allocations
+ int[] compressedPointers = ArrayPool<int>.Claim(vertices.Count);
+
+ // Map positions to the first index they were encountered at
+ int count = 0;
+ for (int i = 0; i < vertices.Count; i++) {
+ // Check if the vertex position has already been added
+ // Also check one position up and one down because rounding errors can cause vertices
+ // that should end up in the same position to be offset 1 unit from each other
+ // TODO: Check along X and Z axes as well?
+ int ind;
+ if (!firstVerts.TryGetValue(vertices[i], out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, 1, 0), out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, -1, 0), out ind)) {
+ firstVerts.Add(vertices[i], count);
+ compressedPointers[i] = count;
+ vertices[count] = vertices[i];
+ count++;
+ } else {
+ compressedPointers[i] = ind;
+ }
+ }
+
+ // Create the triangle array or reuse the existing buffer
+ outTriangles = new int[triangles.Count];
+
+ // Remap the triangles to the new compressed indices
+ for (int i = 0; i < outTriangles.Length; i++) {
+ outTriangles[i] = compressedPointers[triangles[i]];
+ }
+
+ // Create the vertex array or reuse the existing buffer
+ outVertices = new Int3[count];
+
+ for (int i = 0; i < count; i++)
+ outVertices[i] = vertices[i];
+
+ ArrayPool<int>.Release(ref compressedPointers);
+
+ outTags = tags.ToArray();
+ }
+
+ /// <summary>
+ /// Given a set of edges between vertices, follows those edges and returns them as chains and cycles.
+ ///
+ /// [Open online documentation to see images]
+ /// </summary>
+ /// <param name="outline">outline[a] = b if there is an edge from a to b.</param>
+ /// <param name="hasInEdge">hasInEdge should contain b if outline[a] = b for any key a.</param>
+ /// <param name="results">Will be called once for each contour with the contour as a parameter as well as a boolean indicating if the contour is a cycle or a chain (see image).</param>
+ public static void TraceContours (Dictionary<int, int> outline, HashSet<int> hasInEdge, System.Action<List<int>, bool> results) {
+ // Iterate through chains of the navmesh outline.
+ // I.e segments of the outline that are not loops
+ // we need to start these at the beginning of the chain.
+ // Then iterate over all the loops of the outline.
+ // Since they are loops, we can start at any point.
+ var obstacleVertices = ListPool<int>.Claim();
+ var outlineKeys = ListPool<int>.Claim();
+
+ outlineKeys.AddRange(outline.Keys);
+ for (int k = 0; k <= 1; k++) {
+ bool cycles = k == 1;
+ for (int i = 0; i < outlineKeys.Count; i++) {
+ var startIndex = outlineKeys[i];
+
+ // Chains (not cycles) need to start at the start of the chain
+ // Cycles can start at any point
+ if (!cycles && hasInEdge.Contains(startIndex)) {
+ continue;
+ }
+
+ var index = startIndex;
+ obstacleVertices.Clear();
+ obstacleVertices.Add(index);
+
+ while (outline.ContainsKey(index)) {
+ var next = outline[index];
+ outline.Remove(index);
+
+ obstacleVertices.Add(next);
+
+ // We traversed a full cycle
+ if (next == startIndex) break;
+
+ index = next;
+ }
+
+ if (obstacleVertices.Count > 1) {
+ results(obstacleVertices, cycles);
+ }
+ }
+ }
+
+ ListPool<int>.Release(ref outlineKeys);
+ ListPool<int>.Release(ref obstacleVertices);
+ }
+
+ /// <summary>Divides each segment in the list into subSegments segments and fills the result list with the new points</summary>
+ public static void Subdivide (List<Vector3> points, List<Vector3> result, int subSegments) {
+ for (int i = 0; i < points.Count-1; i++)
+ for (int j = 0; j < subSegments; j++)
+ result.Add(Vector3.Lerp(points[i], points[i+1], j / (float)subSegments));
+
+ result.Add(points[points.Count-1]);
+ }
+ }
+}