summaryrefslogtreecommitdiff
path: root/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Nodes/TriangleMeshNode.cs
diff options
context:
space:
mode:
authorchai <215380520@qq.com>2024-05-23 10:08:29 +0800
committerchai <215380520@qq.com>2024-05-23 10:08:29 +0800
commit8722a9920c1f6119bf6e769cba270e63097f8e25 (patch)
tree2eaf9865de7fb1404546de4a4296553d8f68cc3b /Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Nodes/TriangleMeshNode.cs
parent3ba4020b69e5971bb0df7ee08b31d10ea4d01937 (diff)
+ astar project
Diffstat (limited to 'Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Nodes/TriangleMeshNode.cs')
-rw-r--r--Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Nodes/TriangleMeshNode.cs673
1 files changed, 673 insertions, 0 deletions
diff --git a/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Nodes/TriangleMeshNode.cs b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Nodes/TriangleMeshNode.cs
new file mode 100644
index 0000000..e7142a6
--- /dev/null
+++ b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Graphs/Nodes/TriangleMeshNode.cs
@@ -0,0 +1,673 @@
+#pragma warning disable 0162
+using UnityEngine;
+using Pathfinding.Serialization;
+using UnityEngine.Assertions;
+using Unity.Mathematics;
+using Pathfinding.Util;
+using Unity.Burst;
+
+namespace Pathfinding {
+ /// <summary>Interface for something that holds a triangle based navmesh</summary>
+ public interface INavmeshHolder : ITransformedGraph, INavmesh {
+ /// <summary>Position of vertex number i in the world</summary>
+ Int3 GetVertex(int i);
+
+ /// <summary>
+ /// Position of vertex number i in coordinates local to the graph.
+ /// The up direction is always the +Y axis for these coordinates.
+ /// </summary>
+ Int3 GetVertexInGraphSpace(int i);
+
+ int GetVertexArrayIndex(int index);
+
+ /// <summary>Transforms coordinates from graph space to world space</summary>
+ void GetTileCoordinates(int tileIndex, out int x, out int z);
+ }
+
+ /// <summary>Node represented by a triangle</summary>
+ [Unity.Burst.BurstCompile]
+ // Sealing the class provides a nice performance boost (~5-10%) during pathfinding, because the JIT can inline more things and use non-virtual calls.
+ public sealed class TriangleMeshNode : MeshNode {
+ public TriangleMeshNode () {
+ HierarchicalNodeIndex = 0;
+ NodeIndex = DestroyedNodeIndex;
+ }
+
+ public TriangleMeshNode (AstarPath astar) {
+ astar.InitializeNode(this);
+ }
+
+ /// <summary>
+ /// Legacy compatibility.
+ /// Enabling this will make pathfinding use node centers, which leads to less accurate paths (but it's faster).
+ /// </summary>
+ public const bool InaccuratePathSearch = false;
+ internal override int PathNodeVariants => InaccuratePathSearch ? 1 : 3;
+
+ /// <summary>Internal vertex index for the first vertex</summary>
+ public int v0;
+
+ /// <summary>Internal vertex index for the second vertex</summary>
+ public int v1;
+
+ /// <summary>Internal vertex index for the third vertex</summary>
+ public int v2;
+
+ /// <summary>Holds INavmeshHolder references for all graph indices to be able to access them in a performant manner</summary>
+ static INavmeshHolder[] _navmeshHolders = new INavmeshHolder[0];
+
+ /// <summary>Used for synchronised access to the <see cref="_navmeshHolders"/> array</summary>
+ static readonly System.Object lockObject = new System.Object();
+
+ [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
+ public static INavmeshHolder GetNavmeshHolder (uint graphIndex) {
+ return _navmeshHolders[(int)graphIndex];
+ }
+
+ /// <summary>
+ /// Tile index in the recast or navmesh graph that this node is part of.
+ /// See: <see cref="NavmeshBase.GetTiles"/>
+ /// </summary>
+ public int TileIndex => (v0 >> NavmeshBase.TileIndexOffset) & NavmeshBase.TileIndexMask;
+
+ /// <summary>
+ /// Sets the internal navmesh holder for a given graph index.
+ /// Warning: Internal method
+ /// </summary>
+ public static void SetNavmeshHolder (int graphIndex, INavmeshHolder graph) {
+ // We need to lock to make sure that
+ // the resize operation is thread safe
+ lock (lockObject) {
+ if (graphIndex >= _navmeshHolders.Length) {
+ var gg = new INavmeshHolder[graphIndex+1];
+ _navmeshHolders.CopyTo(gg, 0);
+ _navmeshHolders = gg;
+ }
+ _navmeshHolders[graphIndex] = graph;
+ }
+ }
+
+ public static void ClearNavmeshHolder (int graphIndex, INavmeshHolder graph) {
+ lock (lockObject) {
+ if (graphIndex < _navmeshHolders.Length && _navmeshHolders[graphIndex] == graph) {
+ _navmeshHolders[graphIndex] = null;
+ }
+ }
+ }
+
+ /// <summary>Set the position of this node to the average of its 3 vertices</summary>
+ public void UpdatePositionFromVertices () {
+ Int3 a, b, c;
+
+ GetVertices(out a, out b, out c);
+ position = (a + b + c) * 0.333333f;
+ }
+
+ /// <summary>
+ /// Return a number identifying a vertex.
+ /// This number does not necessarily need to be a index in an array but two different vertices (in the same graph) should
+ /// not have the same vertex numbers.
+ /// </summary>
+ [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
+ public int GetVertexIndex (int i) {
+ return i == 0 ? v0 : (i == 1 ? v1 : v2);
+ }
+
+ /// <summary>
+ /// Return a number specifying an index in the source vertex array.
+ /// The vertex array can for example be contained in a recast tile, or be a navmesh graph, that is graph dependant.
+ /// This is slower than GetVertexIndex, if you only need to compare vertices, use GetVertexIndex.
+ /// </summary>
+ public int GetVertexArrayIndex (int i) {
+ return GetNavmeshHolder(GraphIndex).GetVertexArrayIndex(i == 0 ? v0 : (i == 1 ? v1 : v2));
+ }
+
+ /// <summary>Returns all 3 vertices of this node in world space</summary>
+ public void GetVertices (out Int3 v0, out Int3 v1, out Int3 v2) {
+ // Get the object holding the vertex data for this node
+ // This is usually a graph or a recast graph tile
+ var holder = GetNavmeshHolder(GraphIndex);
+
+ v0 = holder.GetVertex(this.v0);
+ v1 = holder.GetVertex(this.v1);
+ v2 = holder.GetVertex(this.v2);
+ }
+
+ /// <summary>Returns all 3 vertices of this node in graph space</summary>
+ public void GetVerticesInGraphSpace (out Int3 v0, out Int3 v1, out Int3 v2) {
+ // Get the object holding the vertex data for this node
+ // This is usually a graph or a recast graph tile
+ var holder = GetNavmeshHolder(GraphIndex);
+
+ v0 = holder.GetVertexInGraphSpace(this.v0);
+ v1 = holder.GetVertexInGraphSpace(this.v1);
+ v2 = holder.GetVertexInGraphSpace(this.v2);
+ }
+
+ [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
+ public override Int3 GetVertex (int i) {
+ return GetNavmeshHolder(GraphIndex).GetVertex(GetVertexIndex(i));
+ }
+
+ public Int3 GetVertexInGraphSpace (int i) {
+ return GetNavmeshHolder(GraphIndex).GetVertexInGraphSpace(GetVertexIndex(i));
+ }
+
+ public override int GetVertexCount () {
+ // A triangle has 3 vertices
+ return 3;
+ }
+
+ /// <summary>
+ /// Projects the given point onto the plane of this node's surface.
+ ///
+ /// The point will be projected down to a plane that contains the surface of the node.
+ /// If the point is not contained inside the node, it is projected down onto this plane anyway.
+ /// </summary>
+ public Vector3 ProjectOnSurface (Vector3 point) {
+ Int3 a, b, c;
+
+ GetVertices(out a, out b, out c);
+ var pa = (Vector3)a;
+ var pb = (Vector3)b;
+ var pc = (Vector3)c;
+ var up = Vector3.Cross(pb-pa, pc-pa).normalized;
+ return point - up * Vector3.Dot(up, point-pa);
+ }
+
+ public override Vector3 ClosestPointOnNode (Vector3 p) {
+ Int3 a, b, c;
+
+ GetVertices(out a, out b, out c);
+ return Pathfinding.Polygon.ClosestPointOnTriangle((float3)(Vector3)a, (float3)(Vector3)b, (float3)(Vector3)c, (float3)p);
+ }
+
+ /// <summary>
+ /// Closest point on the node when seen from above.
+ /// This method is mostly for internal use as the <see cref="Pathfinding.NavmeshBase.Linecast"/> methods use it.
+ ///
+ /// - The returned point is the closest one on the node to p when seen from above (relative to the graph).
+ /// This is important mostly for sloped surfaces.
+ /// - The returned point is an Int3 point in graph space.
+ /// - It is guaranteed to be inside the node, so if you call <see cref="ContainsPointInGraphSpace"/> with the return value from this method the result is guaranteed to be true.
+ ///
+ /// This method is slower than e.g <see cref="ClosestPointOnNode"/> or <see cref="ClosestPointOnNodeXZ"/>.
+ /// However they do not have the same guarantees as this method has.
+ /// </summary>
+ internal Int3 ClosestPointOnNodeXZInGraphSpace (Vector3 p) {
+ // Get the vertices that make up the triangle
+ Int3 a, b, c;
+
+ GetVerticesInGraphSpace(out a, out b, out c);
+
+ // Convert p to graph space
+ p = GetNavmeshHolder(GraphIndex).transform.InverseTransform(p);
+
+ // Find the closest point on the triangle to p when looking at the triangle from above (relative to the graph)
+ var closest = Pathfinding.Polygon.ClosestPointOnTriangleXZ((Vector3)a, (Vector3)b, (Vector3)c, p);
+
+ // Make sure the point is actually inside the node
+ var i3closest = (Int3)closest;
+ if (ContainsPointInGraphSpace(i3closest)) {
+ // Common case
+ return i3closest;
+ } else {
+ // Annoying...
+ // The closest point when converted from floating point coordinates to integer coordinates
+ // is not actually inside the node. It needs to be inside the node for some methods
+ // (like for example Linecast) to work properly.
+
+ // Try the 8 integer coordinates around the closest point
+ // and check if any one of them are completely inside the node.
+ // This will most likely succeed as it should be very close.
+ for (int dx = -1; dx <= 1; dx++) {
+ for (int dz = -1; dz <= 1; dz++) {
+ if ((dx != 0 || dz != 0)) {
+ var candidate = new Int3(i3closest.x + dx, i3closest.y, i3closest.z + dz);
+ if (ContainsPointInGraphSpace(candidate)) return candidate;
+ }
+ }
+ }
+
+ // Happens veery rarely.
+ // Pick the closest vertex of the triangle.
+ // The vertex is guaranteed to be inside the triangle.
+ var da = (a - i3closest).sqrMagnitudeLong;
+ var db = (b - i3closest).sqrMagnitudeLong;
+ var dc = (c - i3closest).sqrMagnitudeLong;
+ return da < db ? (da < dc ? a : c) : (db < dc ? b : c);
+ }
+ }
+
+ public override Vector3 ClosestPointOnNodeXZ (Vector3 p) {
+ // Get all 3 vertices for this node
+ GetVertices(out Int3 tp1, out Int3 tp2, out Int3 tp3);
+ return Polygon.ClosestPointOnTriangleXZ((Vector3)tp1, (Vector3)tp2, (Vector3)tp3, p);
+ }
+
+ /// <summary>
+ /// Checks if point is inside the node when seen from above.
+ ///
+ /// Note that <see cref="ContainsPointInGraphSpace"/> is faster than this method as it avoids
+ /// some coordinate transformations. If you are repeatedly calling this method
+ /// on many different nodes but with the same point then you should consider
+ /// transforming the point first and then calling ContainsPointInGraphSpace.
+ ///
+ /// <code>
+ /// Int3 p = (Int3)graph.transform.InverseTransform(point);
+ ///
+ /// node.ContainsPointInGraphSpace(p);
+ /// </code>
+ /// </summary>
+ public override bool ContainsPoint (Vector3 p) {
+ return ContainsPointInGraphSpace((Int3)GetNavmeshHolder(GraphIndex).transform.InverseTransform(p));
+ }
+
+ /// <summary>Checks if point is inside the node when seen from above, as defined by the movement plane</summary>
+ public bool ContainsPoint (Vector3 p, NativeMovementPlane movementPlane) {
+ // Get all 3 vertices for this node
+ GetVertices(out var a, out var b, out var c);
+ var pa = (int3)a;
+ var pb = (int3)b;
+ var pc = (int3)c;
+ var pp = (int3)(Int3)p;
+ return Polygon.ContainsPoint(ref pa, ref pb, ref pc, ref pp, ref movementPlane);
+ }
+
+ /// <summary>
+ /// Checks if point is inside the node in graph space.
+ ///
+ /// In graph space the up direction is always the Y axis so in principle
+ /// we project the triangle down on the XZ plane and check if the point is inside the 2D triangle there.
+ /// </summary>
+ public override bool ContainsPointInGraphSpace (Int3 p) {
+ // Get all 3 vertices for this node
+ GetVerticesInGraphSpace(out var a, out var b, out var c);
+
+ if ((long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) > 0) return false;
+
+ if ((long)(c.x - b.x) * (long)(p.z - b.z) - (long)(p.x - b.x) * (long)(c.z - b.z) > 0) return false;
+
+ if ((long)(a.x - c.x) * (long)(p.z - c.z) - (long)(p.x - c.x) * (long)(a.z - c.z) > 0) return false;
+
+ return true;
+ // Equivalent code, but the above code is faster
+ //return Polygon.IsClockwiseMargin (a,b, p) && Polygon.IsClockwiseMargin (b,c, p) && Polygon.IsClockwiseMargin (c,a, p);
+
+ //return Polygon.ContainsPoint(g.GetVertex(v0),g.GetVertex(v1),g.GetVertex(v2),p);
+ }
+
+ public static readonly Unity.Profiling.ProfilerMarker MarkerDecode = new Unity.Profiling.ProfilerMarker("Decode");
+ public static readonly Unity.Profiling.ProfilerMarker MarkerGetVertices = new Unity.Profiling.ProfilerMarker("GetVertex");
+ public static readonly Unity.Profiling.ProfilerMarker MarkerClosest = new Unity.Profiling.ProfilerMarker("MarkerClosest");
+
+ public override Int3 DecodeVariantPosition (uint pathNodeIndex, uint fractionAlongEdge) {
+ var edge = (int)(pathNodeIndex - NodeIndex);
+ var p1 = GetVertex(edge);
+ var p2 = GetVertex((edge + 1) % 3);
+ InterpolateEdge(ref p1, ref p2, fractionAlongEdge, out var pos);
+ return pos;
+ }
+
+ [BurstCompile(FloatMode = FloatMode.Fast)]
+ static void InterpolateEdge (ref Int3 p1, ref Int3 p2, uint fractionAlongEdge, out Int3 pos) {
+ var p = (int3)math.lerp((float3)(int3)p1, (float3)(int3)p2, PathNode.UnQuantizeFractionAlongEdge(fractionAlongEdge));
+ pos = new Int3(p.x, p.y, p.z);
+ }
+
+ public override void OpenAtPoint (Path path, uint pathNodeIndex, Int3 point, uint gScore) {
+ if (InaccuratePathSearch) {
+ Open(path, pathNodeIndex, gScore);
+ } else {
+ OpenAtPoint(path, pathNodeIndex, point, -1, gScore);
+ }
+ }
+
+ public override void Open (Path path, uint pathNodeIndex, uint gScore) {
+ var pathHandler = (path as IPathInternals).PathHandler;
+ if (InaccuratePathSearch) {
+ var pn = pathHandler.pathNodes[pathNodeIndex];
+ if (pn.flag1) path.OpenCandidateConnectionsToEndNode(position, pathNodeIndex, NodeIndex, gScore);
+
+ if (connections != null) {
+ // Iterate over all adjacent nodes
+ for (int i = connections.Length-1; i >= 0; i--) {
+ var conn = connections[i];
+ var other = conn.node;
+ if (conn.isOutgoing && other.NodeIndex != pn.parentIndex) {
+ path.OpenCandidateConnection(pathNodeIndex, other.NodeIndex, gScore, conn.cost + path.GetTraversalCost(other), 0, other.position);
+ }
+ }
+ }
+ return;
+ }
+ // One path node variant is created for each side of the triangle
+ // This particular path node represents just one of the sides of the triangle.
+ var edge = (int)(pathNodeIndex - NodeIndex);
+ OpenAtPoint(path, pathNodeIndex, DecodeVariantPosition(pathNodeIndex, pathHandler.pathNodes[pathNodeIndex].fractionAlongEdge), edge, gScore);
+ }
+
+ void OpenAtPoint (Path path, uint pathNodeIndex, Int3 pos, int edge, uint gScore) {
+ var pathHandler = (path as IPathInternals).PathHandler;
+ var pn = pathHandler.pathNodes[pathNodeIndex];
+ if (pn.flag1) path.OpenCandidateConnectionsToEndNode(pos, pathNodeIndex, NodeIndex, gScore);
+ int visitedEdges = 0;
+ bool cameFromOtherEdgeInThisTriangle = pn.parentIndex >= NodeIndex && pn.parentIndex < NodeIndex + 3;
+
+ if (connections != null) {
+ // Iterate over all adjacent nodes
+ for (int i = connections.Length-1; i >= 0; i--) {
+ var conn = connections[i];
+ if (!conn.isOutgoing) continue;
+ var other = conn.node;
+
+ // Check if we are moving from a side of this triangle, to the corresponding side on an adjacent triangle.
+ if (conn.isEdgeShared) {
+ var sharedEdgeOnOtherNode = conn.adjacentShapeEdge;
+ var adjacentPathNodeIndex = other.NodeIndex + (uint)sharedEdgeOnOtherNode;
+
+ // Skip checking our parent node. This is purely a performance optimization.
+ if (adjacentPathNodeIndex == pn.parentIndex) continue;
+
+ if (conn.shapeEdge == edge) {
+ // Make sure we can traverse the neighbour
+ if (path.CanTraverse(this, other)) {
+ var tOther = other as TriangleMeshNode;
+
+ // Fast path out if we know we have already searched this node and we cannot improve it
+ if (!path.ShouldConsiderPathNode(adjacentPathNodeIndex)) {
+ continue;
+ }
+
+ if (conn.edgesAreIdentical) {
+ // The edge on the other node is identical to this edge (but reversed).
+ // This means that no other node can reach the other node through that edge.
+ // This is great, because we can then skip adding that node to the heap just
+ // to immediatelly pop it again. This is a performance optimization.
+
+ var otherEnteringCost = path.GetTraversalCost(other);
+ ref var otherPathNode = ref pathHandler.pathNodes[adjacentPathNodeIndex];
+ otherPathNode.pathID = path.pathID;
+ otherPathNode.heapIndex = BinaryHeap.NotInHeap;
+ otherPathNode.parentIndex = pathNodeIndex;
+ otherPathNode.fractionAlongEdge = PathNode.ReverseFractionAlongEdge(pn.fractionAlongEdge);
+ // Make sure the path gets information about us having visited this in-between node,
+ // even if we never add it to the heap
+ path.OnVisitNode(adjacentPathNodeIndex, uint.MaxValue, gScore + otherEnteringCost);
+ pathHandler.LogVisitedNode(adjacentPathNodeIndex, uint.MaxValue, gScore + otherEnteringCost);
+
+ tOther.OpenAtPoint(path, adjacentPathNodeIndex, pos, sharedEdgeOnOtherNode, gScore + otherEnteringCost);
+ } else {
+ OpenSingleEdge(path, pathNodeIndex, tOther, sharedEdgeOnOtherNode, pos, gScore);
+ }
+ }
+ } else {
+ // The other node is a node which shares a different edge with this node.
+ // We will consider this connection at another time.
+
+ // However, we will consider the move to another side of this triangle,
+ // namely to the side that *is* shared with the other node.
+ // If a side of this triangle doesn't share an edge with any connection, we will
+ // not bother searching it (we will not reach this part of the code), because
+ // we know its a dead end.
+
+ // If we came from another side of this triangle, it is completely redundant to try to move back to
+ // another edge in this triangle, because we could always have reached it faster from the parent.
+ // We also make sure we don't attempt to move to the same edge twice, as that's just a waste of time.
+ if (!cameFromOtherEdgeInThisTriangle && (visitedEdges & (1 << conn.shapeEdge)) == 0) {
+ visitedEdges |= 1 << conn.shapeEdge;
+ OpenSingleEdge(path, pathNodeIndex, this, conn.shapeEdge, pos, gScore);
+ }
+ }
+ } else if (!cameFromOtherEdgeInThisTriangle) {
+ // This is a connection to some other node type, most likely. For example an off-mesh link.
+ if (path.CanTraverse(this, other) && path.ShouldConsiderPathNode(other.NodeIndex)) {
+ var cost = (uint)(other.position - pos).costMagnitude;
+
+ if (edge != -1) {
+ // We are moving from an edge of this triangle
+ path.OpenCandidateConnection(pathNodeIndex, other.NodeIndex, gScore, cost, 0, other.position);
+ } else {
+ // In some situations we may be moving directly from one off-mesh link to another one without
+ // passing through any concrete nodes in between. In this case we need to create a temporary node
+ // to allow the correct path to be reconstructed later. The only important part of the temporary
+ // node is that we save this node as the associated node.
+ // This is somewhat ugly, and it limits the number of times we can encounter this case during
+ // a single search (there's a limit to the number of temporary nodes we can have at the same time).
+ // Fortunately, this case only happens if there is more than 1 off-mesh link connected to a single
+ // node, which is quite rare in most games.
+ // In this case, pathNodeIndex will be another node's index, not a path node belonging to this node.
+ var viaNode = pathHandler.AddTemporaryNode(new TemporaryNode {
+ associatedNode = NodeIndex,
+ position = pos,
+ targetIndex = 0,
+ type = TemporaryNodeType.Ignore,
+ });
+ ref var viaPathNode = ref pathHandler.pathNodes[viaNode];
+ viaPathNode.pathID = path.pathID;
+ viaPathNode.parentIndex = pathNodeIndex;
+ path.OpenCandidateConnection(viaNode, other.NodeIndex, gScore, cost, 0, other.position);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void OpenSingleEdge (Path path, uint pathNodeIndex, TriangleMeshNode other, int sharedEdgeOnOtherNode, Int3 pos, uint gScore) {
+ var adjacentPathNodeIndex = other.NodeIndex + (uint)sharedEdgeOnOtherNode;
+
+ // Fast path out if we know we have already searched this node and we cannot improve it
+ if (!path.ShouldConsiderPathNode(adjacentPathNodeIndex)) {
+ return;
+ }
+
+ var s1 = other.GetVertex(sharedEdgeOnOtherNode);
+ var s2 = other.GetVertex((sharedEdgeOnOtherNode + 1) % 3);
+
+ var pathHandler = (path as IPathInternals).PathHandler;
+ // TODO: Incorrect, counts nodes multiple times
+ var otherEnteringCost = path.GetTraversalCost(other);
+
+ var candidateG = gScore + otherEnteringCost;
+
+ OpenSingleEdgeBurst(
+ ref s1,
+ ref s2,
+ ref pos,
+ path.pathID,
+ pathNodeIndex,
+ adjacentPathNodeIndex,
+ other.NodeIndex,
+ candidateG,
+ ref pathHandler.pathNodes,
+ ref pathHandler.heap,
+ ref path.heuristicObjectiveInternal
+ );
+ }
+
+ [Unity.Burst.BurstCompile]
+ static void OpenSingleEdgeBurst (ref Int3 s1, ref Int3 s2, ref Int3 pos, ushort pathID, uint pathNodeIndex, uint candidatePathNodeIndex, uint candidateNodeIndex, uint candidateG, ref UnsafeSpan<PathNode> pathNodes, ref BinaryHeap heap, ref HeuristicObjective heuristicObjective) {
+ CalculateBestEdgePosition(ref s1, ref s2, ref pos, out var closestPointAlongEdge, out var quantizedFractionAlongEdge, out var cost);
+ candidateG += cost;
+
+ var pars = new Path.OpenCandidateParams {
+ pathID = pathID,
+ parentPathNode = pathNodeIndex,
+ targetPathNode = candidatePathNodeIndex,
+ targetNodeIndex = candidateNodeIndex,
+ candidateG = candidateG,
+ fractionAlongEdge = quantizedFractionAlongEdge,
+ targetNodePosition = closestPointAlongEdge,
+ pathNodes = pathNodes,
+ };
+ Path.OpenCandidateConnectionBurst(ref pars, ref heap, ref heuristicObjective);
+ }
+
+ [Unity.Burst.BurstCompile]
+ static void CalculateBestEdgePosition (ref Int3 s1, ref Int3 s2, ref Int3 pos, out int3 closestPointAlongEdge, out uint quantizedFractionAlongEdge, out uint cost) {
+ // Find the closest point on the other edge. From here on, we will let the position of that path node be this closest point.
+ // This is much better than using the edge midpoint, and also better than any interpolation between closestFractionAlongEdge
+ // and the midpoint (0.5).
+ // In my tests, using the edge midpoint leads to path costs that are rougly 1.3-1.6 times greater than the real distance,
+ // but using the closest point leads to path costs that are only 1.1-1.2 times greater than the real distance.
+ // Using triangle centers is the worst option, it leads to path costs that are roughly 1.6-2.0 times greater than the real distance.
+ // Triangle centers were always used before version 4.3.67.
+ var v1 = (float3)(int3)s1;
+ var v2 = (float3)(int3)s2;
+ var posi = (int3)pos;
+ var closestFractionAlongEdge = math.clamp(VectorMath.ClosestPointOnLineFactor(v1, v2, (float3)posi), 0, 1);
+ quantizedFractionAlongEdge = PathNode.QuantizeFractionAlongEdge(closestFractionAlongEdge);
+ closestFractionAlongEdge = PathNode.UnQuantizeFractionAlongEdge(quantizedFractionAlongEdge);
+ var closestPointAlongEdgeV = math.lerp(v1, v2, closestFractionAlongEdge);
+ closestPointAlongEdge = (int3)closestPointAlongEdgeV;
+
+ var diff = posi - closestPointAlongEdge;
+ cost = (uint)new Int3(diff.x, diff.y, diff.z).costMagnitude;
+ }
+
+ /// <summary>
+ /// Returns the edge which is shared with other.
+ ///
+ /// If there is no shared edge between the two nodes, then -1 is returned.
+ ///
+ /// The vertices in the edge can be retrieved using
+ /// <code>
+ /// var edge = node.SharedEdge(other);
+ /// var a = node.GetVertex(edge);
+ /// var b = node.GetVertex((edge+1) % node.GetVertexCount());
+ /// </code>
+ ///
+ /// See: <see cref="GetPortal"/> which also handles edges that are shared over tile borders and some types of node links
+ /// </summary>
+ public int SharedEdge (GraphNode other) {
+ var edge = -1;
+
+ if (connections != null) {
+ for (int i = 0; i < connections.Length; i++) {
+ if (connections[i].node == other && connections[i].isEdgeShared) edge = connections[i].shapeEdge;
+ }
+ }
+ return edge;
+ }
+
+ public override bool GetPortal (GraphNode toNode, out Vector3 left, out Vector3 right) {
+ return GetPortal(toNode, out left, out right, out _, out _);
+ }
+
+ public bool GetPortalInGraphSpace (TriangleMeshNode toNode, out Int3 a, out Int3 b, out int aIndex, out int bIndex) {
+ aIndex = -1;
+ bIndex = -1;
+ a = Int3.zero;
+ b = Int3.zero;
+
+ // If the nodes are in different graphs, this function has no idea on how to find a shared edge.
+ if (toNode.GraphIndex != GraphIndex) return false;
+
+ int edge = -1;
+ int otherEdge = -1;
+ if (connections != null) {
+ for (int i = 0; i < connections.Length; i++) {
+ if (connections[i].node == toNode && connections[i].isEdgeShared) {
+ edge = connections[i].shapeEdge;
+ otherEdge = connections[i].adjacentShapeEdge;
+ }
+ }
+ }
+
+ // -1: No connection was found between the nodes
+ if (edge == -1) return false;
+
+ aIndex = edge;
+ bIndex = (edge + 1) % 3;
+
+ // Get the vertices of the shared edge for the first node
+ var graph = GetNavmeshHolder(GraphIndex);
+ a = graph.GetVertexInGraphSpace(GetVertexIndex(aIndex));
+ b = graph.GetVertexInGraphSpace(GetVertexIndex(bIndex));
+
+ // Get tiles the nodes are contained in
+ int tileIndex1 = TileIndex;
+ int tileIndex2 = toNode.TileIndex;
+
+ if (tileIndex1 != tileIndex2) {
+ // When the nodes are in different tiles, the edges may not be completely identical
+ // so another technique is needed.
+
+ // When the nodes are in different tiles, they might not share exactly the same edge
+ // so we clamp the portal to the segment of the edges which they both have..
+
+ // Get the vertices of the shared edge for the second node
+ Int3 v2a = toNode.GetVertexInGraphSpace(otherEdge);
+ Int3 v2b = toNode.GetVertexInGraphSpace((otherEdge+1) % 3);
+ graph.GetTileCoordinates(tileIndex1, out var tileX1, out var tileZ1);
+ graph.GetTileCoordinates(tileIndex2, out var tileX2, out var tileZ2);
+ var axis = tileX1 == tileX2 ? 0 : 2;
+ Assert.IsTrue(axis == 0 ? tileX1 == tileX2 : tileZ1 == tileZ2);
+ // This tile-edge aligned coordinate of the vertices should ideally be identical.
+ // But somewhere in the pipeline some errors may crop up, and thus they may be off by one.
+ // TODO: Fix this.
+ Assert.IsTrue(Mathf.Abs(a[2 - axis] - b[2 - axis]) <= 1);
+ var mn = Mathf.Min(v2a[axis], v2b[axis]);
+ var mx = Mathf.Max(v2a[axis], v2b[axis]);
+
+ a[axis] = Mathf.Clamp(a[axis], mn, mx);
+ b[axis] = Mathf.Clamp(b[axis], mn, mx);
+ }
+
+ return true;
+ }
+
+ public bool GetPortal (GraphNode toNode, out Vector3 left, out Vector3 right, out int aIndex, out int bIndex) {
+ if (toNode is TriangleMeshNode toTriNode && GetPortalInGraphSpace(toTriNode, out var a, out var b, out aIndex, out bIndex)) {
+ var graph = GetNavmeshHolder(GraphIndex);
+ // All triangles should be laid out in clockwise order so b is the rightmost vertex (seen from this node)
+ left = graph.transform.Transform((Vector3)a);
+ right = graph.transform.Transform((Vector3)b);
+ return true;
+ } else {
+ aIndex = -1;
+ bIndex = -1;
+ left = Vector3.zero;
+ right = Vector3.zero;
+ return false;
+ }
+ }
+
+ /// <summary>TODO: This is the area in XZ space, use full 3D space for higher correctness maybe?</summary>
+ public override float SurfaceArea () {
+ var holder = GetNavmeshHolder(GraphIndex);
+
+ return System.Math.Abs(VectorMath.SignedTriangleAreaTimes2XZ(holder.GetVertex(v0), holder.GetVertex(v1), holder.GetVertex(v2))) * 0.5f;
+ }
+
+ public override Vector3 RandomPointOnSurface () {
+ // Find a random point inside the triangle
+ // This generates uniformly distributed trilinear coordinates
+ // See http://mathworld.wolfram.com/TrianglePointPicking.html
+ float2 r;
+
+ do {
+ r = AstarMath.ThreadSafeRandomFloat2();
+ } while (r.x+r.y > 1);
+
+ // Pick the point corresponding to the trilinear coordinate
+ GetVertices(out var v0, out var v1, out var v2);
+ return ((Vector3)(v1-v0))*r.x + ((Vector3)(v2-v0))*r.y + (Vector3)v0;
+ }
+
+ public override void SerializeNode (GraphSerializationContext ctx) {
+ base.SerializeNode(ctx);
+ ctx.writer.Write(v0);
+ ctx.writer.Write(v1);
+ ctx.writer.Write(v2);
+ }
+
+ public override void DeserializeNode (GraphSerializationContext ctx) {
+ base.DeserializeNode(ctx);
+ v0 = ctx.reader.ReadInt32();
+ v1 = ctx.reader.ReadInt32();
+ v2 = ctx.reader.ReadInt32();
+ }
+ }
+}