summaryrefslogtreecommitdiff
path: root/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/RVO/RVOAgentBurst.cs
diff options
context:
space:
mode:
Diffstat (limited to 'Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/RVO/RVOAgentBurst.cs')
-rw-r--r--Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/RVO/RVOAgentBurst.cs1998
1 files changed, 1998 insertions, 0 deletions
diff --git a/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/RVO/RVOAgentBurst.cs b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/RVO/RVOAgentBurst.cs
new file mode 100644
index 0000000..5af0518
--- /dev/null
+++ b/Other/AstarPathfindingDemo/Packages/com.arongranberg.astar/Core/RVO/RVOAgentBurst.cs
@@ -0,0 +1,1998 @@
+using UnityEngine;
+using System.Collections.Generic;
+
+namespace Pathfinding.RVO {
+ using Pathfinding;
+ using Pathfinding.Util;
+ using Unity.Burst;
+ using Unity.Jobs;
+ using Unity.Mathematics;
+ using Unity.Collections;
+ using Unity.IL2CPP.CompilerServices;
+ using Pathfinding.Drawing;
+ using Pathfinding.ECS.RVO;
+ using static Unity.Burst.CompilerServices.Aliasing;
+ using Unity.Profiling;
+ using System.Diagnostics;
+
+ [BurstCompile(CompileSynchronously = false, FloatMode = FloatMode.Fast)]
+ public struct JobRVOPreprocess : IJob {
+ [ReadOnly]
+ public SimulatorBurst.AgentData agentData;
+
+ [ReadOnly]
+ public SimulatorBurst.AgentOutputData previousOutput;
+
+ [WriteOnly]
+ public SimulatorBurst.TemporaryAgentData temporaryAgentData;
+
+ public int startIndex;
+ public int endIndex;
+
+ public void Execute () {
+ for (int i = startIndex; i < endIndex; i++) {
+ if (!agentData.version[i].Valid) continue;
+
+ // Manually controlled overrides the agent being locked.
+ // If one for some reason uses them at the same time.
+ var locked = agentData.locked[i] & !agentData.manuallyControlled[i];
+
+ if (locked) {
+ temporaryAgentData.desiredTargetPointInVelocitySpace[i] = float2.zero;
+ temporaryAgentData.desiredVelocity[i] = float3.zero;
+ temporaryAgentData.currentVelocity[i] = float3.zero;
+ } else {
+ var desiredTargetPointInVelocitySpace = agentData.movementPlane[i].ToPlane(agentData.targetPoint[i] - agentData.position[i]);
+ temporaryAgentData.desiredTargetPointInVelocitySpace[i] = desiredTargetPointInVelocitySpace;
+
+ // Estimate our current velocity
+ // This is necessary because other agents need to know
+ // how this agent is moving to be able to avoid it
+ var currentVelocity = math.normalizesafe(previousOutput.targetPoint[i] - agentData.position[i]) * previousOutput.speed[i];
+
+ // Calculate the desired velocity from the point we want to reach
+ temporaryAgentData.desiredVelocity[i] = agentData.movementPlane[i].ToWorld(math.normalizesafe(desiredTargetPointInVelocitySpace) * agentData.desiredSpeed[i], 0);
+
+ var collisionNormal = math.normalizesafe(agentData.collisionNormal[i]);
+ // Check if the velocity is going into the wall
+ // If so: remove that component from the velocity
+ // Note: if the collisionNormal is zero then the dot prodct will produce a zero as well and nothing will happen.
+ float dot = math.dot(currentVelocity, collisionNormal);
+ currentVelocity -= math.min(0, dot) * collisionNormal;
+ temporaryAgentData.currentVelocity[i] = currentVelocity;
+ }
+ }
+ }
+ }
+
+ /// <summary>
+ /// Inspired by StarCraft 2's avoidance of locked units.
+ /// See: http://www.gdcvault.com/play/1014514/AI-Navigation-It-s-Not
+ /// </summary>
+ [BurstCompile(FloatMode = FloatMode.Fast)]
+ public struct JobHorizonAvoidancePhase1 : Pathfinding.Jobs.IJobParallelForBatched {
+ [ReadOnly]
+ public SimulatorBurst.AgentData agentData;
+
+ [ReadOnly]
+ public NativeArray<float2> desiredTargetPointInVelocitySpace;
+
+ [ReadOnly]
+ public NativeArray<int> neighbours;
+
+ public SimulatorBurst.HorizonAgentData horizonAgentData;
+
+ public CommandBuilder draw;
+
+ public bool allowBoundsChecks { get { return true; } }
+
+ /// <summary>
+ /// Super simple bubble sort.
+ /// TODO: This will be replaced by a better implementation from the Unity.Collections library when that is stable.
+ /// </summary>
+ static void Sort<T>(NativeSlice<T> arr, NativeSlice<float> keys) where T : struct {
+ bool changed = true;
+
+ while (changed) {
+ changed = false;
+ for (int i = 0; i < arr.Length - 1; i++) {
+ if (keys[i] > keys[i+1]) {
+ var tmp = keys[i];
+ var tmp2 = arr[i];
+ keys[i] = keys[i+1];
+ keys[i+1] = tmp;
+ arr[i] = arr[i+1];
+ arr[i+1] = tmp2;
+ changed = true;
+ }
+ }
+ }
+ }
+
+
+ /// <summary>Calculates the shortest difference between two given angles given in radians.</summary>
+ public static float DeltaAngle (float current, float target) {
+ float num = Mathf.Repeat(target - current, math.PI*2);
+
+ if (num > math.PI) {
+ num -= math.PI*2;
+ }
+ return num;
+ }
+
+ public void Execute (int startIndex, int count) {
+ NativeArray<float> angles = new NativeArray<float>(SimulatorBurst.MaxNeighbourCount*2, Allocator.Temp);
+ NativeArray<int> deltas = new NativeArray<int>(SimulatorBurst.MaxNeighbourCount*2, Allocator.Temp);
+
+ for (int i = startIndex; i < startIndex + count; i++) {
+ if (!agentData.version[i].Valid) continue;
+
+ if (agentData.locked[i] || agentData.manuallyControlled[i]) {
+ horizonAgentData.horizonSide[i] = 0;
+ horizonAgentData.horizonMinAngle[i] = 0;
+ horizonAgentData.horizonMaxAngle[i] = 0;
+ continue;
+ }
+
+ float minAngle = 0;
+ float maxAngle = 0;
+
+ float desiredAngle = math.atan2(desiredTargetPointInVelocitySpace[i].y, desiredTargetPointInVelocitySpace[i].x);
+
+ int eventCount = 0;
+
+ int inside = 0;
+
+ float radius = agentData.radius[i];
+
+ var position = agentData.position[i];
+ var movementPlane = agentData.movementPlane[i];
+
+ var agentNeighbours = neighbours.Slice(i*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
+ for (int j = 0; j < agentNeighbours.Length && agentNeighbours[j] != -1; j++) {
+ var other = agentNeighbours[j];
+ if (!agentData.locked[other] && !agentData.manuallyControlled[other]) continue;
+
+ var relativePosition = movementPlane.ToPlane(agentData.position[other] - position);
+ float dist = math.length(relativePosition);
+
+ float angle = math.atan2(relativePosition.y, relativePosition.x) - desiredAngle;
+ float deltaAngle;
+
+ var otherRadius = agentData.radius[other];
+ if (dist < radius + otherRadius) {
+ // Collision
+ deltaAngle = math.PI * 0.49f;
+ } else {
+ // One degree
+ const float AngleMargin = math.PI / 180f;
+ deltaAngle = math.asin((radius + otherRadius)/dist) + AngleMargin;
+ }
+
+ float aMin = DeltaAngle(0, angle - deltaAngle);
+ float aMax = aMin + DeltaAngle(aMin, angle + deltaAngle);
+
+ if (aMin < 0 && aMax > 0) inside++;
+
+ angles[eventCount] = aMin;
+ deltas[eventCount] = 1;
+ eventCount++;
+ angles[eventCount] = aMax;
+ deltas[eventCount] = -1;
+ eventCount++;
+ }
+
+ // If no angle range includes angle 0 then we are already done
+ if (inside == 0) {
+ horizonAgentData.horizonSide[i] = 0;
+ horizonAgentData.horizonMinAngle[i] = 0;
+ horizonAgentData.horizonMaxAngle[i] = 0;
+ continue;
+ }
+
+ // Sort the events by their angle in ascending order
+ Sort(deltas.Slice(0, eventCount), angles.Slice(0, eventCount));
+
+ // Find the first index for which the angle is positive
+ int firstPositiveIndex = 0;
+ for (; firstPositiveIndex < eventCount; firstPositiveIndex++) if (angles[firstPositiveIndex] > 0) break;
+
+ // Walk in the positive direction from angle 0 until the end of the group of angle ranges that include angle 0
+ int tmpInside = inside;
+ int tmpIndex = firstPositiveIndex;
+ for (; tmpIndex < eventCount; tmpIndex++) {
+ tmpInside += deltas[tmpIndex];
+ if (tmpInside == 0) break;
+ }
+ maxAngle = tmpIndex == eventCount ? math.PI : angles[tmpIndex];
+
+ // Walk in the negative direction from angle 0 until the end of the group of angle ranges that include angle 0
+ tmpInside = inside;
+ tmpIndex = firstPositiveIndex - 1;
+ for (; tmpIndex >= 0; tmpIndex--) {
+ tmpInside -= deltas[tmpIndex];
+ if (tmpInside == 0) break;
+ }
+ minAngle = tmpIndex == -1 ? -math.PI : angles[tmpIndex];
+
+ //horizonBias = -(minAngle + maxAngle);
+
+ // Indicates that a new side should be chosen. The "best" one will be chosen later.
+ if (horizonAgentData.horizonSide[i] == 0) horizonAgentData.horizonSide[i] = 2;
+ //else horizonBias = math.PI * horizonSide;
+
+ horizonAgentData.horizonMinAngle[i] = minAngle + desiredAngle;
+ horizonAgentData.horizonMaxAngle[i] = maxAngle + desiredAngle;
+ }
+ }
+ }
+
+ /// <summary>
+ /// Inspired by StarCraft 2's avoidance of locked units.
+ /// See: http://www.gdcvault.com/play/1014514/AI-Navigation-It-s-Not
+ /// </summary>
+ [BurstCompile(FloatMode = FloatMode.Fast)]
+ public struct JobHorizonAvoidancePhase2 : Pathfinding.Jobs.IJobParallelForBatched {
+ [ReadOnly]
+ public NativeArray<int> neighbours;
+ [ReadOnly]
+ public NativeArray<AgentIndex> versions;
+ public NativeArray<float3> desiredVelocity;
+ public NativeArray<float2> desiredTargetPointInVelocitySpace;
+
+ [ReadOnly]
+ public NativeArray<NativeMovementPlane> movementPlane;
+
+ public SimulatorBurst.HorizonAgentData horizonAgentData;
+
+ public bool allowBoundsChecks => false;
+
+ public void Execute (int startIndex, int count) {
+ for (int i = startIndex; i < startIndex + count; i++) {
+ if (!versions[i].Valid) continue;
+
+ // Note: Assumes this code is run synchronous (i.e not included in the double buffering part)
+ //offsetVelocity = (position - Position) / simulator.DeltaTime;
+
+ if (horizonAgentData.horizonSide[i] == 0) {
+ continue;
+ }
+
+ if (horizonAgentData.horizonSide[i] == 2) {
+ float sum = 0;
+ var agentNeighbours = neighbours.Slice(i*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
+ for (int j = 0; j < agentNeighbours.Length && agentNeighbours[j] != -1; j++) {
+ var other = agentNeighbours[j];
+ var otherHorizonBias = -(horizonAgentData.horizonMinAngle[other] + horizonAgentData.horizonMaxAngle[other]);
+ sum += otherHorizonBias;
+ }
+ var horizonBias = -(horizonAgentData.horizonMinAngle[i] + horizonAgentData.horizonMaxAngle[i]);
+ sum += horizonBias;
+
+ horizonAgentData.horizonSide[i] = sum < 0 ? -1 : 1;
+ }
+
+ float bestAngle = horizonAgentData.horizonSide[i] < 0 ? horizonAgentData.horizonMinAngle[i] : horizonAgentData.horizonMaxAngle[i];
+ float2 desiredDirection;
+ math.sincos(bestAngle, out desiredDirection.y, out desiredDirection.x);
+ desiredVelocity[i] = movementPlane[i].ToWorld(math.length(desiredVelocity[i]) * desiredDirection, 0);
+ desiredTargetPointInVelocitySpace[i] = math.length(desiredTargetPointInVelocitySpace[i]) * desiredDirection;
+ }
+ }
+ }
+
+ [BurstCompile(FloatMode = FloatMode.Fast)]
+ public struct JobHardCollisions<MovementPlaneWrapper> : Pathfinding.Jobs.IJobParallelForBatched where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
+ [ReadOnly]
+ public SimulatorBurst.AgentData agentData;
+ [ReadOnly]
+ public NativeArray<int> neighbours;
+ [WriteOnly]
+ public NativeArray<float2> collisionVelocityOffsets;
+
+ public float deltaTime;
+ public bool enabled;
+
+ /// <summary>
+ /// How aggressively hard collisions are resolved.
+ /// Should be a value between 0 and 1.
+ /// </summary>
+ const float CollisionStrength = 0.8f;
+
+ public bool allowBoundsChecks => false;
+
+ public void Execute (int startIndex, int count) {
+ if (!enabled) {
+ for (int i = startIndex; i < startIndex + count; i++) {
+ collisionVelocityOffsets[i] = float2.zero;
+ }
+ return;
+ }
+
+ for (int i = startIndex; i < startIndex + count; i++) {
+ if (!agentData.version[i].Valid || agentData.locked[i]) {
+ collisionVelocityOffsets[i] = float2.zero;
+ continue;
+ }
+
+ var agentNeighbours = neighbours.Slice(i*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
+ var radius = agentData.radius[i];
+ var totalOffset = float2.zero;
+ float totalWeight = 0;
+
+ var position = agentData.position[i];
+ var movementPlane = new MovementPlaneWrapper();
+ movementPlane.Set(agentData.movementPlane[i]);
+
+ for (int j = 0; j < agentNeighbours.Length && agentNeighbours[j] != -1; j++) {
+ var other = agentNeighbours[j];
+ var relativePosition = movementPlane.ToPlane(position - agentData.position[other]);
+
+ var dirSqrLength = math.lengthsq(relativePosition);
+ var combinedRadius = agentData.radius[other] + radius;
+ if (dirSqrLength < combinedRadius*combinedRadius && dirSqrLength > 0.00000001f) {
+ // Collision
+ var dirLength = math.sqrt(dirSqrLength);
+ var normalizedDir = relativePosition * (1.0f / dirLength);
+
+ // Overlap amount
+ var weight = combinedRadius - dirLength;
+
+ // Position offset required to make the agents not collide anymore
+ var offset = normalizedDir * weight;
+ // In a later step a weighted average will be taken so that the average offset is extracted
+ var weightedOffset = offset * weight;
+
+ totalOffset += weightedOffset;
+ totalWeight += weight;
+ }
+ }
+
+ var offsetVelocity = totalOffset * (1.0f / (0.0001f + totalWeight));
+ offsetVelocity *= (CollisionStrength * 0.5f) / deltaTime;
+
+ collisionVelocityOffsets[i] = offsetVelocity;
+ }
+ }
+ }
+
+ [BurstCompile(CompileSynchronously = false, FloatMode = FloatMode.Fast)]
+ public struct JobRVOCalculateNeighbours<MovementPlaneWrapper> : Pathfinding.Jobs.IJobParallelForBatched where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
+ [ReadOnly]
+ public SimulatorBurst.AgentData agentData;
+
+ [ReadOnly]
+ public RVOQuadtreeBurst quadtree;
+
+ public NativeArray<int> outNeighbours;
+
+ [WriteOnly]
+ public SimulatorBurst.AgentOutputData output;
+
+ public bool allowBoundsChecks { get { return false; } }
+
+ public void Execute (int startIndex, int count) {
+ NativeArray<float> neighbourDistances = new NativeArray<float>(SimulatorBurst.MaxNeighbourCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+
+ for (int i = startIndex; i < startIndex + count; i++) {
+ if (!agentData.version[i].Valid) continue;
+ CalculateNeighbours(i, outNeighbours, neighbourDistances);
+ }
+ }
+
+ void CalculateNeighbours (int agentIndex, NativeArray<int> neighbours, NativeArray<float> neighbourDistances) {
+ int maxNeighbourCount = math.min(SimulatorBurst.MaxNeighbourCount, agentData.maxNeighbours[agentIndex]);
+ // Write the output starting at this index in the neighbours array
+ var outputIndex = agentIndex * SimulatorBurst.MaxNeighbourCount;
+
+ quadtree.QueryKNearest(new RVOQuadtreeBurst.QuadtreeQuery {
+ position = agentData.position[agentIndex],
+ speed = agentData.maxSpeed[agentIndex],
+ agentRadius = agentData.radius[agentIndex],
+ timeHorizon = agentData.agentTimeHorizon[agentIndex],
+ outputStartIndex = outputIndex,
+ maxCount = maxNeighbourCount,
+ result = neighbours,
+ resultDistances = neighbourDistances,
+ });
+
+ int numNeighbours = 0;
+ while (numNeighbours < maxNeighbourCount && math.isfinite(neighbourDistances[numNeighbours])) numNeighbours++;
+ output.numNeighbours[agentIndex] = numNeighbours;
+
+ MovementPlaneWrapper movementPlane = default;
+ movementPlane.Set(agentData.movementPlane[agentIndex]);
+ movementPlane.ToPlane(agentData.position[agentIndex], out float localElevation);
+
+ // Filter out invalid neighbours
+ for (int i = 0; i < numNeighbours; i++) {
+ int otherIndex = neighbours[outputIndex + i];
+ // Interval along the y axis in which the agents overlap
+ movementPlane.ToPlane(agentData.position[otherIndex], out float otherElevation);
+ float maxY = math.min(localElevation + agentData.height[agentIndex], otherElevation + agentData.height[otherIndex]);
+ float minY = math.max(localElevation, otherElevation);
+
+ // The agents cannot collide if they are on different y-levels.
+ // Also do not avoid the agent itself.
+ // Apply the layer masks for agents.
+ // Use binary OR to reduce branching.
+ if ((maxY < minY) | (otherIndex == agentIndex) | (((int)agentData.collidesWith[agentIndex] & (int)agentData.layer[otherIndex]) == 0)) {
+ numNeighbours--;
+ neighbours[outputIndex + i] = neighbours[outputIndex + numNeighbours];
+ i--;
+ }
+ }
+
+ // Add a token indicating the size of the neighbours list
+ if (numNeighbours < SimulatorBurst.MaxNeighbourCount) neighbours[outputIndex + numNeighbours] = -1;
+ }
+ }
+
+ /// <summary>
+ /// Calculates if the agent has reached the end of its path and if its blocked from further progress towards it.
+ ///
+ /// If many agents have the same destination they can often end up crowded around a single point.
+ /// It is often desirable to detect this and mark all agents around that destination as having at least
+ /// partially reached the end of their paths.
+ ///
+ /// This job uses the following heuristics to determine this:
+ ///
+ /// 1. If an agent wants to move in a particular direction, but there's another agent in the way that makes it have to reduce its velocity,
+ /// the other agent is considered to be "blocking" the current agent.
+ /// 2. If the agent is within a small distance of the destination
+ /// THEN it is considered to have reached the end of its path.
+ /// 3. If the agent is blocked by another agent,
+ /// AND the other agent is blocked by this agent in turn,
+ /// AND if the destination is between the two agents,
+ /// THEN the the agent is considered to have reached the end of its path.
+ /// 4. If the agent is blocked by another agent which has reached the end of its path,
+ /// AND this agent is is moving slowly
+ /// AND this agent cannot move furter forward than 50% of its radius.
+ /// THEN the agent is considered to have reached the end of its path.
+ ///
+ /// Heuristics 2 and 3 are calculated initially, and then using heuristic 4 the set of agents which have reached their destinations expands outwards.
+ ///
+ /// These heuristics are robust enough that they can be used even if for example the agents are stuck in a winding maze
+ /// and only one agent is actually able to reach the destination.
+ ///
+ /// This job doesn't affect the movement of the agents by itself.
+ /// However, it is built with the intention that the FlowFollowingStrength parameter will be set
+ /// elsewhere to 1 for agents which have reached the end of their paths. This will make the agents stop gracefully
+ /// when the end of their paths is crowded instead of continuing to try to desperately reach the destination.
+ /// </summary>
+ [BurstCompile(CompileSynchronously = false, FloatMode = FloatMode.Fast)]
+ public struct JobDestinationReached<MovementPlaneWrapper>: IJob where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
+ [ReadOnly]
+ public SimulatorBurst.AgentData agentData;
+
+ [ReadOnly]
+ public SimulatorBurst.TemporaryAgentData temporaryAgentData;
+
+ [ReadOnly]
+ public SimulatorBurst.ObstacleData obstacleData;
+
+ public SimulatorBurst.AgentOutputData output;
+ public int numAgents;
+ public CommandBuilder draw;
+
+ private static readonly ProfilerMarker MarkerInvert = new ProfilerMarker("InvertArrows");
+ private static readonly ProfilerMarker MarkerAlloc = new ProfilerMarker("Alloc");
+ private static readonly ProfilerMarker MarkerFirstPass = new ProfilerMarker("FirstPass");
+
+ struct TempAgentData {
+ public bool blockedAndSlow;
+ public float distToEndSq;
+ }
+
+ public void Execute () {
+ MarkerAlloc.Begin();
+ for (int agentIndex = 0; agentIndex < numAgents; agentIndex++) {
+ output.effectivelyReachedDestination[agentIndex] = ReachedEndOfPath.NotReached;
+ }
+
+ // For each agent, store which agents it blocks
+ var inArrows = new NativeArray<int>(agentData.position.Length*SimulatorBurst.MaxBlockingAgentCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ // Number of agents that each agent blocks
+ var inArrowCounts = new NativeArray<int>(agentData.position.Length, Allocator.Temp, NativeArrayOptions.ClearMemory);
+ var que = new NativeCircularBuffer<int>(16, Allocator.Temp);
+ // True for an agent if it is in the queue, or if it should never be queued again
+ var queued = new NativeArray<bool>(numAgents, Allocator.Temp, NativeArrayOptions.ClearMemory);
+ var tempData = new NativeArray<TempAgentData>(numAgents, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ MarkerAlloc.End();
+ MarkerInvert.Begin();
+
+ for (int agentIndex = 0; agentIndex < numAgents; agentIndex++) {
+ if (!agentData.version[agentIndex].Valid) continue;
+ for (int i = 0; i < SimulatorBurst.MaxBlockingAgentCount; i++) {
+ var blockingAgentIndex = output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
+ if (blockingAgentIndex == -1) break;
+ var count = inArrowCounts[blockingAgentIndex];
+ if (count >= SimulatorBurst.MaxBlockingAgentCount) continue;
+ inArrows[blockingAgentIndex*SimulatorBurst.MaxBlockingAgentCount + count] = agentIndex;
+ inArrowCounts[blockingAgentIndex] = count+1;
+ }
+ }
+ MarkerInvert.End();
+
+ MarkerFirstPass.Begin();
+ for (int agentIndex = 0; agentIndex < numAgents; agentIndex++) {
+ if (!agentData.version[agentIndex].Valid) continue;
+
+ var position = agentData.position[agentIndex];
+ var movementPlane = agentData.movementPlane[agentIndex];
+ var ourSpeed = output.speed[agentIndex];
+ var ourEndOfPath = agentData.endOfPath[agentIndex];
+
+ // Ignore if destination is not set
+ if (!math.isfinite(ourEndOfPath.x)) continue;
+
+ var distToEndSq = math.lengthsq(movementPlane.ToPlane(ourEndOfPath - position, out float endOfPathElevationDifference));
+ var ourHeight = agentData.height[agentIndex];
+ var reachedEndOfPath = false;
+ var flowFollowing = false;
+ var ourRadius = agentData.radius[agentIndex];
+ var forwardClearance = output.forwardClearance[agentIndex];
+
+ // Heuristic 2
+ if (distToEndSq < ourRadius*ourRadius*(0.5f*0.5f) && endOfPathElevationDifference < ourHeight && endOfPathElevationDifference > -ourHeight*0.5f) {
+ reachedEndOfPath = true;
+ }
+
+ var closeToBlocked = forwardClearance < ourRadius*0.5f;
+ var slowish = ourSpeed*ourSpeed < math.max(0.01f*0.01f, math.lengthsq(temporaryAgentData.desiredVelocity[agentIndex])*0.25f);
+ var blockedAndSlow = closeToBlocked && slowish;
+ tempData[agentIndex] = new TempAgentData {
+ blockedAndSlow = blockedAndSlow,
+ distToEndSq = distToEndSq
+ };
+
+ // Heuristic 3
+ for (int i = 0; i < SimulatorBurst.MaxBlockingAgentCount; i++) {
+ var blockingAgentIndex = output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
+ if (blockingAgentIndex == -1) break;
+
+ var otherPosition = agentData.position[blockingAgentIndex];
+ var distBetweenAgentsSq = math.lengthsq(movementPlane.ToPlane(position - otherPosition));
+ var circleRadius = (math.sqrt(distBetweenAgentsSq) + ourRadius + agentData.radius[blockingAgentIndex])*0.5f;
+ var endWithinCircle = math.lengthsq(movementPlane.ToPlane(ourEndOfPath - 0.5f*(position + otherPosition))) < circleRadius*circleRadius;
+ if (endWithinCircle) {
+ // Check if the other agent has an arrow pointing to this agent (i.e. it is blocked by this agent)
+ var loop = false;
+ for (int j = 0; j < SimulatorBurst.MaxBlockingAgentCount; j++) {
+ var arrowFromAgent = inArrows[agentIndex*SimulatorBurst.MaxBlockingAgentCount + j];
+ if (arrowFromAgent == -1) break;
+ if (arrowFromAgent == blockingAgentIndex) {
+ loop = true;
+ break;
+ }
+ }
+
+ if (loop) {
+ flowFollowing = true;
+
+ if (blockedAndSlow) {
+ reachedEndOfPath = true;
+ }
+ }
+ }
+ }
+
+ var effectivelyReached = reachedEndOfPath ? ReachedEndOfPath.Reached : (flowFollowing ? ReachedEndOfPath.ReachedSoon : ReachedEndOfPath.NotReached);
+ if (effectivelyReached != output.effectivelyReachedDestination[agentIndex]) {
+ output.effectivelyReachedDestination[agentIndex] = effectivelyReached;
+
+ if (effectivelyReached == ReachedEndOfPath.Reached) {
+ // Mark this agent as queued to prevent it from being added to the queue again.
+ queued[agentIndex] = true;
+
+ // Changing to the Reached flag may affect the calculations for other agents.
+ // So we iterate over all agents that may be affected and enqueue them again.
+ var count = inArrowCounts[agentIndex];
+ for (int i = 0; i < count; i++) {
+ var inArrow = inArrows[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
+ if (!queued[inArrow]) que.PushEnd(inArrow);
+ }
+ }
+ }
+ }
+ MarkerFirstPass.End();
+
+
+ int iteration = 0;
+ while (que.Length > 0) {
+ var agentIndex = que.PopStart();
+ iteration++;
+ // If we are already at the reached stage, the result can never change.
+ if (output.effectivelyReachedDestination[agentIndex] == ReachedEndOfPath.Reached) continue;
+ queued[agentIndex] = false;
+
+ var ourSpeed = output.speed[agentIndex];
+ var ourEndOfPath = agentData.endOfPath[agentIndex];
+ // Ignore if destination is not set
+ if (!math.isfinite(ourEndOfPath.x)) continue;
+
+ var ourPosition = agentData.position[agentIndex];
+ var blockedAndSlow = tempData[agentIndex].blockedAndSlow;
+ var distToEndSq = tempData[agentIndex].distToEndSq;
+ var ourRadius = agentData.radius[agentIndex];
+ var reachedEndOfPath = false;
+ var flowFollowing = false;
+
+ // Heuristic 4
+ for (int i = 0; i < SimulatorBurst.MaxBlockingAgentCount; i++) {
+ var blockingAgentIndex = output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
+ if (blockingAgentIndex == -1) break;
+
+ var otherEndOfPath = agentData.endOfPath[blockingAgentIndex];
+ var otherRadius = agentData.radius[blockingAgentIndex];
+
+ // Check if the other agent has a destination in roughly the same position as this agent.
+ // If we are further from the destination we tolarate larger deviations.
+ var endOfPathsOverlapping = math.lengthsq(otherEndOfPath - ourEndOfPath) <= distToEndSq*(0.5f*0.5f);
+ var otherReached = output.effectivelyReachedDestination[blockingAgentIndex] == ReachedEndOfPath.Reached;
+
+ if (otherReached && (endOfPathsOverlapping || math.lengthsq(ourEndOfPath - agentData.position[blockingAgentIndex]) < math.lengthsq(ourRadius+otherRadius))) {
+ var otherSpeed = output.speed[blockingAgentIndex];
+ flowFollowing |= math.min(ourSpeed, otherSpeed) < 0.01f;
+ reachedEndOfPath |= blockedAndSlow;
+ }
+ }
+
+ var effectivelyReached = reachedEndOfPath ? ReachedEndOfPath.Reached : (flowFollowing ? ReachedEndOfPath.ReachedSoon : ReachedEndOfPath.NotReached);
+ // We do not check for all things that are checked in the first pass. So incorporate the previous information by taking the max.
+ effectivelyReached = (ReachedEndOfPath)math.max((int)effectivelyReached, (int)output.effectivelyReachedDestination[agentIndex]);
+
+ if (effectivelyReached != output.effectivelyReachedDestination[agentIndex]) {
+ output.effectivelyReachedDestination[agentIndex] = effectivelyReached;
+
+ if (effectivelyReached == ReachedEndOfPath.Reached) {
+ // Mark this agent as queued to prevent it from being added to the queue again.
+ queued[agentIndex] = true;
+
+ // Changes to the Reached flag may affect the calculations for other agents.
+ // So we iterate over all agents that may be affected and enqueue them again.
+ var count = inArrowCounts[agentIndex];
+ for (int i = 0; i < count; i++) {
+ var inArrow = inArrows[agentIndex*SimulatorBurst.MaxBlockingAgentCount + i];
+ if (!queued[inArrow]) que.PushEnd(inArrow);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Note: FloatMode should not be set to Fast because that causes inaccuracies which can lead to
+ // agents failing to avoid walls sometimes.
+ [BurstCompile(CompileSynchronously = true, FloatMode = FloatMode.Default)]
+ public struct JobRVO<MovementPlaneWrapper> : Pathfinding.Jobs.IJobParallelForBatched where MovementPlaneWrapper : struct, IMovementPlaneWrapper {
+ [ReadOnly]
+ public SimulatorBurst.AgentData agentData;
+
+ [ReadOnly]
+ public SimulatorBurst.TemporaryAgentData temporaryAgentData;
+
+ [ReadOnly]
+ public NavmeshEdges.NavmeshBorderData navmeshEdgeData;
+
+ [WriteOnly]
+ public SimulatorBurst.AgentOutputData output;
+
+ public float deltaTime;
+ public float symmetryBreakingBias;
+ public float priorityMultiplier;
+ public bool useNavmeshAsObstacle;
+
+ public bool allowBoundsChecks { get { return true; } }
+
+ const int MaxObstacleCount = 50;
+
+ public CommandBuilder draw;
+
+ public void Execute (int startIndex, int batchSize) {
+ ExecuteORCA(startIndex, batchSize);
+ }
+
+ struct SortByKey : IComparer<int> {
+ public UnsafeSpan<float> keys;
+
+ public int Compare (int x, int y) {
+ return keys[x].CompareTo(keys[y]);
+ }
+ }
+
+ /// <summary>
+ /// Sorts the array in place using insertion sort.
+ /// This is a stable sort.
+ /// See: http://en.wikipedia.org/wiki/Insertion_sort
+ ///
+ /// Used only because Unity.Collections.NativeSortExtension.Sort seems to have some kind of code generation bug when using Burst 1.8.2, causing it to throw exceptions.
+ /// </summary>
+ static void InsertionSort<T, U>(UnsafeSpan<T> data, U comparer) where T : unmanaged where U : IComparer<T> {
+ for (int i = 1; i < data.Length; i++) {
+ var value = data[i];
+ int j = i - 1;
+ while (j >= 0 && comparer.Compare(data[j], value) > 0) {
+ data[j + 1] = data[j];
+ j--;
+ }
+ data[j + 1] = value;
+ }
+ }
+
+ private static readonly ProfilerMarker MarkerConvertObstacles1 = new ProfilerMarker("RVOConvertObstacles1");
+ private static readonly ProfilerMarker MarkerConvertObstacles2 = new ProfilerMarker("RVOConvertObstacles2");
+
+ /// <summary>
+ /// Generates ORCA half-planes for all obstacles near the agent.
+ /// For more details refer to the ORCA (Optimal Reciprocal Collision Avoidance) paper.
+ ///
+ /// This function takes in several arrays which are just used for temporary data. This is to avoid the overhead of allocating the arrays once for every agent.
+ /// </summary>
+ void GenerateObstacleVOs (int agentIndex, NativeList<int> adjacentObstacleIdsScratch, NativeArray<int2> adjacentObstacleVerticesScratch, NativeArray<float> segmentDistancesScratch, NativeArray<int> sortedVerticesScratch, NativeArray<ORCALine> orcaLines, NativeArray<int> orcaLineToAgent, [NoAlias] ref int numLines, [NoAlias] in MovementPlaneWrapper movementPlane, float2 optimalVelocity) {
+ if (!useNavmeshAsObstacle) return;
+
+ var localPosition = movementPlane.ToPlane(agentData.position[agentIndex], out var agentElevation);
+ var agentHeight = agentData.height[agentIndex];
+ var agentRadius = agentData.radius[agentIndex];
+ var obstacleRadius = agentRadius * 0.01f;
+ var inverseObstacleTimeHorizon = math.rcp(agentData.obstacleTimeHorizon[agentIndex]);
+
+ ExpectNotAliased(in agentData.collisionNormal, in agentData.position);
+
+ var hierarchicalNodeIndex = agentData.hierarchicalNodeIndex[agentIndex];
+ if (hierarchicalNodeIndex == -1) return;
+
+ var size = (obstacleRadius + agentRadius + agentData.obstacleTimeHorizon[agentIndex] * agentData.maxSpeed[agentIndex]) * new float3(2, 0, 2);
+ size.y = agentData.height[agentIndex] * 2f;
+ var bounds = new Bounds(new Vector3(localPosition.x, agentElevation, localPosition.y), size);
+ var boundingRadiusSq = math.lengthsq(bounds.extents);
+ adjacentObstacleIdsScratch.Clear();
+
+ var worldBounds = movementPlane.ToWorld(bounds);
+ navmeshEdgeData.GetObstaclesInRange(hierarchicalNodeIndex, worldBounds, adjacentObstacleIdsScratch);
+
+#if UNITY_EDITOR
+ if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.Obstacles)) {
+ draw.PushMatrix(movementPlane.matrix);
+ draw.PushMatrix(new float4x4(
+ new float4(1, 0, 0, 0),
+ new float4(0, 0, -1, 0),
+ new float4(0, 1, 0, 0),
+ new float4(0, 0, 0, 1)
+ ));
+ draw.WireBox(bounds, Color.blue);
+ draw.PopMatrix();
+ draw.PopMatrix();
+ }
+#endif
+
+ // TODO: For correctness all obstacles should be added in nearest-to-farthest order.
+ // This loop should be split up.
+ for (int oi = 0; oi < adjacentObstacleIdsScratch.Length; oi++) {
+ MarkerConvertObstacles1.Begin();
+ var obstacleId = adjacentObstacleIdsScratch[oi];
+
+ var obstacleAllocations = navmeshEdgeData.obstacleData.obstacles[obstacleId];
+ var vertices = navmeshEdgeData.obstacleData.obstacleVertices.GetSpan(obstacleAllocations.verticesAllocation);
+ var groups = navmeshEdgeData.obstacleData.obstacleVertexGroups.GetSpan(obstacleAllocations.groupsAllocation);
+ int vertexOffset = 0;
+ int candidateVertexCount = 0;
+ for (int i = 0; i < groups.Length; i++) {
+ var group = groups[i];
+ // Check if the group does not overlap with our bounds at all
+ if (!math.all((group.boundsMx >= worldBounds.min) & (group.boundsMn <= worldBounds.max))) {
+ vertexOffset += group.vertexCount;
+ continue;
+ }
+
+
+ var startVertex = vertexOffset;
+ var endVertex = vertexOffset + group.vertexCount - 1;
+ if (endVertex >= adjacentObstacleVerticesScratch.Length) {
+ // Too many vertices. Skip remaining vertices.
+ break;
+ }
+
+ for (int vi = startVertex; vi < startVertex + group.vertexCount; vi++) {
+ // X coordinate is the index of the previous vertex, the y coordinate is the next vertex
+ adjacentObstacleVerticesScratch[vi] = new int2(vi - 1, vi + 1);
+ }
+ // UnityEngine.Assertions.Assert.AreEqual(vertexCount, endVertex + 1);
+
+ // Patch the start and end vertices to be correct.
+ // In a chain the last vertex doesn't start a new segment so we just make it loop back on itself.
+ // In a loop the last vertex connects to the first vertex.
+ adjacentObstacleVerticesScratch[startVertex] = new int2(group.type == ObstacleType.Loop ? endVertex : startVertex, adjacentObstacleVerticesScratch[startVertex].y);
+ adjacentObstacleVerticesScratch[endVertex] = new int2(adjacentObstacleVerticesScratch[endVertex].x, group.type == ObstacleType.Loop ? startVertex : endVertex);
+
+ for (int vi = 0; vi < group.vertexCount; vi++) {
+ var vertex = vertices[vi + vertexOffset];
+ int next = adjacentObstacleVerticesScratch[vi + startVertex].y;
+ var pos = movementPlane.ToPlane(vertex) - localPosition;
+ var nextPos = movementPlane.ToPlane(vertices[next]) - localPosition;
+ var dir = nextPos - pos;
+ var closestT = ClosestPointOnSegment(pos, dir / math.lengthsq(dir), float2.zero, 0, 1);
+ var dist = math.lengthsq(pos + dir*closestT);
+ segmentDistancesScratch[vi + startVertex] = dist;
+
+ if (dist <= boundingRadiusSq && candidateVertexCount < sortedVerticesScratch.Length) {
+ sortedVerticesScratch[candidateVertexCount] = vi + startVertex;
+ candidateVertexCount++;
+ }
+ }
+
+ vertexOffset += group.vertexCount;
+ }
+
+ MarkerConvertObstacles1.End();
+
+ MarkerConvertObstacles2.Begin();
+ // Sort obstacle segments by distance from the agent
+ InsertionSort(sortedVerticesScratch.AsUnsafeSpan().Slice(0, candidateVertexCount), new SortByKey {
+ keys = segmentDistancesScratch.AsUnsafeSpan().Slice(0, vertexOffset)
+ });
+
+ for (int i = 0; i < candidateVertexCount; i++) {
+ // In the unlikely event that we exceed the maximum number of obstacles, we just skip the remaining ones.
+ if (numLines >= MaxObstacleCount) break;
+
+ // Processing the obstacle defined by v1 and v2
+ //
+ // v0 v3
+ // \ /
+ // \ /
+ // v1 ========= v2
+ //
+ var v1Index = sortedVerticesScratch[i];
+
+ // If the obstacle is too far away, we can skip it.
+ // Since the obstacles are sorted by distance we can break here.
+ if (segmentDistancesScratch[v1Index] > 0.25f*size.x*size.x) break;
+
+ var v0Index = adjacentObstacleVerticesScratch[v1Index].x;
+ var v2Index = adjacentObstacleVerticesScratch[v1Index].y;
+ if (v2Index == v1Index) continue;
+ var v3Index = adjacentObstacleVerticesScratch[v2Index].y;
+ UnityEngine.Assertions.Assert.AreNotEqual(v1Index, v3Index);
+ UnityEngine.Assertions.Assert.AreNotEqual(v0Index, v2Index);
+
+ var v0 = vertices[v0Index];
+ var v1 = vertices[v1Index];
+ var v2 = vertices[v2Index];
+ var v3 = vertices[v3Index];
+
+ var v0Position = movementPlane.ToPlane(v0) - localPosition;
+ var v1Position = movementPlane.ToPlane(v1, out var e1) - localPosition;
+ var v2Position = movementPlane.ToPlane(v2, out var e2) - localPosition;
+ var v3Position = movementPlane.ToPlane(v3) - localPosition;
+
+ // Assume the obstacle has the same height as the agent, then check if they overlap along the elevation axis.
+ if (math.max(e1, e2) + agentHeight < agentElevation || math.min(e1, e2) > agentElevation + agentHeight) {
+ // The obstacle is not in the agent's elevation range. Ignore it.
+ continue;
+ }
+
+ var length = math.length(v2Position - v1Position);
+ if (length < 0.0001f) continue;
+ var segmentDir = (v2Position - v1Position) * math.rcp(length);
+
+ if (det(segmentDir, -v1Position) > obstacleRadius) {
+ // Agent is significantly on the wrong side of the segment (on the "inside"). Ignore it.
+ continue;
+ }
+
+ // Check if this velocity obstacle completely behind previously added ORCA lines.
+ // If so, this obstacle is redundant and we can ignore it.
+ // This is not just a performance optimization. Using the ORCA lines for closer
+ // obstacles is better since obstacles further away can add ORCA lines that
+ // restrict the velocity space unnecessarily. The ORCA line is more conservative than the VO.
+ bool alreadyCovered = false;
+
+ const float EPSILON = 0.0001f;
+ for (var j = 0; j < numLines; j++) {
+ var line = orcaLines[j];
+ if (
+ // Check if this velocity-obstacle is completely inside the previous ORCA line's infeasible half-plane region.
+ det(inverseObstacleTimeHorizon * v1Position - line.point, line.direction) - inverseObstacleTimeHorizon * obstacleRadius >= -EPSILON &&
+ det(inverseObstacleTimeHorizon * v2Position - line.point, line.direction) - inverseObstacleTimeHorizon * obstacleRadius >= -EPSILON
+ ) {
+ alreadyCovered = true;
+ break;
+ }
+ }
+ if (alreadyCovered) {
+ continue;
+ }
+
+ var obstacleOptimizationVelocity = float2.zero;
+ var distanceAlongSegment = math.dot(obstacleOptimizationVelocity - v1Position, segmentDir);
+ var closestPointOnSegment = v1Position + distanceAlongSegment * segmentDir;
+ var distanceToLineSq = math.lengthsq(closestPointOnSegment - obstacleOptimizationVelocity);
+ var distanceToSegmentSq = math.lengthsq((v1Position + math.clamp(distanceAlongSegment, 0, length) * segmentDir));
+
+ var v1Convex = leftOrColinear(v1Position - v0Position, segmentDir);
+ var v2Convex = leftOrColinear(segmentDir, v3Position - v2Position);
+
+ if (distanceToSegmentSq < obstacleRadius*obstacleRadius) {
+ if (distanceAlongSegment < 0.0f) {
+ // Collision with left vertex, ignore if the vertex is not convex
+ if (v1Convex) {
+ orcaLineToAgent[numLines] = -1;
+ orcaLines[numLines++] = new ORCALine {
+ point = -v1Position * 0.1f,
+ direction = math.normalizesafe(rot90(v1Position)),
+ };
+ }
+ } else if (distanceAlongSegment > length) {
+ // Collision with right vertex
+ // Ignore if the vertex is not convex, or if it will be taken care of
+ // by the neighbour obstacle segment.
+ if (v2Convex && leftOrColinear(v2Position, v3Position - v2Position)) {
+ orcaLineToAgent[numLines] = -1;
+ orcaLines[numLines++] = new ORCALine {
+ point = -v2Position * 0.1f,
+ direction = math.normalizesafe(rot90(v2Position)),
+ };
+ }
+ } else {
+ // Collision with segment
+ orcaLineToAgent[numLines] = -1;
+ orcaLines[numLines++] = new ORCALine {
+ point = -closestPointOnSegment * 0.1f,
+ direction = -segmentDir,
+ };
+ }
+ continue;
+ }
+
+ // Represents rays starting points on the VO circles, going in a tangent direction away from the agent.
+ float2 leftLegDirection, rightLegDirection;
+
+ if ((distanceAlongSegment < 0 || distanceAlongSegment > 1) && distanceToLineSq <= obstacleRadius*obstacleRadius) {
+ // Obliquely viewed so that the circle around one of the vertices is all that is visible from p. p = obstacleOptimizationVelocity
+ // _____________________________ _ _ _ _ _ _ _ _ _ _ _ _
+ // _/ \_ _/ \_
+ // / \ / \
+ // | v1 | | v2 |
+ // \_ _/ \_ _/ p
+ // \_____/_________________\_____/ _ _ _ _ _ _ _ _ _ _ _ _
+
+ // Collapse segment to a single point, making sure that v0 and v3 are still the neighbouring vertices.
+ if (distanceAlongSegment < 0) {
+ // Collapse to v1
+ // Ignore if not convex
+ if (!v1Convex) continue;
+ v3Position = v2Position;
+ v2Position = v1Position;
+ v2Convex = v1Convex;
+ } else {
+ // Collapse to v2
+ if (!v2Convex) continue;
+ v0Position = v1Position;
+ v1Position = v2Position;
+ v1Convex = v2Convex;
+ }
+ var vertexDistSq = math.lengthsq(v1Position);
+ // Distance from p to the points where the legs (tangents) touch the circle around the vertex.
+ float leg = math.sqrt(vertexDistSq - obstacleRadius*obstacleRadius);
+ var posNormal = new float2(-v1Position.y, v1Position.x);
+ // These become normalized
+ leftLegDirection = (v1Position*leg + posNormal*obstacleRadius) / vertexDistSq;
+ rightLegDirection = (v1Position*leg - posNormal*obstacleRadius) / vertexDistSq;
+ } else {
+ // This is the common case (several valid positions of p are shown). p = obstacleOptimizationVelocity
+ //
+ // p
+ // _____________________________
+ // _/ \_ _/ \_
+ // / \ / \
+ // | v1 | | v2 |
+ // \_ _/ \_ _/
+ // \_____/_________________\_____/
+ //
+ // p p
+
+ if (v1Convex) {
+ var vertexDistSq = math.lengthsq(v1Position);
+ float leg = math.sqrt(vertexDistSq - obstacleRadius*obstacleRadius);
+ var posNormal = new float2(-v1Position.y, v1Position.x);
+ // This becomes normalized
+ leftLegDirection = (v1Position*leg + posNormal*obstacleRadius) / vertexDistSq;
+ } else {
+ leftLegDirection = -segmentDir;
+ }
+
+ if (v2Convex) {
+ var vertexDistSq = math.lengthsq(v2Position);
+ float leg = math.sqrt(vertexDistSq - obstacleRadius*obstacleRadius);
+ var posNormal = new float2(-v2Position.y, v2Position.x);
+ rightLegDirection = (v2Position*leg - posNormal*obstacleRadius) / vertexDistSq;
+ } else {
+ rightLegDirection = segmentDir;
+ }
+ }
+
+ // Legs should never point into the obstacle for legs added by convex vertices.
+ // The neighbouring vertex will add a better obstacle for those cases.
+ //
+ // In that case we replace the legs with the neighbouring segments, and if the closest
+ // point is on those segments we know we can ignore them because the
+ // neighbour will handle it.
+ //
+ // It's important that we don't include the case when they are colinear,
+ // because if v1=v0 (or v2=v3), which can happen at the end of a chain, the
+ // determinant will always be zero and so they will seem colinear.
+ //
+ // Note: One might think that this should apply to all vertices, not just convex ones.
+ // Consider this case where you might think a non-convex vertices otherwise would
+ // cause 'ghost' obstacles:
+ // ___
+ // | | A
+ // | |
+ // | \
+ // |____\ B
+ // <-X
+ //
+ // If X is an agent, moving to the left. It could get stuck against the segment A.
+ // This is because the vertex between A and B is concave, and it will generate a leg
+ // pointing downwards.
+ //
+ // However, this does not cause a problem in practice. Because if the horizontal segment at the bottom is added first (as it should be)
+ // then A and B will be discarded since they will be completely behind the ORCA line added by the horizontal segment.
+ bool isLeftLegForeign = false;
+ bool isRightLegForeign = false;
+ if (v1Convex && left(leftLegDirection, v0Position - v1Position)) {
+ // Left leg points into obstacle
+ leftLegDirection = v0Position - v1Position;
+ isLeftLegForeign = true;
+ }
+
+ if (v2Convex && right(rightLegDirection, v3Position - v2Position)) {
+ // Right leg points into obstacle
+ rightLegDirection = v3Position - v2Position;
+ isRightLegForeign = true;
+ }
+
+
+ // The velocity obstacle for this segment consists of a left leg, right leg,
+ // a cutoff line, and two circular arcs where the legs and the cutoff line join together.
+ // LeftLeg RightLeg
+ // \ _____________________________ /
+ // \ _/ \_ _/ \_ /
+ // \ / \ / \ /
+ // \| v1 | | v2 |/
+ // \_ _/ \_ _/
+ // \_____/_________________\_____/
+ // Cutoff Line
+ //
+ // In case only one vertex makes up the obstacle then we instead have just a left leg, right leg, and a single circular arc.
+ //
+ // LeftLeg RightLeg
+ // \ _____ /
+ // \ _/ \_ /
+ // \ / \ /
+ // \| |/
+ // \_ _/
+ // \_____/
+ //
+
+
+ // We first check if the velocity will be projected on those circular segments.
+ var leftCutoff = inverseObstacleTimeHorizon * v1Position;
+ var rightCutoff = inverseObstacleTimeHorizon * v2Position;
+ var cutoffDir = rightCutoff - leftCutoff;
+ var cutoffLength = math.lengthsq(cutoffDir);
+
+ // Projection on the cutoff line (between 0 and 1 if the projection is on the cutoff segment)
+ var t = cutoffLength <= 0.00001f ? 0.5f : math.dot(optimalVelocity - leftCutoff, cutoffDir)/cutoffLength;
+ // Negative if the closest point on the rays reprensenting the legs is before the ray starts
+ var tLeft = math.dot(optimalVelocity - leftCutoff, leftLegDirection);
+ var tRight = math.dot(optimalVelocity - rightCutoff, rightLegDirection);
+
+
+ // Check if the projected velocity is on the circular arcs
+ if ((t < 0.0f && tLeft < 0.0f) || (t > 1.0f && tRight < 0.0f) || (cutoffLength <= 0.00001f && tLeft < 0.0f && tRight < 0.0f)) {
+ var arcCenter = t <= 0.5f ? leftCutoff : rightCutoff;
+
+ var unitW = math.normalizesafe(optimalVelocity - arcCenter);
+ orcaLineToAgent[numLines] = -1;
+ orcaLines[numLines++] = new ORCALine {
+ point = arcCenter + obstacleRadius * inverseObstacleTimeHorizon * unitW,
+ direction = new float2(unitW.y, -unitW.x),
+ };
+ continue;
+ }
+
+ // If the closest point is not on the arcs, then we project it on the legs or the cutoff line and pick the closest one.
+ // Note that all these distances should be reduced by obstacleRadius, but we only compare the values, so this doesn't matter.
+ float distToCutoff = (t > 1.0f || t < 0.0f || cutoffLength < 0.0001f ? math.INFINITY : math.lengthsq(optimalVelocity - (leftCutoff + t * cutoffDir)));
+ float distToLeftLeg = (tLeft < 0.0f ? math.INFINITY : math.lengthsq(optimalVelocity - (leftCutoff + tLeft * leftLegDirection)));
+ float distToRightLeg = (tRight < 0.0f ? math.INFINITY : math.lengthsq(optimalVelocity - (rightCutoff + tRight * rightLegDirection)));
+ var selected = 0;
+ var mn = distToCutoff;
+ if (distToLeftLeg < mn) {
+ mn = distToLeftLeg;
+ selected = 1;
+ }
+ if (distToRightLeg < mn) {
+ mn = distToRightLeg;
+ selected = 2;
+ }
+
+ if (selected == 0) {
+ // Project on cutoff line
+ orcaLineToAgent[numLines] = -1;
+ orcaLines[numLines++] = new ORCALine {
+ point = leftCutoff + obstacleRadius * inverseObstacleTimeHorizon * new float2(segmentDir.y, -segmentDir.x),
+ direction = -segmentDir,
+ };
+ } else if (selected == 1) {
+ if (!isLeftLegForeign) {
+ orcaLineToAgent[numLines] = -1;
+ orcaLines[numLines++] = new ORCALine {
+ point = leftCutoff + obstacleRadius * inverseObstacleTimeHorizon * new float2(-leftLegDirection.y, leftLegDirection.x),
+ direction = leftLegDirection,
+ };
+ }
+ } else if (selected == 2) {
+ if (!isRightLegForeign) {
+ orcaLineToAgent[numLines] = -1;
+ orcaLines[numLines++] = new ORCALine {
+ point = rightCutoff + obstacleRadius * inverseObstacleTimeHorizon * new float2(rightLegDirection.y, -rightLegDirection.x),
+ direction = -rightLegDirection,
+ };
+ }
+ }
+ }
+ MarkerConvertObstacles2.End();
+ }
+ }
+
+ public void ExecuteORCA (int startIndex, int batchSize) {
+ int endIndex = startIndex + batchSize;
+
+ NativeArray<ORCALine> orcaLines = new NativeArray<ORCALine>(SimulatorBurst.MaxNeighbourCount + MaxObstacleCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ NativeArray<ORCALine> scratchBuffer = new NativeArray<ORCALine>(SimulatorBurst.MaxNeighbourCount + MaxObstacleCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ NativeArray<float> segmentDistancesScratch = new NativeArray<float>(SimulatorBurst.MaxObstacleVertices, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ NativeArray<int> sortedVerticesScratch = new NativeArray<int>(SimulatorBurst.MaxObstacleVertices, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ NativeArray<int2> adjacentObstacleVertices = new NativeArray<int2>(4 * SimulatorBurst.MaxObstacleVertices, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ NativeArray<int> orcaLineToAgent = new NativeArray<int>(SimulatorBurst.MaxNeighbourCount + MaxObstacleCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
+ NativeList<int> adjacentObstacleIdsScratch = new NativeList<int>(16, Allocator.Temp);
+
+ for (int agentIndex = startIndex; agentIndex < endIndex; agentIndex++) {
+ if (!agentData.version[agentIndex].Valid) continue;
+
+ if (agentData.manuallyControlled[agentIndex]) {
+ output.speed[agentIndex] = agentData.desiredSpeed[agentIndex];
+ output.targetPoint[agentIndex] = agentData.targetPoint[agentIndex];
+ output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount] = -1;
+ continue;
+ }
+
+ var position = agentData.position[agentIndex];
+
+ if (agentData.locked[agentIndex]) {
+ output.speed[agentIndex] = 0;
+ output.targetPoint[agentIndex] = position;
+ output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount] = -1;
+ continue;
+ }
+
+ MovementPlaneWrapper movementPlane = default;
+ movementPlane.Set(agentData.movementPlane[agentIndex]);
+
+ // The RVO algorithm assumes we will continue to
+ // move in roughly the same direction
+ float2 optimalVelocity = movementPlane.ToPlane(temporaryAgentData.currentVelocity[agentIndex]);
+ int numLines = 0;
+ // TODO: Obstacles are typically behind agents, so it's better to add the agent orca lines first to improve culling.
+ // However, the 3D optimization program requires obstacle lines to be added first. Not to mention that the culling
+ // is not strictly accurate for fixed obstacle since they cannot be moved backwards by the 3D linear program.
+ GenerateObstacleVOs(agentIndex, adjacentObstacleIdsScratch, adjacentObstacleVertices, segmentDistancesScratch, sortedVerticesScratch, orcaLines, orcaLineToAgent, ref numLines, in movementPlane, optimalVelocity);
+ int numFixedLines = numLines;
+
+ var neighbours = temporaryAgentData.neighbours.Slice(agentIndex*SimulatorBurst.MaxNeighbourCount, SimulatorBurst.MaxNeighbourCount);
+
+ float agentTimeHorizon = agentData.agentTimeHorizon[agentIndex];
+ float inverseAgentTimeHorizon = math.rcp(agentTimeHorizon);
+ float priority = agentData.priority[agentIndex];
+
+ var localPosition = movementPlane.ToPlane(position);
+ var agentRadius = agentData.radius[agentIndex];
+
+ for (int neighbourIndex = 0; neighbourIndex < neighbours.Length; neighbourIndex++) {
+ int otherIndex = neighbours[neighbourIndex];
+ // Indicates that there are no more neighbours (see JobRVOCalculateNeighbours)
+ if (otherIndex == -1) break;
+
+ var otherPosition = agentData.position[otherIndex];
+ var relativePosition = movementPlane.ToPlane(otherPosition - position);
+ float combinedRadius = agentRadius + agentData.radius[otherIndex];
+
+ var otherPriority = agentData.priority[otherIndex] * priorityMultiplier;
+
+ // TODO: Remove branches to possibly vectorize
+ float avoidanceStrength;
+ if (agentData.locked[otherIndex] || agentData.manuallyControlled[otherIndex]) {
+ avoidanceStrength = 1;
+ } else if (otherPriority > 0.00001f || priority > 0.00001f) {
+ avoidanceStrength = otherPriority / (priority + otherPriority);
+ } else {
+ // Both this agent's priority and the other agent's priority is zero or negative
+ // Assume they have the same priority
+ avoidanceStrength = 0.5f;
+ }
+
+ // We assume that the other agent will continue to move with roughly the same velocity if the priorities for the agents are similar.
+ // If the other agent has a higher priority than this agent (avoidanceStrength > 0.5) then we will assume it will move more along its
+ // desired velocity. This will have the effect of other agents trying to clear a path for where a high priority agent wants to go.
+ // If this is not done then even high priority agents can get stuck when it is really crowded and they have had to slow down.
+ float2 otherOptimalVelocity = movementPlane.ToPlane(math.lerp(temporaryAgentData.currentVelocity[otherIndex], temporaryAgentData.desiredVelocity[otherIndex], math.clamp(2*avoidanceStrength - 1, 0, 1)));
+
+ if (agentData.flowFollowingStrength[otherIndex] > 0) {
+ // When flow following strength is 1 the component of the other agent's velocity that is in the direction of this agent is removed.
+ // That is, we pretend that the other agent does not move towards this agent at all.
+ // This will make it impossible for the other agent to "push" this agent away.
+ var strength = agentData.flowFollowingStrength[otherIndex] * agentData.flowFollowingStrength[agentIndex];
+ var relativeDir = math.normalizesafe(relativePosition);
+ otherOptimalVelocity -= relativeDir * (strength * math.min(0, math.dot(otherOptimalVelocity, relativeDir)));
+ }
+
+ var dist = math.length(relativePosition);
+ // Figure out an approximate time to collision. We avoid using the current velocities of the agents because that leads to oscillations,
+ // as the agents change their velocities, which results in a change to the time to collision, which makes them change their velocities again.
+ var minimumTimeToCollision = math.max(0, dist - combinedRadius) / math.max(combinedRadius, agentData.desiredSpeed[agentIndex] + agentData.desiredSpeed[otherIndex]);
+
+ // Adjust the radius to make the avoidance smoother.
+ // The agent will slowly start to take another agent into account instead of making a sharp turn.
+ float normalizedTime = minimumTimeToCollision * inverseAgentTimeHorizon;
+ // normalizedTime <= 0.5 => 0% effect
+ // normalizedTime = 1.0 => 100% effect
+ var factor = math.clamp((normalizedTime - 0.5f)*2.0f, 0, 1);
+ combinedRadius *= 1 - factor;
+
+ // Adjust the time horizon to make the agent approach another agent less conservatively.
+ // This makes the velocity curve closer to sqrt(1-t) instead of exp(-t) as it comes to a stop, which looks nicer.
+ var tempInverseTimeHorizon = 1.0f/math.max(0.1f*agentTimeHorizon, agentTimeHorizon * math.clamp(math.sqrt(2f*minimumTimeToCollision), 0, 1));
+
+ orcaLines[numLines] = new ORCALine(localPosition, relativePosition, optimalVelocity, otherOptimalVelocity, combinedRadius, 0.1f, tempInverseTimeHorizon);
+ orcaLineToAgent[numLines] = otherIndex;
+ numLines++;
+#if UNITY_EDITOR
+ if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.AgentVOs)) {
+ draw.PushMatrix(math.mul(float4x4.TRS(position, quaternion.identity, 1), movementPlane.matrix));
+ var voCenter = math.lerp(optimalVelocity, otherOptimalVelocity, 0.5f);
+ DrawVO(draw, relativePosition * tempInverseTimeHorizon + otherOptimalVelocity, combinedRadius * tempInverseTimeHorizon, otherOptimalVelocity, Color.black);
+ draw.PopMatrix();
+ }
+#endif
+ }
+
+ // Add an obstacle for the collision normal.
+ // This is mostly deprecated, but kept for compatibility.
+ var collisionNormal = math.normalizesafe(movementPlane.ToPlane(agentData.collisionNormal[agentIndex]));
+ if (math.any(collisionNormal != 0)) {
+ orcaLines[numLines] = new ORCALine {
+ point = float2.zero,
+ direction = new float2(collisionNormal.y, -collisionNormal.x),
+ };
+ orcaLineToAgent[numLines] = -1;
+ numLines++;
+ }
+
+ var desiredVelocity = movementPlane.ToPlane(temporaryAgentData.desiredVelocity[agentIndex]);
+ var desiredTargetPointInVelocitySpace = temporaryAgentData.desiredTargetPointInVelocitySpace[agentIndex];
+ var originalDesiredVelocity = desiredVelocity;
+ var symmetryBias = symmetryBreakingBias * (1 - agentData.flowFollowingStrength[agentIndex]);
+ // Bias the desired velocity to avoid symmetry issues (esp. when two agents are heading straight towards one another).
+ // Do not bias velocities if the agent is heading towards an obstacle (not an agent).
+ bool insideAnyVO = BiasDesiredVelocity(orcaLines.AsUnsafeSpan().Slice(numFixedLines, numLines - numFixedLines), ref desiredVelocity, ref desiredTargetPointInVelocitySpace, symmetryBias);
+ // If the velocity is outside all agent orca half-planes, do a more thorough check of all orca lines (including obstacles).
+ insideAnyVO = insideAnyVO || DistanceInsideVOs(orcaLines.AsUnsafeSpan().Slice(0, numLines), desiredVelocity) > 0;
+
+
+#if UNITY_EDITOR
+ if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.ObstacleVOs)) {
+ draw.PushColor(new Color(1, 1, 1, 0.2f));
+ draw.PushMatrix(math.mul(float4x4.TRS(position, quaternion.identity, 1), movementPlane.matrix));
+ for (int i = 0; i < numLines; i++) {
+ orcaLines[i].DrawAsHalfPlane(draw, agentData.radius[agentIndex] * 5.0f, 1.0f, i >= numFixedLines ? Color.magenta : Color.Lerp(Color.magenta, Color.black, 0.5f));
+ }
+ draw.PopMatrix();
+ draw.PopColor();
+ }
+#endif
+
+ if (!insideAnyVO && math.all(math.abs(temporaryAgentData.collisionVelocityOffsets[agentIndex]) < 0.001f)) {
+ // Desired velocity can be used directly since it was not inside any velocity obstacle.
+ // No need to run optimizer because this will be the global minima.
+ // This is also a special case in which we can set the
+ // calculated target point to the desired target point
+ // instead of calculating a point based on a calculated velocity
+ // which is an important difference when the agent is very close
+ // to the target point
+ // TODO: Not actually guaranteed to be global minima if desiredTargetPointInVelocitySpace.magnitude < desiredSpeed
+ // maybe do something different here?
+#if UNITY_EDITOR
+ if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.DesiredVelocity)) {
+ draw.xy.Cross(movementPlane.ToWorld(localPosition + desiredVelocity), Color.magenta);
+ draw.xy.Cross(movementPlane.ToWorld(localPosition + desiredTargetPointInVelocitySpace), Color.yellow);
+ }
+#endif
+
+ output.targetPoint[agentIndex] = position + movementPlane.ToWorld(desiredTargetPointInVelocitySpace, 0);
+ output.speed[agentIndex] = agentData.desiredSpeed[agentIndex];
+ output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount] = -1;
+ output.forwardClearance[agentIndex] = float.PositiveInfinity;
+ } else {
+ var maxSpeed = agentData.maxSpeed[agentIndex];
+ var allowedVelocityDeviationAngles = agentData.allowedVelocityDeviationAngles[agentIndex];
+ LinearProgram2Output lin;
+ if (math.all(allowedVelocityDeviationAngles == 0)) {
+ // Common case, the desired velocity is a point
+ lin = LinearProgram2D(orcaLines, numLines, maxSpeed, desiredVelocity, false);
+ } else {
+ // The desired velocity is a segment, not a point
+
+ // Rotate the desired velocity allowedVelocityDeviationAngles.x radians and allowedVelocityDeviationAngles.y radians respectively
+ math.sincos(allowedVelocityDeviationAngles, out float2 s, out float2 c);
+ var xs = desiredVelocity.x*c - desiredVelocity.y*s;
+ var ys = desiredVelocity.x*s + desiredVelocity.y*c;
+ var desiredVelocityLeft = new float2(xs.x, ys.x);
+ var desiredVelocityRight = new float2(xs.y, ys.y);
+
+ var desiredVelocityLeftDir = desiredVelocity - desiredVelocityLeft;
+
+ // Normalize and store length
+ var desiredVelocityLeftSegmentLength = math.length(desiredVelocityLeftDir);
+ desiredVelocityLeftDir = math.select(float2.zero, desiredVelocityLeftDir * math.rcp(desiredVelocityLeftSegmentLength), desiredVelocityLeftSegmentLength > math.FLT_MIN_NORMAL);
+
+ var desiredVelocityRightDir = desiredVelocity - desiredVelocityRight;
+ var desiredVelocityRightSegmentLength = math.length(desiredVelocityRightDir);
+ desiredVelocityRightDir = math.select(float2.zero, desiredVelocityRightDir * math.rcp(desiredVelocityRightSegmentLength), desiredVelocityRightSegmentLength > math.FLT_MIN_NORMAL);
+
+ // var tOptimal = ClosestPointOnSegment(desiredVelocityLeft, desiredVelocityDir, desiredVelocity, 0, desiredVelocitySegmentLength);
+
+ var lin1 = LinearProgram2DSegment(orcaLines, numLines, maxSpeed, desiredVelocityLeft, desiredVelocityLeftDir, 0, desiredVelocityLeftSegmentLength, 1.0f);
+ var lin2 = LinearProgram2DSegment(orcaLines, numLines, maxSpeed, desiredVelocityRight, desiredVelocityRightDir, 0, desiredVelocityRightSegmentLength, 1.0f);
+
+ if (lin1.firstFailedLineIndex < lin2.firstFailedLineIndex) {
+ lin = lin1;
+ } else if (lin2.firstFailedLineIndex < lin1.firstFailedLineIndex) {
+ lin = lin2;
+ } else {
+ lin = math.lengthsq(lin1.velocity - desiredVelocity) < math.lengthsq(lin2.velocity - desiredVelocity) ? lin1 : lin2;
+ }
+ }
+
+ float2 newVelocity;
+ if (lin.firstFailedLineIndex < numLines) {
+ newVelocity = lin.velocity;
+ LinearProgram3D(orcaLines, numLines, numFixedLines, lin.firstFailedLineIndex, maxSpeed, ref newVelocity, scratchBuffer);
+ } else {
+ newVelocity = lin.velocity;
+ }
+
+#if UNITY_EDITOR
+ if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.ChosenVelocity)) {
+ draw.xy.Cross(position + movementPlane.ToWorld(newVelocity), Color.white);
+ draw.Arrow(position + movementPlane.ToWorld(desiredVelocity), position + movementPlane.ToWorld(newVelocity), Color.magenta);
+ }
+#endif
+
+ var blockedByAgentCount = 0;
+ for (int i = 0; i < numLines && blockedByAgentCount < SimulatorBurst.MaxBlockingAgentCount; i++) {
+ if (orcaLineToAgent[i] != -1 && det(orcaLines[i].direction, orcaLines[i].point - newVelocity) >= -0.001f) {
+ // We are blocked by this line
+ output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + blockedByAgentCount] = orcaLineToAgent[i];
+ blockedByAgentCount++;
+ }
+ }
+ if (blockedByAgentCount < SimulatorBurst.MaxBlockingAgentCount) output.blockedByAgents[agentIndex*SimulatorBurst.MaxBlockingAgentCount + blockedByAgentCount] = -1;
+
+ var collisionVelocityOffset = temporaryAgentData.collisionVelocityOffsets[agentIndex];
+ if (math.any(collisionVelocityOffset != 0)) {
+ // Make the agent move to avoid intersecting other agents (hard collisions)
+ newVelocity += temporaryAgentData.collisionVelocityOffsets[agentIndex];
+
+ // Adding the collision offset may have made the velocity invalid, causing it to intersect the wall-velocity-obstacles.
+ // We run a second optimization on only the wall-velocity-obstacles to make sure the velocity is valid.
+ newVelocity = LinearProgram2D(orcaLines, numFixedLines, maxSpeed, newVelocity, false).velocity;
+ }
+
+ output.targetPoint[agentIndex] = position + movementPlane.ToWorld(newVelocity, 0);
+ output.speed[agentIndex] = math.min(math.length(newVelocity), maxSpeed);
+
+ var targetDir = math.normalizesafe(movementPlane.ToPlane(agentData.targetPoint[agentIndex] - position));
+ var forwardClearance = CalculateForwardClearance(neighbours, movementPlane, position, agentRadius, targetDir);
+ output.forwardClearance[agentIndex] = forwardClearance;
+ if (agentData.HasDebugFlag(agentIndex, AgentDebugFlags.ForwardClearance) && forwardClearance < float.PositiveInfinity) {
+ draw.PushLineWidth(2);
+ draw.Ray(position, movementPlane.ToWorld(targetDir) * forwardClearance, Color.red);
+ draw.PopLineWidth();
+ }
+ }
+ }
+ }
+
+ /// <summary>
+ /// Find the distance we can move towards our target without colliding with anything.
+ /// May become negative if we are currently colliding with something.
+ /// </summary>
+ float CalculateForwardClearance (NativeSlice<int> neighbours, MovementPlaneWrapper movementPlane, float3 position, float radius, float2 targetDir) {
+ // TODO: Take obstacles into account.
+ var smallestIntersectionDistance = float.PositiveInfinity;
+ for (int i = 0; i < neighbours.Length; i++) {
+ var other = neighbours[i];
+ if (other == -1) break;
+ var otherPosition = agentData.position[other];
+ var combinedRadius = radius + agentData.radius[other];
+ // Intersect the ray from our agent towards the destination and check the distance to the intersection with the other agent.
+ var otherDir = movementPlane.ToPlane(otherPosition - position);
+ // Squared cosine of the angle between otherDir and ourTargetDir
+ var cosAlpha = math.dot(math.normalizesafe(otherDir), targetDir);
+
+ // Check if the agent is behind us
+ if (cosAlpha < 0) continue;
+
+ var distToOtherSq = math.lengthsq(otherDir);
+ var distToClosestPointAlongRay = math.sqrt(distToOtherSq) * cosAlpha;
+ var discriminant = combinedRadius*combinedRadius - (distToOtherSq - distToClosestPointAlongRay*distToClosestPointAlongRay);
+
+ // Check if we have any intersection at all
+ if (discriminant < 0) continue;
+ var distToIntersection = distToClosestPointAlongRay - math.sqrt(discriminant);
+ smallestIntersectionDistance = math.min(smallestIntersectionDistance, distToIntersection);
+ }
+ return smallestIntersectionDistance;
+ }
+
+ /// <summary>True if vector2 is to the left of vector1 or if they are colinear.</summary>
+ static bool leftOrColinear (float2 vector1, float2 vector2) {
+ return det(vector1, vector2) >= 0;
+ }
+
+ /// <summary>True if vector2 is to the left of vector1.</summary>
+ static bool left (float2 vector1, float2 vector2) {
+ return det(vector1, vector2) > 0;
+ }
+
+ /// <summary>True if vector2 is to the right of vector1 or if they are colinear.</summary>
+ static bool rightOrColinear (float2 vector1, float2 vector2) {
+ return det(vector1, vector2) <= 0;
+ }
+
+ /// <summary>True if vector2 is to the right of vector1.</summary>
+ static bool right (float2 vector1, float2 vector2) {
+ return det(vector1, vector2) < 0;
+ }
+
+ /// <summary>
+ /// Determinant of the 2x2 matrix defined by vector1 and vector2.
+ /// Alternatively, the Z component of the cross product of vector1 and vector2.
+ /// </summary>
+ static float det (float2 vector1, float2 vector2) {
+ return vector1.x * vector2.y - vector1.y * vector2.x;
+ }
+
+ static float2 rot90 (float2 v) {
+ return new float2(-v.y, v.x);
+ }
+
+ /// <summary>
+ /// A half-plane defined as the line splitting plane.
+ ///
+ /// For ORCA purposes, the infeasible region of the half-plane is on the right side of the line.
+ /// </summary>
+ struct ORCALine {
+ public float2 point;
+ public float2 direction;
+
+ public void DrawAsHalfPlane (CommandBuilder draw, float halfPlaneLength, float halfPlaneWidth, Color color) {
+ var normal = new float2(direction.y, -direction.x);
+ draw.xy.Line(point - direction*10, point + direction*10, color);
+
+ var p = point + normal*halfPlaneWidth*0.5f;
+ draw.SolidBox(new float3(p, 0), quaternion.RotateZ(math.atan2(direction.y, direction.x)), new float3(halfPlaneLength, halfPlaneWidth, 0.01f), new Color(0, 0, 0, 0.5f));
+ }
+
+ public ORCALine(float2 position, float2 relativePosition, float2 velocity, float2 otherVelocity, float combinedRadius, float timeStep, float invTimeHorizon) {
+ var relativeVelocity = velocity - otherVelocity;
+ float combinedRadiusSq = combinedRadius*combinedRadius;
+ float distSq = math.lengthsq(relativePosition);
+
+ if (distSq > combinedRadiusSq) {
+ combinedRadius *= 1.001f;
+ // No collision
+
+ // A velocity obstacle is built which is shaped like a truncated cone (see ORCA paper).
+ // The cone is truncated by an arc centered at relativePosition/timeHorizon
+ // with radius combinedRadius/timeHorizon.
+ // The cone extends in the direction of relativePosition.
+
+ // Vector from truncation arc center to relative velocity
+ var w = relativeVelocity - invTimeHorizon * relativePosition;
+ var wLengthSq = math.lengthsq(w);
+
+ float dot1 = math.dot(w, relativePosition);
+
+ if (dot1 < 0.0f && dot1*dot1 > combinedRadiusSq * wLengthSq) {
+ // Project on cut-off circle
+ float wLength = math.sqrt(wLengthSq);
+ var normalizedW = w / wLength;
+
+ direction = new float2(normalizedW.y, -normalizedW.x);
+ var u = (combinedRadius * invTimeHorizon - wLength) * normalizedW;
+ point = velocity + 0.5f * u;
+ } else {
+ // Project on legs
+ // Distance from the agent to the point where the "legs" start on the VO
+ float legDistance = math.sqrt(distSq - combinedRadiusSq);
+
+ if (det(relativePosition, w) > 0.0f) {
+ // Project on left leg
+ // Note: This vector is actually normalized
+ direction = (relativePosition * legDistance + new float2(-relativePosition.y, relativePosition.x) * combinedRadius) / distSq;
+ } else {
+ // Project on right leg
+ // Note: This vector is actually normalized
+ direction = (-relativePosition * legDistance + new float2(-relativePosition.y, relativePosition.x) * combinedRadius) / distSq;
+ }
+
+ float dot2 = math.dot(relativeVelocity, direction);
+ var u = dot2 * direction - relativeVelocity;
+ point = velocity + 0.5f * u;
+ }
+ } else {
+ float invTimeStep = math.rcp(timeStep);
+ var dist = math.sqrt(distSq);
+ var normalizedDir = math.select(0, relativePosition / dist, dist > math.FLT_MIN_NORMAL);
+ var u = normalizedDir * (dist - combinedRadius - 0.001f) * 0.3f * invTimeStep;
+ direction = math.normalizesafe(new float2(u.y, -u.x));
+ point = math.lerp(velocity, otherVelocity, 0.5f) + u * 0.5f;
+
+
+ // Original code, the above is a version which works better
+ // Collision
+ // Project on cut-off circle of timeStep
+ //float invTimeStep = 1.0f / timeStep;
+ // Vector from cutoff center to relative velocity
+ //float2 w = relativeVelocity - invTimeStep * relativePosition;
+ //float wLength = math.length(w);
+ //float2 unitW = w / wLength;
+ //direction = new float2(unitW.y, -unitW.x);
+ //var u = (combinedRadius * invTimeStep - wLength) * unitW;
+ //point = velocity + 0.5f * u;
+ }
+ }
+ }
+
+ /// <summary>
+ /// Calculates how far inside the infeasible region of the ORCA half-planes the velocity is.
+ /// Returns 0 if the velocity is in the feasible region of all half-planes.
+ /// </summary>
+ static float DistanceInsideVOs (UnsafeSpan<ORCALine> lines, float2 velocity) {
+ float maxDistance = 0.0f;
+
+ for (int i = 0; i < lines.Length; i++) {
+ var distance = det(lines[i].direction, lines[i].point - velocity);
+ maxDistance = math.max(maxDistance, distance);
+ }
+
+ return maxDistance;
+ }
+
+ /// <summary>
+ /// Bias towards the right side of agents.
+ /// Rotate desiredVelocity at most [value] number of radians. 1 radian ≈ 57°
+ /// This breaks up symmetries.
+ ///
+ /// The desired velocity will only be rotated if it is inside a velocity obstacle (VO).
+ /// If it is inside one, it will not be rotated further than to the edge of it
+ ///
+ /// The targetPointInVelocitySpace will be rotated by the same amount as the desired velocity
+ ///
+ /// Returns: True if the desired velocity was inside any VO
+ /// </summary>
+ static bool BiasDesiredVelocity (UnsafeSpan<ORCALine> lines, ref float2 desiredVelocity, ref float2 targetPointInVelocitySpace, float maxBiasRadians) {
+ float maxDistance = DistanceInsideVOs(lines, desiredVelocity);
+
+ if (maxDistance == 0.0f) return false;
+
+ var desiredVelocityMagn = math.length(desiredVelocity);
+
+ // Avoid division by zero below
+ if (desiredVelocityMagn >= 0.001f) {
+ // Rotate the desired velocity clockwise (to the right) at most maxBiasRadians number of radians.
+ // We clamp the angle so that we do not rotate more than to the edge of the VO.
+ // Assuming maxBiasRadians is small, we can just move it instead and it will give approximately the same effect.
+ // See https://en.wikipedia.org/wiki/Small-angle_approximation
+ var angle = math.min(maxBiasRadians, maxDistance / desiredVelocityMagn);
+ desiredVelocity += new float2(desiredVelocity.y, -desiredVelocity.x) * angle;
+ targetPointInVelocitySpace += new float2(targetPointInVelocitySpace.y, -targetPointInVelocitySpace.x) * angle;
+ }
+ return true;
+ }
+
+ /// <summary>
+ /// Clip a line to the feasible region of the half-plane given by the clipper.
+ /// The clipped line is `line.point + line.direction*tLeft` to `line.point + line.direction*tRight`.
+ ///
+ /// Returns false if the line is parallel to the clipper's border.
+ /// </summary>
+ static bool ClipLine (ORCALine line, ORCALine clipper, ref float tLeft, ref float tRight) {
+ float denominator = det(line.direction, clipper.direction);
+ float numerator = det(clipper.direction, line.point - clipper.point);
+
+ if (math.abs(denominator) < 0.0001f) {
+ // The two lines are almost parallel
+ return false;
+ }
+
+ float t = numerator / denominator;
+
+ if (denominator >= 0.0f) {
+ // Line i bounds the line on the right
+ tRight = math.min(tRight, t);
+ } else {
+ // Line i bounds the line on the left
+ tLeft = math.max(tLeft, t);
+ }
+ return true;
+ }
+
+ static bool ClipBoundary (NativeArray<ORCALine> lines, int lineIndex, float radius, out float tLeft, out float tRight) {
+ var line = lines[lineIndex];
+ if (!VectorMath.LineCircleIntersectionFactors(line.point, line.direction, radius, out tLeft, out tRight)) {
+ return false;
+ }
+
+ // Go through all previous lines/half-planes and clip the current line against them
+ for (int i = 0; i < lineIndex; i++) {
+ float denominator = det(line.direction, lines[i].direction);
+ float numerator = det(lines[i].direction, line.point - lines[i].point);
+
+ if (math.abs(denominator) < 0.0001f) {
+ // The two lines are almost parallel
+ if (numerator < 0.0f) {
+ // This line is completely "behind" the other line. So we can ignore it.
+ return false;
+ } else continue;
+ }
+
+ float t = numerator / denominator;
+
+ if (denominator >= 0.0f) {
+ // Line i bounds the line on the right
+ tRight = math.min(tRight, t);
+ } else {
+ // Line i bounds the line on the left
+ tLeft = math.max(tLeft, t);
+ }
+
+ if (tLeft > tRight) {
+ // The line is completely outside the previous half-planes
+ return false;
+ }
+ }
+ return true;
+ }
+
+ static bool LinearProgram1D (NativeArray<ORCALine> lines, int lineIndex, float radius, float2 optimalVelocity, bool directionOpt, ref float2 result) {
+ if (!ClipBoundary(lines, lineIndex, radius, out float tLeft, out float tRight)) return false;
+ var line = lines[lineIndex];
+
+ if (directionOpt) {
+ // Optimize direction
+ if (math.dot(optimalVelocity, line.direction) > 0.0f) {
+ // Take right extreme
+ result = line.point + tRight * line.direction;
+ } else {
+ // Take left extreme
+ result = line.point + tLeft * line.direction;
+ }
+ } else {
+ // Optimize closest point
+ float t = math.dot(line.direction, optimalVelocity - line.point);
+ result = line.point + math.clamp(t, tLeft, tRight) * line.direction;
+ }
+ return true;
+ }
+
+ struct LinearProgram2Output {
+ public float2 velocity;
+ public int firstFailedLineIndex;
+ }
+
+ static LinearProgram2Output LinearProgram2D (NativeArray<ORCALine> lines, int numLines, float radius, float2 optimalVelocity, bool directionOpt) {
+ float2 result;
+
+ if (directionOpt) {
+ // Optimize direction. Note that the optimization velocity is of unit length in this case
+ result = optimalVelocity * radius;
+ } else if (math.lengthsq(optimalVelocity) > radius*radius) {
+ // Optimize closest point and outside circle
+ result = math.normalize(optimalVelocity) * radius;
+ } else {
+ // Optimize closest point and inside circle
+ result = optimalVelocity;
+ }
+
+ for (int i = 0; i < numLines; i++) {
+ // Check if point is in the infeasible region of the half-plane
+ if (det(lines[i].direction, lines[i].point - result) > 0.0f) {
+ // Result does not satisfy constraint i. Compute new optimal result
+ var tempResult = result;
+ if (!LinearProgram1D(lines, i, radius, optimalVelocity, directionOpt, ref result)) {
+ return new LinearProgram2Output {
+ velocity = tempResult,
+ firstFailedLineIndex = i,
+ };
+ }
+ }
+ }
+
+ return new LinearProgram2Output {
+ velocity = result,
+ firstFailedLineIndex = numLines,
+ };
+ }
+
+ static float ClosestPointOnSegment (float2 a, float2 dir, float2 p, float t0, float t1) {
+ return math.clamp(math.dot(p - a, dir), t0, t1);
+ }
+
+ /// <summary>
+ /// Closest point on segment a to segment b.
+ /// The segments are given by infinite lines and bounded by t values. p = line.point + line.dir*t.
+ ///
+ /// It is assumed that the two segments do not intersect.
+ /// </summary>
+ static float2 ClosestSegmentSegmentPointNonIntersecting (ORCALine a, ORCALine b, float ta1, float ta2, float tb1, float tb2) {
+ // We know that the two segments do not intersect, so at least one of the closest points
+ // must be one of the line segment endpoints.
+ var ap0 = a.point + a.direction*ta1;
+ var ap1 = a.point + a.direction*ta2;
+ var bp0 = b.point + b.direction * tb1;
+ var bp1 = b.point + b.direction * tb2;
+
+ var t0 = ClosestPointOnSegment(a.point, a.direction, bp0, ta1, ta2);
+ var t1 = ClosestPointOnSegment(a.point, a.direction, bp1, ta1, ta2);
+ var t2 = ClosestPointOnSegment(b.point, b.direction, ap0, tb1, tb2);
+ var t3 = ClosestPointOnSegment(b.point, b.direction, ap1, tb1, tb2);
+
+ var c0 = a.point + a.direction * t0;
+ var c1 = a.point + a.direction * t1;
+ var c2 = b.point + b.direction * t2;
+ var c3 = b.point + b.direction * t3;
+
+ var d0 = math.lengthsq(c0 - bp0);
+ var d1 = math.lengthsq(c1 - bp1);
+ var d2 = math.lengthsq(c2 - ap0);
+ var d3 = math.lengthsq(c3 - ap1);
+
+ var result = c0;
+ var d = d0;
+ if (d1 < d) {
+ result = c1;
+ d = d1;
+ }
+ if (d2 < d) {
+ result = ap0;
+ d = d2;
+ }
+ if (d3 < d) {
+ result = ap1;
+ d = d3;
+ }
+ return result;
+ }
+
+ /// <summary>Like LinearProgram2D, but the optimal velocity space is a segment instead of a point, however the current result has collapsed to a point</summary>
+ static LinearProgram2Output LinearProgram2DCollapsedSegment (NativeArray<ORCALine> lines, int numLines, int startLine, float radius, float2 currentResult, float2 optimalVelocityStart, float2 optimalVelocityDir, float optimalTLeft, float optimalTRight) {
+ for (int i = startLine; i < numLines; i++) {
+ // Check if point is in the infeasible region of the half-plane
+ if (det(lines[i].direction, lines[i].point - currentResult) > 0.0f) {
+ // Result does not satisfy constraint i. Compute new optimal result
+ if (!ClipBoundary(lines, i, radius, out float tLeft2, out float tRight2)) {
+ // We are partially not feasible, but no part of this constraint's boundary is in the feasible region.
+ // This means that there is no feasible solution at all.
+ return new LinearProgram2Output {
+ velocity = currentResult,
+ firstFailedLineIndex = i,
+ };
+ }
+
+ // Optimize closest point
+ currentResult = ClosestSegmentSegmentPointNonIntersecting(lines[i], new ORCALine {
+ point = optimalVelocityStart,
+ direction = optimalVelocityDir,
+ }, tLeft2, tRight2, optimalTLeft, optimalTRight);
+ }
+ }
+
+ return new LinearProgram2Output {
+ velocity = currentResult,
+ firstFailedLineIndex = numLines,
+ };
+ }
+
+ /// <summary>Like LinearProgram2D, but the optimal velocity space is a segment instead of a point</summary>
+ static LinearProgram2Output LinearProgram2DSegment (NativeArray<ORCALine> lines, int numLines, float radius, float2 optimalVelocityStart, float2 optimalVelocityDir, float optimalTLeft, float optimalTRight, float optimalT) {
+ var hasIntersection = VectorMath.LineCircleIntersectionFactors(optimalVelocityStart, optimalVelocityDir, radius, out float resultTLeft, out float resultTRight);
+ resultTLeft = math.max(resultTLeft, optimalTLeft);
+ resultTRight = math.min(resultTRight, optimalTRight);
+ hasIntersection &= resultTLeft <= resultTRight;
+
+ if (!hasIntersection) {
+ // In case the optimal velocity segment is not inside the max velocity circle, then collapse to a single optimal velocity which
+ // is closest segment point to the circle
+ var t = math.clamp(math.dot(-optimalVelocityStart, optimalVelocityDir), optimalTLeft, optimalTRight);
+ var closestOnCircle = math.normalizesafe(optimalVelocityStart + optimalVelocityDir * t) * radius;
+
+ // The best point is now a single point, not a segment.
+ // So we can fall back to simpler code.
+ return LinearProgram2DCollapsedSegment(lines, numLines, 0, radius, closestOnCircle, optimalVelocityStart, optimalVelocityDir, optimalTLeft, optimalTRight);
+ }
+
+ for (int i = 0; i < numLines; i++) {
+ // Check if optimal line segment is at least partially in the infeasible region of the half-plane
+ var line = lines[i];
+ var leftInfeasible = det(line.direction, line.point - (optimalVelocityStart + optimalVelocityDir*resultTLeft)) > 0.0f;
+ var rightInfeasible = det(line.direction, line.point - (optimalVelocityStart + optimalVelocityDir*resultTRight)) > 0.0f;
+ if (leftInfeasible || rightInfeasible) {
+ if (!ClipBoundary(lines, i, radius, out float tLeft, out float tRight)) {
+ // We are partially not feasible, but no part of this constraint's boundary is in the feasible region.
+ // This means that there is no feasible solution at all.
+ return new LinearProgram2Output {
+ velocity = optimalVelocityStart + optimalVelocityDir * math.clamp(optimalT, resultTLeft, resultTRight),
+ firstFailedLineIndex = i,
+ };
+ }
+
+ // Check if the optimal line segment is completely in the infeasible region
+ if (leftInfeasible && rightInfeasible) {
+ if (math.abs(det(line.direction, optimalVelocityDir)) < 0.001f) {
+ // Lines are almost parallel.
+ // Project the optimal velocity on the boundary
+ var t1 = ClosestPointOnSegment(line.point, line.direction, optimalVelocityStart + optimalVelocityDir*resultTLeft, tLeft, tRight);
+ var t2 = ClosestPointOnSegment(line.point, line.direction, optimalVelocityStart + optimalVelocityDir*resultTRight, tLeft, tRight);
+ var t3 = ClosestPointOnSegment(line.point, line.direction, optimalVelocityStart + optimalVelocityDir*optimalT, tLeft, tRight);
+ optimalVelocityStart = line.point;
+ optimalVelocityDir = line.direction;
+ resultTLeft = t1;
+ resultTRight = t2;
+ optimalT = t3;
+ } else {
+ // Find closest point on the constraint boundary segment to the optimal velocity segment
+ var result = ClosestSegmentSegmentPointNonIntersecting(line, new ORCALine {
+ point = optimalVelocityStart,
+ direction = optimalVelocityDir,
+ }, tLeft, tRight, optimalTLeft, optimalTRight);
+
+ // The best point is now a single point, not a segment.
+ // So we can fall back to simpler code.
+ return LinearProgram2DCollapsedSegment(lines, numLines, i+1, radius, result, optimalVelocityStart, optimalVelocityDir, optimalTLeft, optimalTRight);
+ }
+ } else {
+ // Clip optimal velocity segment to the constraint boundary.
+ // If this returns false and the lines are almost parallel, then we don't do anything
+ // because we already know they intersect. So the two lines must be almost identical.
+ ClipLine(new ORCALine {
+ point = optimalVelocityStart,
+ direction = optimalVelocityDir,
+ }, line, ref resultTLeft, ref resultTRight);
+ }
+ }
+ }
+
+ var resultT = math.clamp(optimalT, resultTLeft, resultTRight);
+
+ return new LinearProgram2Output {
+ velocity = optimalVelocityStart + optimalVelocityDir * resultT,
+ firstFailedLineIndex = numLines,
+ };
+ }
+
+ /// <summary>
+ /// Finds the velocity with the smallest maximum penetration into the given half-planes.
+ ///
+ /// Assumes there are no points in the feasible region of the given half-planes.
+ ///
+ /// Runs a 3-dimensional linear program, but projected down to 2D.
+ /// If there are no feasible regions outside all half-planes then we want to find the velocity
+ /// for which the maximum penetration into infeasible regions is minimized.
+ /// Conceptually we can solve this by taking our half-planes, and moving them outwards at a fixed speed
+ /// until there is exactly 1 feasible point.
+ /// We can formulate this in 3D space by thinking of the half-planes in 3D (velocity.x, velocity.y, penetration-depth) space, as sloped planes.
+ /// Moving the planes outwards then corresponds to decreasing the z coordinate.
+ /// In 3D space we want to find the point above all planes with the lowest z coordinate.
+ /// We do this by going through each plane and testing if it is possible that this plane
+ /// is the one with the maximum penetration.
+ /// If so, we know that the point will lie on the portion of that plane bounded by the intersections
+ /// with the other planes. We generate projected half-planes which represent the intersections with the
+ /// other 3D planes, and then we run a new optimization to find the point which penetrates this
+ /// half-plane the least.
+ /// </summary>
+ /// <param name="lines">The half-planes of all obstacles and agents.</param>
+ /// <param name="numLines">The number of half-planes in lines.</param>
+ /// <param name="numFixedLines">The number of half-planes in lines which are fixed (0..numFixedLines). These will be treated as static obstacles which should be avoided at all costs.</param>
+ /// <param name="beginLine">The index of the first half-plane in lines for which the previous optimization failed (see \reflink{LinearProgram2Output.firstFailedLineIndex}).</param>
+ /// <param name="radius">Maximum possible speed. This represents a circular velocity obstacle.</param>
+ /// <param name="result">Input is best velocity as output by \reflink{LinearProgram2D}. Output is the new best velocity. The velocity with the smallest maximum penetration into the given half-planes.</param>
+ /// <param name="scratchBuffer">A buffer of length at least numLines to use for scratch space.</param>
+ static void LinearProgram3D (NativeArray<ORCALine> lines, int numLines, int numFixedLines, int beginLine, float radius, ref float2 result, NativeArray<ORCALine> scratchBuffer) {
+ float distance = 0.0f;
+
+ NativeArray<ORCALine> projectedLines = scratchBuffer;
+ NativeArray<ORCALine>.Copy(lines, projectedLines, numFixedLines);
+
+ for (int i = beginLine; i < numLines; i++) {
+ // Check if #result is more than #distance units inside the infeasible region of the half-plane
+ if (det(lines[i].direction, lines[i].point - result) > distance) {
+ int numProjectedLines = numFixedLines;
+ for (int j = numFixedLines; j < i; j++) {
+ float determinant = det(lines[i].direction, lines[j].direction);
+ if (math.abs(determinant) < 0.001f) {
+ // Lines i and j are parallel
+ if (math.dot(lines[i].direction, lines[j].direction) > 0.0f) {
+ // Line i and j point in the same direction
+ continue;
+ } else {
+ // Line i and j point in the opposite direction
+ projectedLines[numProjectedLines] = new ORCALine {
+ point = 0.5f * (lines[i].point + lines[j].point),
+ direction = math.normalize(lines[j].direction - lines[i].direction),
+ };
+ numProjectedLines++;
+ }
+ } else {
+ projectedLines[numProjectedLines] = new ORCALine {
+ // The intersection between the two lines
+ point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction,
+ // The direction along which the intersection of the two 3D-planes intersect (projected onto the XY plane)
+ direction = math.normalize(lines[j].direction - lines[i].direction),
+ };
+ numProjectedLines++;
+ }
+ }
+
+ var lin = LinearProgram2D(projectedLines, numProjectedLines, radius, new float2(-lines[i].direction.y, lines[i].direction.x), true);
+ if (lin.firstFailedLineIndex < numProjectedLines) {
+ // This should in principle not happen. The result is by definition
+ // already in the feasible region of this linear program. If it fails,
+ // it is due to small floating point error, and the current result is
+ // kept.
+ } else {
+ result = lin.velocity;
+ }
+
+ distance = det(lines[i].direction, lines[i].point - result);
+ }
+ }
+ }
+
+ static void DrawVO (CommandBuilder draw, float2 circleCenter, float radius, float2 origin, Color color) {
+#if UNITY_EDITOR
+ draw.PushColor(color);
+ float alpha = math.atan2((origin - circleCenter).y, (origin - circleCenter).x);
+ float gamma = radius/math.length(origin-circleCenter);
+ float delta = gamma <= 1.0f ? math.abs(math.acos(gamma)) : 0;
+
+ draw.xy.Circle(circleCenter, radius, alpha-delta, alpha+delta);
+ float2 p1 = new float2(math.cos(alpha-delta), math.sin(alpha-delta)) * radius;
+ float2 p2 = new float2(math.cos(alpha+delta), math.sin(alpha+delta)) * radius;
+
+ float2 p1t = -new float2(-p1.y, p1.x);
+ float2 p2t = new float2(-p2.y, p2.x);
+ p1 += circleCenter;
+ p2 += circleCenter;
+
+ draw.xy.Ray(p1, math.normalizesafe(p1t)*100);
+ draw.xy.Ray(p2, math.normalizesafe(p2t)*100);
+ draw.PopColor();
+#endif
+ }
+ }
+}