1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
|
//#define ASTAR_POOL_DEBUG //@SHOWINEDITOR Enables debugging of path pooling. Will log warnings and info messages about paths not beeing pooled correctly.
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using Unity.Mathematics;
namespace Pathfinding {
/// <summary>Base class for all path types</summary>
[Unity.Burst.BurstCompile]
public abstract class Path : IPathInternals {
#if ASTAR_POOL_DEBUG
private string pathTraceInfo = "";
private List<string> claimInfo = new List<string>();
~Path() {
Debug.Log("Destroying " + GetType().Name + " instance");
if (claimed.Count > 0) {
Debug.LogWarning("Pool Is Leaking. See list of claims:\n" +
"Each message below will list what objects are currently claiming the path." +
" These objects have removed their reference to the path object but has not called .Release on it (which is bad).\n" + pathTraceInfo+"\n");
for (int i = 0; i < claimed.Count; i++) {
Debug.LogWarning("- Claim "+ (i+1) + " is by a " + claimed[i].GetType().Name + "\n"+claimInfo[i]);
}
} else {
Debug.Log("Some scripts are not using pooling.\n" + pathTraceInfo + "\n");
}
}
#endif
/// <summary>Data for the thread calculating this path</summary>
protected PathHandler pathHandler;
/// <summary>
/// Callback to call when the path is complete.
/// This is usually sent to the Seeker component which post processes the path and then calls a callback to the script which requested the path
/// </summary>
public OnPathDelegate callback;
/// <summary>
/// Immediate callback to call when the path is complete.
/// Warning: This may be called from a separate thread. Usually you do not want to use this one.
///
/// See: callback
/// </summary>
public OnPathDelegate immediateCallback;
/// <summary>Returns the state of the path in the pathfinding pipeline</summary>
public PathState PipelineState { get; private set; }
/// <summary>
/// Provides additional traversal information to a path request.
/// See: traversal_provider (view in online documentation for working links)
/// </summary>
public ITraversalProvider traversalProvider;
/// <summary>Backing field for <see cref="CompleteState"/></summary>
protected PathCompleteState completeState;
/// <summary>
/// Current state of the path.
/// Bug: This may currently be set to Complete before the path has actually been fully calculated. In particular the vectorPath and path lists may not have been fully constructed.
/// This can lead to race conditions when using multithreading. Try to avoid using this method to check for if the path is calculated right now, use <see cref="IsDone"/> instead.
/// </summary>
public PathCompleteState CompleteState {
get { return completeState; }
protected set {
// Locking is used to avoid multithreading race conditions in which, for example,
// the error state is set on the main thread to cancel the path,
// and then a pathfinding thread marks the path as completed,
// which would replace the error state (if a lock and check would not have been used).
// We lock on the path object itself. Users should rarely have to use the path object
// themselves for anything before the path is calculated, much less take a lock on it.
lock (this) {
// Once the path is put in the error state, it cannot be set to any other state
if (completeState != PathCompleteState.Error) completeState = value;
}
}
}
/// <summary>
/// If the path failed, this is true.
/// See: <see cref="errorLog"/>
/// See: This is equivalent to checking path.CompleteState == PathCompleteState.Error
/// </summary>
public bool error { get { return CompleteState == PathCompleteState.Error; } }
/// <summary>
/// Additional info on why a path failed.
/// See: <see cref="AstarPath.logPathResults"/>
/// </summary>
public string errorLog { get; private set; }
/// <summary>
/// Holds the path as a <see cref="GraphNode"/> list.
///
/// These are all nodes that the path traversed, as calculated by the pathfinding algorithm.
/// This may not be the same nodes as the post processed path traverses.
///
/// See: <see cref="vectorPath"/>
/// </summary>
public List<GraphNode> path;
/// <summary>
/// Holds the (possibly post-processed) path as a Vector3 list.
///
/// This list may be modified by path modifiers to be smoother or simpler compared to the raw path generated by the pathfinding algorithm.
///
/// See: modifiers (view in online documentation for working links)
/// See: <see cref="path"/>
/// </summary>
public List<Vector3> vectorPath;
/// <summary>How long it took to calculate this path in milliseconds</summary>
public float duration;
/// <summary>Number of nodes this path has searched</summary>
public int searchedNodes { get; protected set; }
/// <summary>
/// True if the path is currently pooled.
/// Do not set this value. Only read. It is used internally.
///
/// See: <see cref="PathPool"/>
/// </summary>
bool IPathInternals.Pooled { get; set; }
/// <summary>
/// True if the Reset function has been called.
/// Used to alert users when they are doing something wrong.
/// </summary>
protected bool hasBeenReset;
/// <summary>Constraint for how to search for nodes</summary>
public NNConstraint nnConstraint = PathNNConstraint.Walkable;
/// <summary>Determines which heuristic to use</summary>
public Heuristic heuristic;
/// <summary>
/// Scale of the heuristic values.
/// See: AstarPath.heuristicScale
/// </summary>
public float heuristicScale = 1F;
/// <summary>ID of this path. Used to distinguish between different paths</summary>
public ushort pathID { get; private set; }
/// <summary>Target to use for H score calculation.</summary>
protected GraphNode hTargetNode;
/// <summary>
/// Target to use for H score calculations.
/// See: https://en.wikipedia.org/wiki/Admissible_heuristic
/// </summary>
protected HeuristicObjective heuristicObjective;
internal ref HeuristicObjective heuristicObjectiveInternal => ref heuristicObjective;
/// <summary>
/// Which graph tags are traversable.
/// This is a bitmask so -1 = all bits set = all tags traversable.
/// For example, to set bit 5 to true, you would do
/// <code> myPath.enabledTags |= 1 << 5; </code>
/// To set it to false, you would do
/// <code> myPath.enabledTags &= ~(1 << 5); </code>
///
/// The Seeker has a popup field where you can set which tags to use.
/// Note: If you are using a Seeker. The Seeker will set this value to what is set in the inspector field on StartPath.
/// So you need to change the Seeker value via script, not set this value if you want to change it via script.
///
/// See: <see cref="CanTraverse"/>
/// See: bitmasks (view in online documentation for working links)
/// </summary>
public int enabledTags = -1;
/// <summary>List of zeroes to use as default tag penalties</summary>
internal static readonly int[] ZeroTagPenalties = new int[32];
/// <summary>
/// The tag penalties that are actually used.
/// See: <see cref="tagPenalties"/>
/// </summary>
protected int[] internalTagPenalties;
/// <summary>
/// Penalties for each tag.
/// Tag 0 which is the default tag, will get a penalty of tagPenalties[0].
/// These should only be non-negative values since the A* algorithm cannot handle negative penalties.
///
/// When assigning an array to this property it must have a length of 32.
///
/// Note: Setting this to null will make all tag penalties be treated as if they are zero.
///
/// Note: If you are using a Seeker. The Seeker will set this value to what is set in the inspector field when you call seeker.StartPath.
/// So you need to change the Seeker's value via script, not set this value.
///
/// See: <see cref="Seeker.tagPenalties"/>
/// </summary>
public int[] tagPenalties {
get {
return internalTagPenalties == ZeroTagPenalties ? null : internalTagPenalties;
}
set {
if (value == null) {
internalTagPenalties = ZeroTagPenalties;
} else {
if (value.Length != 32) throw new System.ArgumentException("tagPenalties must have a length of 32");
internalTagPenalties = value;
}
}
}
/// <summary>Copies the given settings into this path</summary>
public void UseSettings (PathRequestSettings settings) {
nnConstraint.graphMask = settings.graphMask;
traversalProvider = settings.traversalProvider;
enabledTags = settings.traversableTags;
tagPenalties = settings.tagPenalties;
}
/// <summary>
/// Total Length of the path.
/// Calculates the total length of the <see cref="vectorPath"/>.
/// Cache this rather than call this function every time since it will calculate the length every time, not just return a cached value.
/// Returns: Total length of <see cref="vectorPath"/>, if <see cref="vectorPath"/> is null positive infinity is returned.
/// </summary>
public float GetTotalLength () {
if (vectorPath == null) return float.PositiveInfinity;
float tot = 0;
for (int i = 0; i < vectorPath.Count-1; i++) tot += Vector3.Distance(vectorPath[i], vectorPath[i+1]);
return tot;
}
/// <summary>
/// Waits until this path has been calculated and returned.
/// Allows for very easy scripting.
///
/// <code>
/// IEnumerator Start () {
/// // Get the seeker component attached to this GameObject
/// var seeker = GetComponent<Seeker>();
///
/// var path = seeker.StartPath(transform.position, transform.position + Vector3.forward * 10, null);
/// // Wait... This may take a frame or two depending on how complex the path is
/// // The rest of the game will continue to run while we wait
/// yield return StartCoroutine(path.WaitForPath());
/// // The path is calculated now
///
/// // Draw the path in the scene view for 10 seconds
/// for (int i = 0; i < path.vectorPath.Count - 1; i++) {
/// Debug.DrawLine(path.vectorPath[i], path.vectorPath[i+1], Color.red, 10);
/// }
/// }
/// </code>
///
/// Note: Do not confuse this with AstarPath.BlockUntilCalculated. This one will wait using yield until it has been calculated
/// while AstarPath.BlockUntilCalculated will halt all operations until the path has been calculated.
///
/// Throws: System.InvalidOperationException if the path is not started. Send the path to <see cref="Seeker.StartPath(Path)"/> or <see cref="AstarPath.StartPath"/> before calling this function.
///
/// See: <see cref="BlockUntilCalculated"/>
/// See: https://docs.unity3d.com/Manual/Coroutines.html
/// </summary>
public IEnumerator WaitForPath () {
if (PipelineState == PathState.Created) throw new System.InvalidOperationException("This path has not been started yet");
while (PipelineState != PathState.Returned) yield return null;
}
/// <summary>
/// Blocks until this path has been calculated and returned.
/// Normally it takes a few frames for a path to be calculated and returned.
/// This function will ensure that the path will be calculated when this function returns
/// and that the callback for that path has been called.
///
/// Use this function only if you really need to.
/// There is a point to spreading path calculations out over several frames.
/// It smoothes out the framerate and makes sure requesting a large
/// number of paths at the same time does not cause lag.
///
/// Note: Graph updates and other callbacks might get called during the execution of this function.
///
/// <code>
/// var path = seeker.StartPath(transform.position, transform.position + Vector3.forward * 10, OnPathComplete);
/// path.BlockUntilCalculated();
///
/// // The path is calculated now, and the OnPathComplete callback has been called
/// </code>
///
/// See: This is equivalent to calling <see cref="AstarPath.BlockUntilCalculated(Path)"/>
/// See: <see cref="WaitForPath"/>
/// </summary>
public void BlockUntilCalculated () {
AstarPath.BlockUntilCalculated(this);
}
/// <summary>
/// True if this path node might be worth exploring.
///
/// This is used during a search to filter out nodes which have already been fully searched.
/// </summary>
public bool ShouldConsiderPathNode (uint pathNodeIndex) {
var node = pathHandler.pathNodes[pathNodeIndex];
return node.pathID != pathID || node.heapIndex != BinaryHeap.NotInHeap;
}
public static readonly Unity.Profiling.ProfilerMarker MarkerOpenCandidateConnectionsToEnd = new Unity.Profiling.ProfilerMarker("OpenCandidateConnectionsToEnd");
public static readonly Unity.Profiling.ProfilerMarker MarkerTrace = new Unity.Profiling.ProfilerMarker("Trace");
/// <summary>
/// Open a connection to the temporary end node if necessary.
///
/// The start and end nodes are temporary nodes and are not included in the graph itself.
/// This means that we need to handle connections to and from those nodes as a special case.
/// This function will open a connection from the given node to the end node, if such a connection exists.
///
/// It is called from the <see cref="GraphNode.Open"/> function.
/// </summary>
/// <param name="position">Position of the path node that is being opened. This may be different from the node's position if \reflink{PathNode.fractionAlongEdge} is being used.</param>
/// <param name="parentPathNode">Index of the path node that is being opened. This is often the same as parentNodeIndex, but may be different if the node has multiple path node variants.</param>
/// <param name="parentNodeIndex">Index of the node that is being opened.</param>
/// <param name="parentG">G score of the parent node. The cost to reach the parent node from the start of the path.</param>
public void OpenCandidateConnectionsToEndNode (Int3 position, uint parentPathNode, uint parentNodeIndex, uint parentG) {
// True iff this node has a connection to one or more temporary nodes
if (pathHandler.pathNodes[parentNodeIndex].flag1) {
MarkerOpenCandidateConnectionsToEnd.Begin();
for (uint i = 0; i < pathHandler.numTemporaryNodes; i++) {
var nodeIndex = pathHandler.temporaryNodeStartIndex + i;
ref var node = ref pathHandler.GetTemporaryNode(nodeIndex);
if (node.type == TemporaryNodeType.End && node.associatedNode == parentNodeIndex) {
var cost = (uint)(position - node.position).costMagnitude;
OpenCandidateConnection(parentPathNode, nodeIndex, parentG, cost, 0, node.position);
}
}
MarkerOpenCandidateConnectionsToEnd.End();
}
}
/// <summary>
/// Opens a connection between two nodes during the A* search.
///
/// When a node is "opened" (i.e. searched by the A* algorithm), it will open connections to all its neighbours.
/// This function checks those connections to see if passing through the node to its neighbour is the best way to reach the neighbour that we have seen so far,
/// and if so, it will push the neighbour onto the search heap.
/// </summary>
/// <param name="parentPathNode">The node that is being opened.</param>
/// <param name="targetPathNode">A neighbour of the parent that is being considered.</param>
/// <param name="parentG">The G value of the parent node. This is the cost to reach the parent node from the start of the path.</param>
/// <param name="connectionCost">The cost of moving from the parent node to the target node.</param>
/// <param name="fractionAlongEdge">Internal value used by the TriangleMeshNode to store where on the shared edge between the nodes we say we cross over.</param>
/// <param name="targetNodePosition">The position of the target node. This is used by the heuristic to estimate the cost to reach the end node.</param>
public void OpenCandidateConnection (uint parentPathNode, uint targetPathNode, uint parentG, uint connectionCost, uint fractionAlongEdge, Int3 targetNodePosition) {
if (!ShouldConsiderPathNode(targetPathNode)) {
// We have seen this node before, but it is not in the heap.
// This means we have already processed it and it must have had a better F score than this node (or the heuristic was not admissable).
// We can safely discard this connection.
return;
}
uint candidateEnteringCost;
uint targetNodeIndex;
if (pathHandler.IsTemporaryNode(targetPathNode)) {
candidateEnteringCost = 0;
targetNodeIndex = 0;
} else {
var targetNode = pathHandler.GetNode(targetPathNode);
candidateEnteringCost = GetTraversalCost(targetNode);
targetNodeIndex = targetNode.NodeIndex;
}
var candidateG = parentG + connectionCost + candidateEnteringCost;
var pars = new OpenCandidateParams {
pathID = pathID,
parentPathNode = parentPathNode,
targetPathNode = targetPathNode,
targetNodeIndex = targetNodeIndex,
candidateG = candidateG,
fractionAlongEdge = fractionAlongEdge,
targetNodePosition = (int3)targetNodePosition,
pathNodes = pathHandler.pathNodes,
};
OpenCandidateConnectionBurst(ref pars,
ref pathHandler.heap, ref heuristicObjective
);
}
/// <summary>
/// Parameters to OpenCandidateConnectionBurst.
/// Using a struct instead of passing the parameters as separate arguments is significantly faster.
/// </summary>
public struct OpenCandidateParams {
public Util.UnsafeSpan<PathNode> pathNodes;
public uint parentPathNode;
public uint targetPathNode;
public uint targetNodeIndex;
public uint candidateG;
public uint fractionAlongEdge;
public int3 targetNodePosition;
public ushort pathID;
}
/// <summary>
/// Burst-compiled internal implementation of OpenCandidateConnection.
/// Compiling it using burst provides a decent 25% speedup.
/// The function itself is much faster, but the overhead of calling it from C# is quite significant.
/// </summary>
[Unity.Burst.BurstCompile]
public static void OpenCandidateConnectionBurst (ref OpenCandidateParams pars, ref BinaryHeap heap, ref HeuristicObjective heuristicObjective) {
var pathID = pars.pathID;
var parentPathNode = pars.parentPathNode;
var targetPathNode = pars.targetPathNode;
var candidateG = pars.candidateG;
var fractionAlongEdge = pars.fractionAlongEdge;
var targetNodePosition = pars.targetNodePosition;
var pathNodes = pars.pathNodes;
ref var target = ref pathNodes[targetPathNode];
if (target.pathID != pathID) {
// This is the first time we have seen this node. This connection must be optimal.
target.fractionAlongEdge = fractionAlongEdge;
target.pathID = pathID;
target.parentIndex = parentPathNode;
var candidateH = (uint)heuristicObjective.Calculate(targetNodePosition, pars.targetNodeIndex);
var candidateF = candidateG + candidateH;
heap.Add(pathNodes, targetPathNode, candidateG, candidateF);
} else {
// Note: Before this method is called, a check is done for the case target.pathID==pathID && heapIndex == NotInHeap,
// so we know target.heapIndex != NotInHeap here.
// We have seen this node before and it is in the heap.
// Now we check if this path to the target node is better than the previous one.
var targetG = heap.GetG(target.heapIndex);
// The previous F score of the node
var targetF = heap.GetF(target.heapIndex);
var targetH = targetF - targetG;
uint candidateH;
if (target.fractionAlongEdge != fractionAlongEdge) {
// Different fractionAlongEdge, this means that targetNodePosition may have changed
// and therefore the heuristic may also have changed.
candidateH = (uint)heuristicObjective.Calculate(targetNodePosition, pars.targetNodeIndex);
} else {
// If fractionAlongEdge has not changed, then we assume the heuristic is also the same.
// This saves us from having to calculate it again.
candidateH = targetH;
}
var candidateF = candidateG + candidateH;
if (candidateF < targetF) {
// This connection is better than the previous one.
target.fractionAlongEdge = fractionAlongEdge;
target.parentIndex = parentPathNode;
heap.Add(pathNodes, targetPathNode, candidateG, candidateF);
} else {
// This connection is not better than the previous one.
// We can safely discard this connection.
}
}
}
/// <summary>Returns penalty for the given tag.</summary>
/// <param name="tag">A value between 0 (inclusive) and 32 (exclusive).</param>
public uint GetTagPenalty (int tag) {
return (uint)internalTagPenalties[tag];
}
/// <summary>
/// Returns if the node can be traversed.
/// This by default equals to if the node is walkable and if the node's tag is included in <see cref="enabledTags"/>.
///
/// See: <see cref="traversalProvider"/>
/// </summary>
public bool CanTraverse (GraphNode node) {
// Use traversal provider if set, otherwise fall back on default behaviour
// This method is hot, but this branch is extremely well predicted so it
// doesn't affect performance much (profiling indicates it is just above
// the noise level, somewhere around 0%-0.3%)
if (traversalProvider != null)
return traversalProvider.CanTraverse(this, node);
// Manually inlined code from DefaultITraversalProvider
unchecked { return node.Walkable && (enabledTags >> (int)node.Tag & 0x1) != 0; }
}
/// <summary>
/// Returns if the path can traverse a link between from and to and if to can be traversed itself.
/// This by default equals to if the to is walkable and if the to's tag is included in <see cref="enabledTags"/>.
///
/// See: <see cref="traversalProvider"/>
/// </summary>
public bool CanTraverse (GraphNode from, GraphNode to) {
// Use traversal provider if set, otherwise fall back on default behaviour
// This method is hot, but this branch is extremely well predicted so it
// doesn't affect performance much (profiling indicates it is just above
// the noise level, somewhere around 0%-0.3%)
if (traversalProvider != null)
return traversalProvider.CanTraverse(this, from, to);
// Manually inlined code from DefaultITraversalProvider
unchecked { return to.Walkable && (enabledTags >> (int)to.Tag & 0x1) != 0; }
}
/// <summary>Returns the cost of traversing the given node</summary>
public uint GetTraversalCost (GraphNode node) {
#if ASTAR_NO_TRAVERSAL_COST
return 0;
#else
// Use traversal provider if set, otherwise fall back on default behaviour
if (traversalProvider != null)
return traversalProvider.GetTraversalCost(this, node);
unchecked { return GetTagPenalty((int)node.Tag) + node.Penalty; }
#endif
}
/// <summary>
/// True if this path is done calculating.
///
/// Note: The callback for the path might not have been called yet.
///
/// See: <see cref="Seeker.IsDone"/> which also takes into account if the path callback has been called and had modifiers applied.
/// </summary>
public bool IsDone () {
return PipelineState > PathState.Processing;
}
/// <summary>Threadsafe increment of the state</summary>
void IPathInternals.AdvanceState (PathState s) {
lock (this) {
PipelineState = (PathState)System.Math.Max((int)PipelineState, (int)s);
}
}
/// <summary>Causes the path to fail and sets <see cref="errorLog"/> to msg</summary>
public void FailWithError (string msg) {
Error();
if (errorLog != "") errorLog += "\n" + msg;
else errorLog = msg;
}
/// <summary>
/// Aborts the path because of an error.
/// Sets <see cref="error"/> to true.
/// This function is called when an error has occurred (e.g a valid path could not be found).
/// See: <see cref="FailWithError"/>
/// </summary>
public void Error () {
CompleteState = PathCompleteState.Error;
}
/// <summary>
/// Performs some error checking.
/// Makes sure the user isn't using old code paths and that no major errors have been made.
///
/// Causes the path to fail if any errors are found.
/// </summary>
private void ErrorCheck () {
if (!hasBeenReset) FailWithError("Please use the static Construct function for creating paths, do not use the normal constructors.");
if (((IPathInternals)this).Pooled) FailWithError("The path is currently in a path pool. Are you sending the path for calculation twice?");
if (pathHandler == null) FailWithError("Field pathHandler is not set. Please report this bug.");
if (PipelineState > PathState.Processing) FailWithError("This path has already been processed. Do not request a path with the same path object twice.");
}
/// <summary>
/// Called when the path enters the pool.
/// This method should release e.g pooled lists and other pooled resources
/// The base version of this method releases vectorPath and path lists.
/// Reset() will be called after this function, not before.
/// Warning: Do not call this function manually.
/// </summary>
protected virtual void OnEnterPool () {
if (vectorPath != null) Pathfinding.Util.ListPool<Vector3>.Release(ref vectorPath);
if (path != null) Pathfinding.Util.ListPool<GraphNode>.Release(ref path);
// Clear the callback to remove a potential memory leak
// while the path is in the pool (which it could be for a long time).
callback = null;
immediateCallback = null;
traversalProvider = null;
pathHandler = null;
}
/// <summary>
/// Reset all values to their default values.
///
/// Note: All inheriting path types (e.g ConstantPath, RandomPath, etc.) which declare their own variables need to
/// override this function, resetting ALL their variables to enable pooling of paths.
/// If this is not done, trying to use that path type for pooling could result in weird behaviour.
/// The best way is to reset to default values the variables declared in the extended path type and then
/// call the base function in inheriting types with base.Reset().
/// </summary>
protected virtual void Reset () {
#if ASTAR_POOL_DEBUG
pathTraceInfo = "This path was got from the pool or created from here (stacktrace):\n";
pathTraceInfo += System.Environment.StackTrace;
#endif
if (System.Object.ReferenceEquals(AstarPath.active, null))
throw new System.NullReferenceException("No AstarPath object found in the scene. " +
"Make sure there is one or do not create paths in Awake");
hasBeenReset = true;
PipelineState = (int)PathState.Created;
releasedNotSilent = false;
pathHandler = null;
callback = null;
immediateCallback = null;
errorLog = "";
completeState = PathCompleteState.NotCalculated;
path = Pathfinding.Util.ListPool<GraphNode>.Claim();
vectorPath = Pathfinding.Util.ListPool<Vector3>.Claim();
duration = 0;
searchedNodes = 0;
nnConstraint = PathNNConstraint.Walkable;
heuristic = AstarPath.active.heuristic;
heuristicScale = AstarPath.active.heuristicScale;
enabledTags = -1;
tagPenalties = null;
pathID = AstarPath.active.GetNextPathID();
hTargetNode = null;
traversalProvider = null;
}
/// <summary>List of claims on this path with reference objects</summary>
private List<System.Object> claimed = new List<System.Object>();
/// <summary>
/// True if the path has been released with a non-silent call yet.
///
/// See: Release
/// See: Claim
/// </summary>
private bool releasedNotSilent;
/// <summary>
/// Increase the reference count on this path by 1 (for pooling).
/// A claim on a path will ensure that it is not pooled.
/// If you are using a path, you will want to claim it when you first get it and then release it when you will not
/// use it anymore. When there are no claims on the path, it will be reset and put in a pool.
///
/// This is essentially just reference counting.
///
/// The object passed to this method is merely used as a way to more easily detect when pooling is not done correctly.
/// It can be any object, when used from a movement script you can just pass "this". This class will throw an exception
/// if you try to call Claim on the same path twice with the same object (which is usually not what you want) or
/// if you try to call Release with an object that has not been used in a Claim call for that path.
/// The object passed to the Claim method needs to be the same as the one you pass to this method.
///
/// See: Release
/// See: Pool
/// See: pooling (view in online documentation for working links)
/// See: https://en.wikipedia.org/wiki/Reference_counting
/// </summary>
public void Claim (System.Object o) {
if (System.Object.ReferenceEquals(o, null)) throw new System.ArgumentNullException("o");
for (int i = 0; i < claimed.Count; i++) {
// Need to use ReferenceEquals because it might be called from another thread
if (System.Object.ReferenceEquals(claimed[i], o))
throw new System.ArgumentException("You have already claimed the path with that object ("+o+"). Are you claiming the path with the same object twice?");
}
claimed.Add(o);
#if ASTAR_POOL_DEBUG
claimInfo.Add(o.ToString() + "\n\nClaimed from:\n" + System.Environment.StackTrace);
#endif
}
/// <summary>
/// Reduces the reference count on the path by 1 (pooling).
/// Removes the claim on the path by the specified object.
/// When the reference count reaches zero, the path will be pooled, all variables will be cleared and the path will be put in a pool to be used again.
/// This is great for performance since fewer allocations are made.
///
/// If the silent parameter is true, this method will remove the claim by the specified object
/// but the path will not be pooled if the claim count reches zero unless a non-silent Release call has been made earlier.
/// This is used by the internal pathfinding components such as Seeker and AstarPath so that they will not cause paths to be pooled.
/// This enables users to skip the claim/release calls if they want without the path being pooled by the Seeker or AstarPath and
/// thus causing strange bugs.
///
/// See: Claim
/// See: PathPool
/// </summary>
public void Release (System.Object o, bool silent = false) {
if (o == null) throw new System.ArgumentNullException("o");
for (int i = 0; i < claimed.Count; i++) {
// Need to use ReferenceEquals because it might be called from another thread
if (System.Object.ReferenceEquals(claimed[i], o)) {
claimed.RemoveAt(i);
#if ASTAR_POOL_DEBUG
claimInfo.RemoveAt(i);
#endif
if (!silent) {
releasedNotSilent = true;
}
if (claimed.Count == 0 && releasedNotSilent) {
PathPool.Pool(this);
}
return;
}
}
if (claimed.Count == 0) {
throw new System.ArgumentException("You are releasing a path which is not claimed at all (most likely it has been pooled already). " +
"Are you releasing the path with the same object ("+o+") twice?" +
"\nCheck out the documentation on path pooling for help.");
}
throw new System.ArgumentException("You are releasing a path which has not been claimed with this object ("+o+"). " +
"Are you releasing the path with the same object twice?\n" +
"Check out the documentation on path pooling for help.");
}
/// <summary>
/// Traces the calculated path from the end node to the start.
/// This will build an array (<see cref="path)"/> of the nodes this path will pass through and also set the <see cref="vectorPath"/> array to the <see cref="path"/> arrays positions.
/// Assumes the <see cref="vectorPath"/> and <see cref="path"/> are empty and not null (which will be the case for a correctly initialized path).
/// </summary>
protected virtual void Trace (uint fromPathNodeIndex) {
MarkerTrace.Begin();
// Current node we are processing
var c = fromPathNodeIndex;
int count = 0;
var pathNodes = pathHandler.pathNodes;
while (c != 0) {
c = pathNodes[c].parentIndex;
count++;
if (count > 16384) {
Debug.LogWarning("Infinite loop? >16384 node path. Remove this message if you really have that long paths (Path.cs, Trace method)");
break;
}
}
// Ensure the lists have enough capacity
if (path.Capacity < count) path.Capacity = count;
UnityEngine.Assertions.Assert.AreEqual(0, path.Count);
c = fromPathNodeIndex;
GraphNode lastNode = null;
for (int i = 0; i < count; i++) {
GraphNode node;
if (pathHandler.IsTemporaryNode(c)) {
node = pathHandler.GetNode(pathHandler.GetTemporaryNode(c).associatedNode);
} else {
node = pathHandler.GetNode(c);
}
// If a node has multiple variants (like the triangle mesh node), then we may visit
// the same node multiple times in a sequence (but different variants of it).
// In the final path we don't want the duplicates.
if (node != lastNode) {
path.Add(node);
lastNode = node;
}
c = pathNodes[c].parentIndex;
}
// Reverse
count = path.Count;
int half = count/2;
for (int i = 0; i < half; i++) {
var tmp = path[i];
path[i] = path[count-i-1];
path[count - i - 1] = tmp;
}
if (vectorPath.Capacity < count) vectorPath.Capacity = count;
for (int i = 0; i < count; i++) {
vectorPath.Add((Vector3)path[i].position);
}
MarkerTrace.End();
}
/// <summary>
/// Writes text shared for all overrides of DebugString to the string builder.
/// See: DebugString
/// </summary>
protected void DebugStringPrefix (PathLog logMode, System.Text.StringBuilder text) {
text.Append(error ? "Path Failed : " : "Path Completed : ");
text.Append("Computation Time ");
text.Append(duration.ToString(logMode == PathLog.Heavy ? "0.000 ms " : "0.00 ms "));
text.Append("Searched Nodes ").Append(searchedNodes);
if (!error) {
text.Append(" Path Length ");
text.Append(path == null ? "Null" : path.Count.ToString());
}
}
/// <summary>
/// Writes text shared for all overrides of DebugString to the string builder.
/// See: DebugString
/// </summary>
protected void DebugStringSuffix (PathLog logMode, System.Text.StringBuilder text) {
if (error) {
text.Append("\nError: ").Append(errorLog);
}
// Can only print this from the Unity thread
// since otherwise an exception might be thrown
if (logMode == PathLog.Heavy && !AstarPath.active.IsUsingMultithreading) {
text.Append("\nCallback references ");
if (callback != null) text.Append(callback.Target.GetType().FullName).AppendLine();
else text.AppendLine("NULL");
}
text.Append("\nPath Number ").Append(pathID).Append(" (unique id)");
}
/// <summary>
/// Returns a string with information about it.
/// More information is emitted when logMode == Heavy.
/// An empty string is returned if logMode == None
/// or logMode == OnlyErrors and this path did not fail.
/// </summary>
protected virtual string DebugString (PathLog logMode) {
if (logMode == PathLog.None || (!error && logMode == PathLog.OnlyErrors)) {
return "";
}
// Get a cached string builder for this thread
System.Text.StringBuilder text = pathHandler.DebugStringBuilder;
text.Length = 0;
DebugStringPrefix(logMode, text);
DebugStringSuffix(logMode, text);
return text.ToString();
}
/// <summary>Calls callback to return the calculated path. See: <see cref="callback"/></summary>
protected virtual void ReturnPath () {
if (callback != null) {
callback(this);
}
}
/// <summary>
/// Prepares low level path variables for calculation.
/// Called before a path search will take place.
/// Always called before the Prepare, Initialize and CalculateStep functions
/// </summary>
protected void PrepareBase (PathHandler pathHandler) {
//Make sure the path has a reference to the pathHandler
this.pathHandler = pathHandler;
//Assign relevant path data to the pathHandler
pathHandler.InitializeForPath(this);
// Make sure that internalTagPenalties is an array which has the length 32
if (internalTagPenalties == null || internalTagPenalties.Length != 32)
internalTagPenalties = ZeroTagPenalties;
try {
ErrorCheck();
} catch (System.Exception e) {
FailWithError(e.Message);
}
}
/// <summary>
/// Called before the path is started.
/// Called right before Initialize
/// </summary>
protected abstract void Prepare();
/// <summary>
/// Always called after the path has been calculated.
/// Guaranteed to be called before other paths have been calculated on
/// the same thread.
/// Use for cleaning up things like node tagging and similar.
/// </summary>
protected virtual void Cleanup () {
// Cleanup any flags set by temporary nodes
var pathNodes = pathHandler.pathNodes;
for (uint i = 0; i < pathHandler.numTemporaryNodes; i++) {
var nodeIndex = pathHandler.temporaryNodeStartIndex + i;
ref var node = ref pathHandler.GetTemporaryNode(nodeIndex);
var associatedNode = pathHandler.GetNode(node.associatedNode);
for (uint v = 0; v < associatedNode.PathNodeVariants; v++) {
pathNodes[node.associatedNode + v].flag1 = false;
pathNodes[node.associatedNode + v].flag2 = false;
}
}
}
protected int3 FirstTemporaryEndNode () {
for (uint i = 0; i < pathHandler.numTemporaryNodes; i++) {
var nodeIndex = pathHandler.temporaryNodeStartIndex + i;
ref var node = ref pathHandler.GetTemporaryNode(nodeIndex);
if (node.type == TemporaryNodeType.End) {
return (int3)node.position;
}
}
throw new System.InvalidOperationException("There are no end nodes in the path");
}
protected void TemporaryEndNodesBoundingBox (out int3 mn, out int3 mx) {
// These represent a bounding box containing all valid end points.
// Typically there's only one end point, but in some cases there can be more.
mn = (int3)int.MaxValue;
mx = (int3)int.MinValue;
for (uint i = 0; i < pathHandler.numTemporaryNodes; i++) {
var nodeIndex = pathHandler.temporaryNodeStartIndex + i;
ref var node = ref pathHandler.GetTemporaryNode(nodeIndex);
if (node.type == TemporaryNodeType.End) {
mn = math.min(mn, (int3)node.position);
mx = math.max(mx, (int3)node.position);
}
}
}
protected void MarkNodesAdjacentToTemporaryEndNodes () {
var pathNodes = pathHandler.pathNodes;
for (uint i = 0; i < pathHandler.numTemporaryNodes; i++) {
var nodeIndex = pathHandler.temporaryNodeStartIndex + i;
ref var node = ref pathHandler.GetTemporaryNode(nodeIndex);
if (node.type == TemporaryNodeType.End) {
// Mark node with flag1 to mark it as a node connected to an end node
var associatedNode = pathHandler.GetNode(node.associatedNode);
for (uint v = 0; v < associatedNode.PathNodeVariants; v++) {
pathNodes[node.associatedNode + v].flag1 = true;
}
}
}
}
protected void AddStartNodesToHeap () {
var pathNodes = pathHandler.pathNodes;
for (uint i = 0; i < pathHandler.numTemporaryNodes; i++) {
var nodeIndex = pathHandler.temporaryNodeStartIndex + i;
ref var node = ref pathHandler.GetTemporaryNode(nodeIndex);
if (node.type == TemporaryNodeType.Start) {
// Note: Setting F score to 0 is technically incorrect, but it doesn't
// matter since we will open the start nodes first anyway.
pathHandler.heap.Add(pathNodes, nodeIndex, 0, 0);
}
}
}
/// <summary>
/// Called when there are no more nodes to search.
///
/// This may be used to calculate a partial path as a fallback.
/// </summary>
protected abstract void OnHeapExhausted();
/// <summary>
/// Called when a valid node has been found for the end of the path.
///
/// This function should trace the path back to the start node, and set CompleteState to Complete.
/// If CompleteState is unchanged, the search will continue.
/// </summary>
protected abstract void OnFoundEndNode(uint pathNode, uint hScore, uint gScore);
/// <summary>
/// Called for every node that the path visits.
///
/// This is used by path types to check if the target node has been reached, to log debug data, etc.
/// </summary>
public virtual void OnVisitNode (uint pathNode, uint hScore, uint gScore) {}
/// <summary>
/// Calculates the path until completed or until the time has passed targetTick.
/// Usually a check is only done every 500 nodes if the time has passed targetTick.
/// Time/Ticks are got from System.DateTime.UtcNow.Ticks.
///
/// Basic outline of what the function does for the standard path (Pathfinding.ABPath).
/// <code>
/// while the end has not been found and no error has occurred
/// pop the next node of the heap and set it as current
/// check if we have reached the end
/// if so, exit and return the path
///
/// open the current node, i.e loop through its neighbours, mark them as visited and put them on a heap
///
/// check if there are still nodes left to process (or have we searched the whole graph)
/// if there are none, flag error and exit
///
/// check if the function has exceeded the time limit
/// if so, return and wait for the function to get called again
/// </code>
/// </summary>
protected virtual void CalculateStep (long targetTick) {
int counter = 0;
var pathNodes = pathHandler.pathNodes;
var temporaryNodeStartIndex = pathHandler.temporaryNodeStartIndex;
// Continue to search as long as we haven't encountered an error and we haven't found the target
while (CompleteState == PathCompleteState.NotCalculated) {
searchedNodes++;
// Any nodes left to search?
if (pathHandler.heap.isEmpty) {
OnHeapExhausted();
return;
}
// Select the node with the lowest F score and remove it from the open list
var currentPathNodeIndex = pathHandler.heap.Remove(pathNodes, out uint currentNodeG, out uint currentNodeF);
var currentNodeH = currentNodeF - currentNodeG;
if (currentPathNodeIndex >= temporaryNodeStartIndex) {
// This is a special node
var node = pathHandler.GetTemporaryNode(currentPathNodeIndex);
if (node.type == TemporaryNodeType.Start) {
// A start node. We should open the associated node at this point
pathHandler.GetNode(node.associatedNode).OpenAtPoint(this, currentPathNodeIndex, node.position, currentNodeG);
} else if (node.type == TemporaryNodeType.End) {
// An end node. Yay! We found the path we wanted.
// Now we can just trace the path back to the start and return that.
// However, some path types may choose to continue the search to find more end points (e.g. the multi target path).
{
// Make sure we visit the node associated with the end node.
// This is usually redundant, but it can matter in some cases.
// In particular, triangle mesh nodes can be opened in such a way that the temporary end node
// gets a lower F score than the individual sides of the triangle. This means that the temporary end
// node will be searched before the triangle sides are searched and that might complete the path.
// This would lead to us never actually calling LogVisitedNode for the triangle node, if we didn't have this code.
pathHandler.LogVisitedNode(node.associatedNode, currentNodeH, currentNodeG);
}
OnFoundEndNode(currentPathNodeIndex, currentNodeH, currentNodeG);
if (CompleteState == PathCompleteState.Complete) {
return;
}
}
} else {
pathHandler.LogVisitedNode(currentPathNodeIndex, currentNodeH, currentNodeG);
OnVisitNode(currentPathNodeIndex, currentNodeH, currentNodeG);
// Loop through all walkable neighbours of the node and add them to the open list.
var node = pathHandler.GetNode(currentPathNodeIndex);
node.Open(this, currentPathNodeIndex, currentNodeG);
}
// Check for time every 500 nodes, roughly every 0.5 ms usually
if (counter > 500) {
// Have we exceded the maxFrameTime, if so we should wait one frame before continuing the search since we don't want the game to lag
if (System.DateTime.UtcNow.Ticks >= targetTick) {
return;
}
counter = 0;
// Mostly for development
if (searchedNodes > 1000000) {
throw new System.Exception("Probable infinite loop. Over 1,000,000 nodes searched");
}
}
counter++;
}
}
PathHandler IPathInternals.PathHandler { get { return pathHandler; } }
void IPathInternals.OnEnterPool () { OnEnterPool(); }
void IPathInternals.Reset () { Reset(); }
void IPathInternals.ReturnPath () { ReturnPath(); }
void IPathInternals.PrepareBase (PathHandler handler) { PrepareBase(handler); }
void IPathInternals.Prepare () { Prepare(); }
void IPathInternals.Cleanup () { Cleanup(); }
void IPathInternals.CalculateStep (long targetTick) { CalculateStep(targetTick); }
string IPathInternals.DebugString (PathLog logMode) { return DebugString(logMode); }
}
/// <summary>Used for hiding internal methods of the Path class</summary>
internal interface IPathInternals {
PathHandler PathHandler { get; }
bool Pooled { get; set; }
void AdvanceState(PathState s);
void OnEnterPool();
void Reset();
void ReturnPath();
void PrepareBase(PathHandler handler);
void Prepare();
void Cleanup();
void CalculateStep(long targetTick);
string DebugString(PathLog logMode);
}
}
|