diff options
Diffstat (limited to '3rdparty/freetype/src/base/ftbbox.c')
-rw-r--r-- | 3rdparty/freetype/src/base/ftbbox.c | 649 |
1 files changed, 649 insertions, 0 deletions
diff --git a/3rdparty/freetype/src/base/ftbbox.c b/3rdparty/freetype/src/base/ftbbox.c new file mode 100644 index 0000000..6d1c44c --- /dev/null +++ b/3rdparty/freetype/src/base/ftbbox.c @@ -0,0 +1,649 @@ +/***************************************************************************/ +/* */ +/* ftbbox.c */ +/* */ +/* FreeType bbox computation (body). */ +/* */ +/* Copyright 1996-2002, 2004, 2006, 2010, 2013 by */ +/* David Turner, Robert Wilhelm, and Werner Lemberg. */ +/* */ +/* This file is part of the FreeType project, and may only be used */ +/* modified and distributed under the terms of the FreeType project */ +/* license, LICENSE.TXT. By continuing to use, modify, or distribute */ +/* this file you indicate that you have read the license and */ +/* understand and accept it fully. */ +/* */ +/***************************************************************************/ + + + /*************************************************************************/ + /* */ + /* This component has a _single_ role: to compute exact outline bounding */ + /* boxes. */ + /* */ + /*************************************************************************/ + + +#include <ft2build.h> +#include FT_INTERNAL_DEBUG_H + +#include FT_BBOX_H +#include FT_IMAGE_H +#include FT_OUTLINE_H +#include FT_INTERNAL_CALC_H +#include FT_INTERNAL_OBJECTS_H + + + typedef struct TBBox_Rec_ + { + FT_Vector last; + FT_BBox bbox; + + } TBBox_Rec; + + + /*************************************************************************/ + /* */ + /* <Function> */ + /* BBox_Move_To */ + /* */ + /* <Description> */ + /* This function is used as a `move_to' and `line_to' emitter during */ + /* FT_Outline_Decompose(). It simply records the destination point */ + /* in `user->last'; no further computations are necessary since we */ + /* use the cbox as the starting bbox which must be refined. */ + /* */ + /* <Input> */ + /* to :: A pointer to the destination vector. */ + /* */ + /* <InOut> */ + /* user :: A pointer to the current walk context. */ + /* */ + /* <Return> */ + /* Always 0. Needed for the interface only. */ + /* */ + static int + BBox_Move_To( FT_Vector* to, + TBBox_Rec* user ) + { + user->last = *to; + + return 0; + } + + +#define CHECK_X( p, bbox ) \ + ( p->x < bbox.xMin || p->x > bbox.xMax ) + +#define CHECK_Y( p, bbox ) \ + ( p->y < bbox.yMin || p->y > bbox.yMax ) + + + /*************************************************************************/ + /* */ + /* <Function> */ + /* BBox_Conic_Check */ + /* */ + /* <Description> */ + /* Finds the extrema of a 1-dimensional conic Bezier curve and update */ + /* a bounding range. This version uses direct computation, as it */ + /* doesn't need square roots. */ + /* */ + /* <Input> */ + /* y1 :: The start coordinate. */ + /* */ + /* y2 :: The coordinate of the control point. */ + /* */ + /* y3 :: The end coordinate. */ + /* */ + /* <InOut> */ + /* min :: The address of the current minimum. */ + /* */ + /* max :: The address of the current maximum. */ + /* */ + static void + BBox_Conic_Check( FT_Pos y1, + FT_Pos y2, + FT_Pos y3, + FT_Pos* min, + FT_Pos* max ) + { + if ( y1 <= y3 && y2 == y1 ) /* flat arc */ + goto Suite; + + if ( y1 < y3 ) + { + if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */ + goto Suite; + } + else + { + if ( y2 >= y3 && y2 <= y1 ) /* descending arc */ + { + y2 = y1; + y1 = y3; + y3 = y2; + goto Suite; + } + } + + y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 ); + + Suite: + if ( y1 < *min ) *min = y1; + if ( y3 > *max ) *max = y3; + } + + + /*************************************************************************/ + /* */ + /* <Function> */ + /* BBox_Conic_To */ + /* */ + /* <Description> */ + /* This function is used as a `conic_to' emitter during */ + /* FT_Outline_Decompose(). It checks a conic Bezier curve with the */ + /* current bounding box, and computes its extrema if necessary to */ + /* update it. */ + /* */ + /* <Input> */ + /* control :: A pointer to a control point. */ + /* */ + /* to :: A pointer to the destination vector. */ + /* */ + /* <InOut> */ + /* user :: The address of the current walk context. */ + /* */ + /* <Return> */ + /* Always 0. Needed for the interface only. */ + /* */ + /* <Note> */ + /* In the case of a non-monotonous arc, we compute directly the */ + /* extremum coordinates, as it is sufficiently fast. */ + /* */ + static int + BBox_Conic_To( FT_Vector* control, + FT_Vector* to, + TBBox_Rec* user ) + { + /* we don't need to check `to' since it is always an `on' point, thus */ + /* within the bbox */ + + if ( CHECK_X( control, user->bbox ) ) + BBox_Conic_Check( user->last.x, + control->x, + to->x, + &user->bbox.xMin, + &user->bbox.xMax ); + + if ( CHECK_Y( control, user->bbox ) ) + BBox_Conic_Check( user->last.y, + control->y, + to->y, + &user->bbox.yMin, + &user->bbox.yMax ); + + user->last = *to; + + return 0; + } + + + /*************************************************************************/ + /* */ + /* <Function> */ + /* BBox_Cubic_Check */ + /* */ + /* <Description> */ + /* Finds the extrema of a 1-dimensional cubic Bezier curve and */ + /* updates a bounding range. This version uses splitting because we */ + /* don't want to use square roots and extra accuracy. */ + /* */ + /* <Input> */ + /* p1 :: The start coordinate. */ + /* */ + /* p2 :: The coordinate of the first control point. */ + /* */ + /* p3 :: The coordinate of the second control point. */ + /* */ + /* p4 :: The end coordinate. */ + /* */ + /* <InOut> */ + /* min :: The address of the current minimum. */ + /* */ + /* max :: The address of the current maximum. */ + /* */ + +#if 0 + + static void + BBox_Cubic_Check( FT_Pos p1, + FT_Pos p2, + FT_Pos p3, + FT_Pos p4, + FT_Pos* min, + FT_Pos* max ) + { + FT_Pos q1, q2, q3, q4; + + + q1 = p1; + q2 = p2; + q3 = p3; + q4 = p4; + + /* for a conic segment to possibly reach new maximum */ + /* one of its off-points must be above the current value */ + while ( q2 > *max || q3 > *max ) + { + /* determine which half contains the maximum and split */ + if ( q1 + q2 > q3 + q4 ) /* first half */ + { + q4 = q4 + q3; + q3 = q3 + q2; + q2 = q2 + q1; + q4 = q4 + q3; + q3 = q3 + q2; + q4 = ( q4 + q3 ) / 8; + q3 = q3 / 4; + q2 = q2 / 2; + } + else /* second half */ + { + q1 = q1 + q2; + q2 = q2 + q3; + q3 = q3 + q4; + q1 = q1 + q2; + q2 = q2 + q3; + q1 = ( q1 + q2 ) / 8; + q2 = q2 / 4; + q3 = q3 / 2; + } + + /* check if either end reached the maximum */ + if ( q1 == q2 && q1 >= q3 ) + { + *max = q1; + break; + } + if ( q3 == q4 && q2 <= q4 ) + { + *max = q4; + break; + } + } + + q1 = p1; + q2 = p2; + q3 = p3; + q4 = p4; + + /* for a conic segment to possibly reach new minimum */ + /* one of its off-points must be below the current value */ + while ( q2 < *min || q3 < *min ) + { + /* determine which half contains the minimum and split */ + if ( q1 + q2 < q3 + q4 ) /* first half */ + { + q4 = q4 + q3; + q3 = q3 + q2; + q2 = q2 + q1; + q4 = q4 + q3; + q3 = q3 + q2; + q4 = ( q4 + q3 ) / 8; + q3 = q3 / 4; + q2 = q2 / 2; + } + else /* second half */ + { + q1 = q1 + q2; + q2 = q2 + q3; + q3 = q3 + q4; + q1 = q1 + q2; + q2 = q2 + q3; + q1 = ( q1 + q2 ) / 8; + q2 = q2 / 4; + q3 = q3 / 2; + } + + /* check if either end reached the minimum */ + if ( q1 == q2 && q1 <= q3 ) + { + *min = q1; + break; + } + if ( q3 == q4 && q2 >= q4 ) + { + *min = q4; + break; + } + } + } + +#else + + static void + test_cubic_extrema( FT_Pos y1, + FT_Pos y2, + FT_Pos y3, + FT_Pos y4, + FT_Fixed u, + FT_Pos* min, + FT_Pos* max ) + { + /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */ + FT_Pos b = y3 - 2*y2 + y1; + FT_Pos c = y2 - y1; + FT_Pos d = y1; + FT_Pos y; + FT_Fixed uu; + + FT_UNUSED ( y4 ); + + + /* The polynomial is */ + /* */ + /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */ + /* */ + /* dP/dx = 3a*x^2 + 6b*x + 3c . */ + /* */ + /* However, we also have */ + /* */ + /* dP/dx(u) = 0 , */ + /* */ + /* which implies by subtraction that */ + /* */ + /* P(u) = b*u^2 + 2c*u + d . */ + + if ( u > 0 && u < 0x10000L ) + { + uu = FT_MulFix( u, u ); + y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu ); + + if ( y < *min ) *min = y; + if ( y > *max ) *max = y; + } + } + + + static void + BBox_Cubic_Check( FT_Pos y1, + FT_Pos y2, + FT_Pos y3, + FT_Pos y4, + FT_Pos* min, + FT_Pos* max ) + { + /* always compare first and last points */ + if ( y1 < *min ) *min = y1; + else if ( y1 > *max ) *max = y1; + + if ( y4 < *min ) *min = y4; + else if ( y4 > *max ) *max = y4; + + /* now, try to see if there are split points here */ + if ( y1 <= y4 ) + { + /* flat or ascending arc test */ + if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 ) + return; + } + else /* y1 > y4 */ + { + /* descending arc test */ + if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 ) + return; + } + + /* There are some split points. Find them. */ + /* We already made sure that a, b, and c below cannot be all zero. */ + { + FT_Pos a = y4 - 3*y3 + 3*y2 - y1; + FT_Pos b = y3 - 2*y2 + y1; + FT_Pos c = y2 - y1; + FT_Pos d; + FT_Fixed t; + FT_Int shift; + + + /* We need to solve `ax^2+2bx+c' here, without floating points! */ + /* The trick is to normalize to a different representation in order */ + /* to use our 16.16 fixed-point routines. */ + /* */ + /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */ + /* These values must fit into a single 16.16 value. */ + /* */ + /* We normalize a, b, and c to `8.16' fixed-point values to ensure */ + /* that their product is held in a `16.16' value including the sign. */ + /* Necessarily, we need to shift `a', `b', and `c' so that the most */ + /* significant bit of their absolute values is at position 22. */ + /* */ + /* This also means that we are using 23 bits of precision to compute */ + /* the zeros, independently of the range of the original polynomial */ + /* coefficients. */ + /* */ + /* This algorithm should ensure reasonably accurate values for the */ + /* zeros. Note that they are only expressed with 16 bits when */ + /* computing the extrema (the zeros need to be in 0..1 exclusive */ + /* to be considered part of the arc). */ + + shift = FT_MSB( FT_ABS( a ) | FT_ABS( b ) | FT_ABS( c ) ); + + if ( shift > 22 ) + { + shift -= 22; + + /* this loses some bits of precision, but we use 23 of them */ + /* for the computation anyway */ + a >>= shift; + b >>= shift; + c >>= shift; + } + else + { + shift = 22 - shift; + + a <<= shift; + b <<= shift; + c <<= shift; + } + + /* handle a == 0 */ + if ( a == 0 ) + { + if ( b != 0 ) + { + t = - FT_DivFix( c, b ) / 2; + test_cubic_extrema( y1, y2, y3, y4, t, min, max ); + } + } + else + { + /* solve the equation now */ + d = FT_MulFix( b, b ) - FT_MulFix( a, c ); + if ( d < 0 ) + return; + + if ( d == 0 ) + { + /* there is a single split point at -b/a */ + t = - FT_DivFix( b, a ); + test_cubic_extrema( y1, y2, y3, y4, t, min, max ); + } + else + { + /* there are two solutions; we need to filter them */ + d = FT_SqrtFixed( (FT_Int32)d ); + t = - FT_DivFix( b - d, a ); + test_cubic_extrema( y1, y2, y3, y4, t, min, max ); + + t = - FT_DivFix( b + d, a ); + test_cubic_extrema( y1, y2, y3, y4, t, min, max ); + } + } + } + } + +#endif + + + /*************************************************************************/ + /* */ + /* <Function> */ + /* BBox_Cubic_To */ + /* */ + /* <Description> */ + /* This function is used as a `cubic_to' emitter during */ + /* FT_Outline_Decompose(). It checks a cubic Bezier curve with the */ + /* current bounding box, and computes its extrema if necessary to */ + /* update it. */ + /* */ + /* <Input> */ + /* control1 :: A pointer to the first control point. */ + /* */ + /* control2 :: A pointer to the second control point. */ + /* */ + /* to :: A pointer to the destination vector. */ + /* */ + /* <InOut> */ + /* user :: The address of the current walk context. */ + /* */ + /* <Return> */ + /* Always 0. Needed for the interface only. */ + /* */ + /* <Note> */ + /* In the case of a non-monotonous arc, we don't compute directly */ + /* extremum coordinates, we subdivide instead. */ + /* */ + static int + BBox_Cubic_To( FT_Vector* control1, + FT_Vector* control2, + FT_Vector* to, + TBBox_Rec* user ) + { + /* we don't need to check `to' since it is always an `on' point, thus */ + /* within the bbox */ + + if ( CHECK_X( control1, user->bbox ) || + CHECK_X( control2, user->bbox ) ) + BBox_Cubic_Check( user->last.x, + control1->x, + control2->x, + to->x, + &user->bbox.xMin, + &user->bbox.xMax ); + + if ( CHECK_Y( control1, user->bbox ) || + CHECK_Y( control2, user->bbox ) ) + BBox_Cubic_Check( user->last.y, + control1->y, + control2->y, + to->y, + &user->bbox.yMin, + &user->bbox.yMax ); + + user->last = *to; + + return 0; + } + +FT_DEFINE_OUTLINE_FUNCS(bbox_interface, + (FT_Outline_MoveTo_Func) BBox_Move_To, + (FT_Outline_LineTo_Func) BBox_Move_To, + (FT_Outline_ConicTo_Func)BBox_Conic_To, + (FT_Outline_CubicTo_Func)BBox_Cubic_To, + 0, 0 + ) + + /* documentation is in ftbbox.h */ + + FT_EXPORT_DEF( FT_Error ) + FT_Outline_Get_BBox( FT_Outline* outline, + FT_BBox *abbox ) + { + FT_BBox cbox; + FT_BBox bbox; + FT_Vector* vec; + FT_UShort n; + + + if ( !abbox ) + return FT_THROW( Invalid_Argument ); + + if ( !outline ) + return FT_THROW( Invalid_Outline ); + + /* if outline is empty, return (0,0,0,0) */ + if ( outline->n_points == 0 || outline->n_contours <= 0 ) + { + abbox->xMin = abbox->xMax = 0; + abbox->yMin = abbox->yMax = 0; + return 0; + } + + /* We compute the control box as well as the bounding box of */ + /* all `on' points in the outline. Then, if the two boxes */ + /* coincide, we exit immediately. */ + + vec = outline->points; + bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x; + bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y; + vec++; + + for ( n = 1; n < outline->n_points; n++ ) + { + FT_Pos x = vec->x; + FT_Pos y = vec->y; + + + /* update control box */ + if ( x < cbox.xMin ) cbox.xMin = x; + if ( x > cbox.xMax ) cbox.xMax = x; + + if ( y < cbox.yMin ) cbox.yMin = y; + if ( y > cbox.yMax ) cbox.yMax = y; + + if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON ) + { + /* update bbox for `on' points only */ + if ( x < bbox.xMin ) bbox.xMin = x; + if ( x > bbox.xMax ) bbox.xMax = x; + + if ( y < bbox.yMin ) bbox.yMin = y; + if ( y > bbox.yMax ) bbox.yMax = y; + } + + vec++; + } + + /* test two boxes for equality */ + if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax || + cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax ) + { + /* the two boxes are different, now walk over the outline to */ + /* get the Bezier arc extrema. */ + + FT_Error error; + TBBox_Rec user; + +#ifdef FT_CONFIG_OPTION_PIC + FT_Outline_Funcs bbox_interface; + Init_Class_bbox_interface(&bbox_interface); +#endif + + user.bbox = bbox; + + error = FT_Outline_Decompose( outline, &bbox_interface, &user ); + if ( error ) + return error; + + *abbox = user.bbox; + } + else + *abbox = bbox; + + return FT_Err_Ok; + } + + +/* END */ |