diff options
author | chai <chaifix@163.com> | 2019-08-07 21:08:47 +0800 |
---|---|---|
committer | chai <chaifix@163.com> | 2019-08-07 21:08:47 +0800 |
commit | 0c391fdbce5a079cf03e483eb6174dd47806163d (patch) | |
tree | b06cd7a9d0ae0d9bb9e82f3dcb786dfce11f8628 /Source/external/Box2D/Collision | |
parent | 9686368e58e25cbd6dc37d686bdd2be3f80486d6 (diff) |
*misc
Diffstat (limited to 'Source/external/Box2D/Collision')
22 files changed, 5847 insertions, 0 deletions
diff --git a/Source/external/Box2D/Collision/Shapes/b2ChainShape.cpp b/Source/external/Box2D/Collision/Shapes/b2ChainShape.cpp new file mode 100644 index 0000000..a709585 --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2ChainShape.cpp @@ -0,0 +1,198 @@ +/* +* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/Shapes/b2ChainShape.h" +#include "Box2D/Collision/Shapes/b2EdgeShape.h" +#include <new> +#include <string.h> + +b2ChainShape::~b2ChainShape() +{ + Clear(); +} + +void b2ChainShape::Clear() +{ + b2Free(m_vertices); + m_vertices = nullptr; + m_count = 0; +} + +void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count) +{ + b2Assert(m_vertices == nullptr && m_count == 0); + b2Assert(count >= 3); + if (count < 3) + { + return; + } + + for (int32 i = 1; i < count; ++i) + { + b2Vec2 v1 = vertices[i-1]; + b2Vec2 v2 = vertices[i]; + // If the code crashes here, it means your vertices are too close together. + b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop); + } + + m_count = count + 1; + m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2)); + memcpy(m_vertices, vertices, count * sizeof(b2Vec2)); + m_vertices[count] = m_vertices[0]; + m_prevVertex = m_vertices[m_count - 2]; + m_nextVertex = m_vertices[1]; + m_hasPrevVertex = true; + m_hasNextVertex = true; +} + +void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count) +{ + b2Assert(m_vertices == nullptr && m_count == 0); + b2Assert(count >= 2); + for (int32 i = 1; i < count; ++i) + { + // If the code crashes here, it means your vertices are too close together. + b2Assert(b2DistanceSquared(vertices[i-1], vertices[i]) > b2_linearSlop * b2_linearSlop); + } + + m_count = count; + m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2)); + memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2)); + + m_hasPrevVertex = false; + m_hasNextVertex = false; + + m_prevVertex.SetZero(); + m_nextVertex.SetZero(); +} + +void b2ChainShape::SetPrevVertex(const b2Vec2& prevVertex) +{ + m_prevVertex = prevVertex; + m_hasPrevVertex = true; +} + +void b2ChainShape::SetNextVertex(const b2Vec2& nextVertex) +{ + m_nextVertex = nextVertex; + m_hasNextVertex = true; +} + +b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const +{ + void* mem = allocator->Allocate(sizeof(b2ChainShape)); + b2ChainShape* clone = new (mem) b2ChainShape; + clone->CreateChain(m_vertices, m_count); + clone->m_prevVertex = m_prevVertex; + clone->m_nextVertex = m_nextVertex; + clone->m_hasPrevVertex = m_hasPrevVertex; + clone->m_hasNextVertex = m_hasNextVertex; + return clone; +} + +int32 b2ChainShape::GetChildCount() const +{ + // edge count = vertex count - 1 + return m_count - 1; +} + +void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const +{ + b2Assert(0 <= index && index < m_count - 1); + edge->m_type = b2Shape::e_edge; + edge->m_radius = m_radius; + + edge->m_vertex1 = m_vertices[index + 0]; + edge->m_vertex2 = m_vertices[index + 1]; + + if (index > 0) + { + edge->m_vertex0 = m_vertices[index - 1]; + edge->m_hasVertex0 = true; + } + else + { + edge->m_vertex0 = m_prevVertex; + edge->m_hasVertex0 = m_hasPrevVertex; + } + + if (index < m_count - 2) + { + edge->m_vertex3 = m_vertices[index + 2]; + edge->m_hasVertex3 = true; + } + else + { + edge->m_vertex3 = m_nextVertex; + edge->m_hasVertex3 = m_hasNextVertex; + } +} + +bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const +{ + B2_NOT_USED(xf); + B2_NOT_USED(p); + return false; +} + +bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& xf, int32 childIndex) const +{ + b2Assert(childIndex < m_count); + + b2EdgeShape edgeShape; + + int32 i1 = childIndex; + int32 i2 = childIndex + 1; + if (i2 == m_count) + { + i2 = 0; + } + + edgeShape.m_vertex1 = m_vertices[i1]; + edgeShape.m_vertex2 = m_vertices[i2]; + + return edgeShape.RayCast(output, input, xf, 0); +} + +void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const +{ + b2Assert(childIndex < m_count); + + int32 i1 = childIndex; + int32 i2 = childIndex + 1; + if (i2 == m_count) + { + i2 = 0; + } + + b2Vec2 v1 = b2Mul(xf, m_vertices[i1]); + b2Vec2 v2 = b2Mul(xf, m_vertices[i2]); + + aabb->lowerBound = b2Min(v1, v2); + aabb->upperBound = b2Max(v1, v2); +} + +void b2ChainShape::ComputeMass(b2MassData* massData, float32 density) const +{ + B2_NOT_USED(density); + + massData->mass = 0.0f; + massData->center.SetZero(); + massData->I = 0.0f; +} diff --git a/Source/external/Box2D/Collision/Shapes/b2ChainShape.h b/Source/external/Box2D/Collision/Shapes/b2ChainShape.h new file mode 100644 index 0000000..7c8c1a8 --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2ChainShape.h @@ -0,0 +1,105 @@ +/* +* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_CHAIN_SHAPE_H +#define B2_CHAIN_SHAPE_H + +#include "Box2D/Collision/Shapes/b2Shape.h" + +class b2EdgeShape; + +/// A chain shape is a free form sequence of line segments. +/// The chain has two-sided collision, so you can use inside and outside collision. +/// Therefore, you may use any winding order. +/// Since there may be many vertices, they are allocated using b2Alloc. +/// Connectivity information is used to create smooth collisions. +/// WARNING: The chain will not collide properly if there are self-intersections. +class b2ChainShape : public b2Shape +{ +public: + b2ChainShape(); + + /// The destructor frees the vertices using b2Free. + ~b2ChainShape(); + + /// Clear all data. + void Clear(); + + /// Create a loop. This automatically adjusts connectivity. + /// @param vertices an array of vertices, these are copied + /// @param count the vertex count + void CreateLoop(const b2Vec2* vertices, int32 count); + + /// Create a chain with isolated end vertices. + /// @param vertices an array of vertices, these are copied + /// @param count the vertex count + void CreateChain(const b2Vec2* vertices, int32 count); + + /// Establish connectivity to a vertex that precedes the first vertex. + /// Don't call this for loops. + void SetPrevVertex(const b2Vec2& prevVertex); + + /// Establish connectivity to a vertex that follows the last vertex. + /// Don't call this for loops. + void SetNextVertex(const b2Vec2& nextVertex); + + /// Implement b2Shape. Vertices are cloned using b2Alloc. + b2Shape* Clone(b2BlockAllocator* allocator) const override; + + /// @see b2Shape::GetChildCount + int32 GetChildCount() const override; + + /// Get a child edge. + void GetChildEdge(b2EdgeShape* edge, int32 index) const; + + /// This always return false. + /// @see b2Shape::TestPoint + bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override; + + /// Implement b2Shape. + bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& transform, int32 childIndex) const override; + + /// @see b2Shape::ComputeAABB + void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override; + + /// Chains have zero mass. + /// @see b2Shape::ComputeMass + void ComputeMass(b2MassData* massData, float32 density) const override; + + /// The vertices. Owned by this class. + b2Vec2* m_vertices; + + /// The vertex count. + int32 m_count; + + b2Vec2 m_prevVertex, m_nextVertex; + bool m_hasPrevVertex, m_hasNextVertex; +}; + +inline b2ChainShape::b2ChainShape() +{ + m_type = e_chain; + m_radius = b2_polygonRadius; + m_vertices = nullptr; + m_count = 0; + m_hasPrevVertex = false; + m_hasNextVertex = false; +} + +#endif diff --git a/Source/external/Box2D/Collision/Shapes/b2CircleShape.cpp b/Source/external/Box2D/Collision/Shapes/b2CircleShape.cpp new file mode 100644 index 0000000..fa24dc8 --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2CircleShape.cpp @@ -0,0 +1,99 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/Shapes/b2CircleShape.h" +#include <new> + +b2Shape* b2CircleShape::Clone(b2BlockAllocator* allocator) const +{ + void* mem = allocator->Allocate(sizeof(b2CircleShape)); + b2CircleShape* clone = new (mem) b2CircleShape; + *clone = *this; + return clone; +} + +int32 b2CircleShape::GetChildCount() const +{ + return 1; +} + +bool b2CircleShape::TestPoint(const b2Transform& transform, const b2Vec2& p) const +{ + b2Vec2 center = transform.p + b2Mul(transform.q, m_p); + b2Vec2 d = p - center; + return b2Dot(d, d) <= m_radius * m_radius; +} + +// Collision Detection in Interactive 3D Environments by Gino van den Bergen +// From Section 3.1.2 +// x = s + a * r +// norm(x) = radius +bool b2CircleShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& transform, int32 childIndex) const +{ + B2_NOT_USED(childIndex); + + b2Vec2 position = transform.p + b2Mul(transform.q, m_p); + b2Vec2 s = input.p1 - position; + float32 b = b2Dot(s, s) - m_radius * m_radius; + + // Solve quadratic equation. + b2Vec2 r = input.p2 - input.p1; + float32 c = b2Dot(s, r); + float32 rr = b2Dot(r, r); + float32 sigma = c * c - rr * b; + + // Check for negative discriminant and short segment. + if (sigma < 0.0f || rr < b2_epsilon) + { + return false; + } + + // Find the point of intersection of the line with the circle. + float32 a = -(c + b2Sqrt(sigma)); + + // Is the intersection point on the segment? + if (0.0f <= a && a <= input.maxFraction * rr) + { + a /= rr; + output->fraction = a; + output->normal = s + a * r; + output->normal.Normalize(); + return true; + } + + return false; +} + +void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const +{ + B2_NOT_USED(childIndex); + + b2Vec2 p = transform.p + b2Mul(transform.q, m_p); + aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius); + aabb->upperBound.Set(p.x + m_radius, p.y + m_radius); +} + +void b2CircleShape::ComputeMass(b2MassData* massData, float32 density) const +{ + massData->mass = density * b2_pi * m_radius * m_radius; + massData->center = m_p; + + // inertia about the local origin + massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_p, m_p)); +} diff --git a/Source/external/Box2D/Collision/Shapes/b2CircleShape.h b/Source/external/Box2D/Collision/Shapes/b2CircleShape.h new file mode 100644 index 0000000..d2c646e --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2CircleShape.h @@ -0,0 +1,60 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_CIRCLE_SHAPE_H +#define B2_CIRCLE_SHAPE_H + +#include "Box2D/Collision/Shapes/b2Shape.h" + +/// A circle shape. +class b2CircleShape : public b2Shape +{ +public: + b2CircleShape(); + + /// Implement b2Shape. + b2Shape* Clone(b2BlockAllocator* allocator) const override; + + /// @see b2Shape::GetChildCount + int32 GetChildCount() const override; + + /// Implement b2Shape. + bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override; + + /// Implement b2Shape. + bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& transform, int32 childIndex) const override; + + /// @see b2Shape::ComputeAABB + void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override; + + /// @see b2Shape::ComputeMass + void ComputeMass(b2MassData* massData, float32 density) const override; + + /// Position + b2Vec2 m_p; +}; + +inline b2CircleShape::b2CircleShape() +{ + m_type = e_circle; + m_radius = 0.0f; + m_p.SetZero(); +} + +#endif diff --git a/Source/external/Box2D/Collision/Shapes/b2EdgeShape.cpp b/Source/external/Box2D/Collision/Shapes/b2EdgeShape.cpp new file mode 100644 index 0000000..7b8dd57 --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2EdgeShape.cpp @@ -0,0 +1,138 @@ +/* +* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/Shapes/b2EdgeShape.h" +#include <new> + +void b2EdgeShape::Set(const b2Vec2& v1, const b2Vec2& v2) +{ + m_vertex1 = v1; + m_vertex2 = v2; + m_hasVertex0 = false; + m_hasVertex3 = false; +} + +b2Shape* b2EdgeShape::Clone(b2BlockAllocator* allocator) const +{ + void* mem = allocator->Allocate(sizeof(b2EdgeShape)); + b2EdgeShape* clone = new (mem) b2EdgeShape; + *clone = *this; + return clone; +} + +int32 b2EdgeShape::GetChildCount() const +{ + return 1; +} + +bool b2EdgeShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const +{ + B2_NOT_USED(xf); + B2_NOT_USED(p); + return false; +} + +// p = p1 + t * d +// v = v1 + s * e +// p1 + t * d = v1 + s * e +// s * e - t * d = p1 - v1 +bool b2EdgeShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& xf, int32 childIndex) const +{ + B2_NOT_USED(childIndex); + + // Put the ray into the edge's frame of reference. + b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); + b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); + b2Vec2 d = p2 - p1; + + b2Vec2 v1 = m_vertex1; + b2Vec2 v2 = m_vertex2; + b2Vec2 e = v2 - v1; + b2Vec2 normal(e.y, -e.x); + normal.Normalize(); + + // q = p1 + t * d + // dot(normal, q - v1) = 0 + // dot(normal, p1 - v1) + t * dot(normal, d) = 0 + float32 numerator = b2Dot(normal, v1 - p1); + float32 denominator = b2Dot(normal, d); + + if (denominator == 0.0f) + { + return false; + } + + float32 t = numerator / denominator; + if (t < 0.0f || input.maxFraction < t) + { + return false; + } + + b2Vec2 q = p1 + t * d; + + // q = v1 + s * r + // s = dot(q - v1, r) / dot(r, r) + b2Vec2 r = v2 - v1; + float32 rr = b2Dot(r, r); + if (rr == 0.0f) + { + return false; + } + + float32 s = b2Dot(q - v1, r) / rr; + if (s < 0.0f || 1.0f < s) + { + return false; + } + + output->fraction = t; + if (numerator > 0.0f) + { + output->normal = -b2Mul(xf.q, normal); + } + else + { + output->normal = b2Mul(xf.q, normal); + } + return true; +} + +void b2EdgeShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const +{ + B2_NOT_USED(childIndex); + + b2Vec2 v1 = b2Mul(xf, m_vertex1); + b2Vec2 v2 = b2Mul(xf, m_vertex2); + + b2Vec2 lower = b2Min(v1, v2); + b2Vec2 upper = b2Max(v1, v2); + + b2Vec2 r(m_radius, m_radius); + aabb->lowerBound = lower - r; + aabb->upperBound = upper + r; +} + +void b2EdgeShape::ComputeMass(b2MassData* massData, float32 density) const +{ + B2_NOT_USED(density); + + massData->mass = 0.0f; + massData->center = 0.5f * (m_vertex1 + m_vertex2); + massData->I = 0.0f; +} diff --git a/Source/external/Box2D/Collision/Shapes/b2EdgeShape.h b/Source/external/Box2D/Collision/Shapes/b2EdgeShape.h new file mode 100644 index 0000000..63b1a56 --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2EdgeShape.h @@ -0,0 +1,74 @@ +/* +* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_EDGE_SHAPE_H +#define B2_EDGE_SHAPE_H + +#include "Box2D/Collision/Shapes/b2Shape.h" + +/// A line segment (edge) shape. These can be connected in chains or loops +/// to other edge shapes. The connectivity information is used to ensure +/// correct contact normals. +class b2EdgeShape : public b2Shape +{ +public: + b2EdgeShape(); + + /// Set this as an isolated edge. + void Set(const b2Vec2& v1, const b2Vec2& v2); + + /// Implement b2Shape. + b2Shape* Clone(b2BlockAllocator* allocator) const override; + + /// @see b2Shape::GetChildCount + int32 GetChildCount() const override; + + /// @see b2Shape::TestPoint + bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override; + + /// Implement b2Shape. + bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& transform, int32 childIndex) const override; + + /// @see b2Shape::ComputeAABB + void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override; + + /// @see b2Shape::ComputeMass + void ComputeMass(b2MassData* massData, float32 density) const override; + + /// These are the edge vertices + b2Vec2 m_vertex1, m_vertex2; + + /// Optional adjacent vertices. These are used for smooth collision. + b2Vec2 m_vertex0, m_vertex3; + bool m_hasVertex0, m_hasVertex3; +}; + +inline b2EdgeShape::b2EdgeShape() +{ + m_type = e_edge; + m_radius = b2_polygonRadius; + m_vertex0.x = 0.0f; + m_vertex0.y = 0.0f; + m_vertex3.x = 0.0f; + m_vertex3.y = 0.0f; + m_hasVertex0 = false; + m_hasVertex3 = false; +} + +#endif diff --git a/Source/external/Box2D/Collision/Shapes/b2PolygonShape.cpp b/Source/external/Box2D/Collision/Shapes/b2PolygonShape.cpp new file mode 100644 index 0000000..3c8c47d --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2PolygonShape.cpp @@ -0,0 +1,468 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/Shapes/b2PolygonShape.h" +#include <new> + +b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const +{ + void* mem = allocator->Allocate(sizeof(b2PolygonShape)); + b2PolygonShape* clone = new (mem) b2PolygonShape; + *clone = *this; + return clone; +} + +void b2PolygonShape::SetAsBox(float32 hx, float32 hy) +{ + m_count = 4; + m_vertices[0].Set(-hx, -hy); + m_vertices[1].Set( hx, -hy); + m_vertices[2].Set( hx, hy); + m_vertices[3].Set(-hx, hy); + m_normals[0].Set(0.0f, -1.0f); + m_normals[1].Set(1.0f, 0.0f); + m_normals[2].Set(0.0f, 1.0f); + m_normals[3].Set(-1.0f, 0.0f); + m_centroid.SetZero(); +} + +void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle) +{ + m_count = 4; + m_vertices[0].Set(-hx, -hy); + m_vertices[1].Set( hx, -hy); + m_vertices[2].Set( hx, hy); + m_vertices[3].Set(-hx, hy); + m_normals[0].Set(0.0f, -1.0f); + m_normals[1].Set(1.0f, 0.0f); + m_normals[2].Set(0.0f, 1.0f); + m_normals[3].Set(-1.0f, 0.0f); + m_centroid = center; + + b2Transform xf; + xf.p = center; + xf.q.Set(angle); + + // Transform vertices and normals. + for (int32 i = 0; i < m_count; ++i) + { + m_vertices[i] = b2Mul(xf, m_vertices[i]); + m_normals[i] = b2Mul(xf.q, m_normals[i]); + } +} + +int32 b2PolygonShape::GetChildCount() const +{ + return 1; +} + +static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) +{ + b2Assert(count >= 3); + + b2Vec2 c; c.Set(0.0f, 0.0f); + float32 area = 0.0f; + + // pRef is the reference point for forming triangles. + // It's location doesn't change the result (except for rounding error). + b2Vec2 pRef(0.0f, 0.0f); +#if 0 + // This code would put the reference point inside the polygon. + for (int32 i = 0; i < count; ++i) + { + pRef += vs[i]; + } + pRef *= 1.0f / count; +#endif + + const float32 inv3 = 1.0f / 3.0f; + + for (int32 i = 0; i < count; ++i) + { + // Triangle vertices. + b2Vec2 p1 = pRef; + b2Vec2 p2 = vs[i]; + b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0]; + + b2Vec2 e1 = p2 - p1; + b2Vec2 e2 = p3 - p1; + + float32 D = b2Cross(e1, e2); + + float32 triangleArea = 0.5f * D; + area += triangleArea; + + // Area weighted centroid + c += triangleArea * inv3 * (p1 + p2 + p3); + } + + // Centroid + b2Assert(area > b2_epsilon); + c *= 1.0f / area; + return c; +} + +void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) +{ + b2Assert(3 <= count && count <= b2_maxPolygonVertices); + if (count < 3) + { + SetAsBox(1.0f, 1.0f); + return; + } + + int32 n = b2Min(count, b2_maxPolygonVertices); + + // Perform welding and copy vertices into local buffer. + b2Vec2 ps[b2_maxPolygonVertices]; + int32 tempCount = 0; + for (int32 i = 0; i < n; ++i) + { + b2Vec2 v = vertices[i]; + + bool unique = true; + for (int32 j = 0; j < tempCount; ++j) + { + if (b2DistanceSquared(v, ps[j]) < ((0.5f * b2_linearSlop) * (0.5f * b2_linearSlop))) + { + unique = false; + break; + } + } + + if (unique) + { + ps[tempCount++] = v; + } + } + + n = tempCount; + if (n < 3) + { + // Polygon is degenerate. + b2Assert(false); + SetAsBox(1.0f, 1.0f); + return; + } + + // Create the convex hull using the Gift wrapping algorithm + // http://en.wikipedia.org/wiki/Gift_wrapping_algorithm + + // Find the right most point on the hull + int32 i0 = 0; + float32 x0 = ps[0].x; + for (int32 i = 1; i < n; ++i) + { + float32 x = ps[i].x; + if (x > x0 || (x == x0 && ps[i].y < ps[i0].y)) + { + i0 = i; + x0 = x; + } + } + + int32 hull[b2_maxPolygonVertices]; + int32 m = 0; + int32 ih = i0; + + for (;;) + { + b2Assert(m < b2_maxPolygonVertices); + hull[m] = ih; + + int32 ie = 0; + for (int32 j = 1; j < n; ++j) + { + if (ie == ih) + { + ie = j; + continue; + } + + b2Vec2 r = ps[ie] - ps[hull[m]]; + b2Vec2 v = ps[j] - ps[hull[m]]; + float32 c = b2Cross(r, v); + if (c < 0.0f) + { + ie = j; + } + + // Collinearity check + if (c == 0.0f && v.LengthSquared() > r.LengthSquared()) + { + ie = j; + } + } + + ++m; + ih = ie; + + if (ie == i0) + { + break; + } + } + + if (m < 3) + { + // Polygon is degenerate. + b2Assert(false); + SetAsBox(1.0f, 1.0f); + return; + } + + m_count = m; + + // Copy vertices. + for (int32 i = 0; i < m; ++i) + { + m_vertices[i] = ps[hull[i]]; + } + + // Compute normals. Ensure the edges have non-zero length. + for (int32 i = 0; i < m; ++i) + { + int32 i1 = i; + int32 i2 = i + 1 < m ? i + 1 : 0; + b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; + b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); + m_normals[i] = b2Cross(edge, 1.0f); + m_normals[i].Normalize(); + } + + // Compute the polygon centroid. + m_centroid = ComputeCentroid(m_vertices, m); +} + +bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const +{ + b2Vec2 pLocal = b2MulT(xf.q, p - xf.p); + + for (int32 i = 0; i < m_count; ++i) + { + float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); + if (dot > 0.0f) + { + return false; + } + } + + return true; +} + +bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& xf, int32 childIndex) const +{ + B2_NOT_USED(childIndex); + + // Put the ray into the polygon's frame of reference. + b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); + b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); + b2Vec2 d = p2 - p1; + + float32 lower = 0.0f, upper = input.maxFraction; + + int32 index = -1; + + for (int32 i = 0; i < m_count; ++i) + { + // p = p1 + a * d + // dot(normal, p - v) = 0 + // dot(normal, p1 - v) + a * dot(normal, d) = 0 + float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1); + float32 denominator = b2Dot(m_normals[i], d); + + if (denominator == 0.0f) + { + if (numerator < 0.0f) + { + return false; + } + } + else + { + // Note: we want this predicate without division: + // lower < numerator / denominator, where denominator < 0 + // Since denominator < 0, we have to flip the inequality: + // lower < numerator / denominator <==> denominator * lower > numerator. + if (denominator < 0.0f && numerator < lower * denominator) + { + // Increase lower. + // The segment enters this half-space. + lower = numerator / denominator; + index = i; + } + else if (denominator > 0.0f && numerator < upper * denominator) + { + // Decrease upper. + // The segment exits this half-space. + upper = numerator / denominator; + } + } + + // The use of epsilon here causes the assert on lower to trip + // in some cases. Apparently the use of epsilon was to make edge + // shapes work, but now those are handled separately. + //if (upper < lower - b2_epsilon) + if (upper < lower) + { + return false; + } + } + + b2Assert(0.0f <= lower && lower <= input.maxFraction); + + if (index >= 0) + { + output->fraction = lower; + output->normal = b2Mul(xf.q, m_normals[index]); + return true; + } + + return false; +} + +void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const +{ + B2_NOT_USED(childIndex); + + b2Vec2 lower = b2Mul(xf, m_vertices[0]); + b2Vec2 upper = lower; + + for (int32 i = 1; i < m_count; ++i) + { + b2Vec2 v = b2Mul(xf, m_vertices[i]); + lower = b2Min(lower, v); + upper = b2Max(upper, v); + } + + b2Vec2 r(m_radius, m_radius); + aabb->lowerBound = lower - r; + aabb->upperBound = upper + r; +} + +void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const +{ + // Polygon mass, centroid, and inertia. + // Let rho be the polygon density in mass per unit area. + // Then: + // mass = rho * int(dA) + // centroid.x = (1/mass) * rho * int(x * dA) + // centroid.y = (1/mass) * rho * int(y * dA) + // I = rho * int((x*x + y*y) * dA) + // + // We can compute these integrals by summing all the integrals + // for each triangle of the polygon. To evaluate the integral + // for a single triangle, we make a change of variables to + // the (u,v) coordinates of the triangle: + // x = x0 + e1x * u + e2x * v + // y = y0 + e1y * u + e2y * v + // where 0 <= u && 0 <= v && u + v <= 1. + // + // We integrate u from [0,1-v] and then v from [0,1]. + // We also need to use the Jacobian of the transformation: + // D = cross(e1, e2) + // + // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) + // + // The rest of the derivation is handled by computer algebra. + + b2Assert(m_count >= 3); + + b2Vec2 center; center.Set(0.0f, 0.0f); + float32 area = 0.0f; + float32 I = 0.0f; + + // s is the reference point for forming triangles. + // It's location doesn't change the result (except for rounding error). + b2Vec2 s(0.0f, 0.0f); + + // This code would put the reference point inside the polygon. + for (int32 i = 0; i < m_count; ++i) + { + s += m_vertices[i]; + } + s *= 1.0f / m_count; + + const float32 k_inv3 = 1.0f / 3.0f; + + for (int32 i = 0; i < m_count; ++i) + { + // Triangle vertices. + b2Vec2 e1 = m_vertices[i] - s; + b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s; + + float32 D = b2Cross(e1, e2); + + float32 triangleArea = 0.5f * D; + area += triangleArea; + + // Area weighted centroid + center += triangleArea * k_inv3 * (e1 + e2); + + float32 ex1 = e1.x, ey1 = e1.y; + float32 ex2 = e2.x, ey2 = e2.y; + + float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; + float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; + + I += (0.25f * k_inv3 * D) * (intx2 + inty2); + } + + // Total mass + massData->mass = density * area; + + // Center of mass + b2Assert(area > b2_epsilon); + center *= 1.0f / area; + massData->center = center + s; + + // Inertia tensor relative to the local origin (point s). + massData->I = density * I; + + // Shift to center of mass then to original body origin. + massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center)); +} + +bool b2PolygonShape::Validate() const +{ + for (int32 i = 0; i < m_count; ++i) + { + int32 i1 = i; + int32 i2 = i < m_count - 1 ? i1 + 1 : 0; + b2Vec2 p = m_vertices[i1]; + b2Vec2 e = m_vertices[i2] - p; + + for (int32 j = 0; j < m_count; ++j) + { + if (j == i1 || j == i2) + { + continue; + } + + b2Vec2 v = m_vertices[j] - p; + float32 c = b2Cross(e, v); + if (c < 0.0f) + { + return false; + } + } + } + + return true; +} diff --git a/Source/external/Box2D/Collision/Shapes/b2PolygonShape.h b/Source/external/Box2D/Collision/Shapes/b2PolygonShape.h new file mode 100644 index 0000000..26c5e61 --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2PolygonShape.h @@ -0,0 +1,89 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_POLYGON_SHAPE_H +#define B2_POLYGON_SHAPE_H + +#include "Box2D/Collision/Shapes/b2Shape.h" + +/// A convex polygon. It is assumed that the interior of the polygon is to +/// the left of each edge. +/// Polygons have a maximum number of vertices equal to b2_maxPolygonVertices. +/// In most cases you should not need many vertices for a convex polygon. +class b2PolygonShape : public b2Shape +{ +public: + b2PolygonShape(); + + /// Implement b2Shape. + b2Shape* Clone(b2BlockAllocator* allocator) const override; + + /// @see b2Shape::GetChildCount + int32 GetChildCount() const override; + + /// Create a convex hull from the given array of local points. + /// The count must be in the range [3, b2_maxPolygonVertices]. + /// @warning the points may be re-ordered, even if they form a convex polygon + /// @warning collinear points are handled but not removed. Collinear points + /// may lead to poor stacking behavior. + void Set(const b2Vec2* points, int32 count); + + /// Build vertices to represent an axis-aligned box centered on the local origin. + /// @param hx the half-width. + /// @param hy the half-height. + void SetAsBox(float32 hx, float32 hy); + + /// Build vertices to represent an oriented box. + /// @param hx the half-width. + /// @param hy the half-height. + /// @param center the center of the box in local coordinates. + /// @param angle the rotation of the box in local coordinates. + void SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle); + + /// @see b2Shape::TestPoint + bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override; + + /// Implement b2Shape. + bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& transform, int32 childIndex) const override; + + /// @see b2Shape::ComputeAABB + void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override; + + /// @see b2Shape::ComputeMass + void ComputeMass(b2MassData* massData, float32 density) const override; + + /// Validate convexity. This is a very time consuming operation. + /// @returns true if valid + bool Validate() const; + + b2Vec2 m_centroid; + b2Vec2 m_vertices[b2_maxPolygonVertices]; + b2Vec2 m_normals[b2_maxPolygonVertices]; + int32 m_count; +}; + +inline b2PolygonShape::b2PolygonShape() +{ + m_type = e_polygon; + m_radius = b2_polygonRadius; + m_count = 0; + m_centroid.SetZero(); +} + +#endif diff --git a/Source/external/Box2D/Collision/Shapes/b2Shape.h b/Source/external/Box2D/Collision/Shapes/b2Shape.h new file mode 100644 index 0000000..653e362 --- /dev/null +++ b/Source/external/Box2D/Collision/Shapes/b2Shape.h @@ -0,0 +1,104 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_SHAPE_H +#define B2_SHAPE_H + +#include "Box2D/Common/b2BlockAllocator.h" +#include "Box2D/Common/b2Math.h" +#include "Box2D/Collision/b2Collision.h" + +/// This holds the mass data computed for a shape. +struct b2MassData +{ + /// The mass of the shape, usually in kilograms. + float32 mass; + + /// The position of the shape's centroid relative to the shape's origin. + b2Vec2 center; + + /// The rotational inertia of the shape about the local origin. + float32 I; +}; + +/// A shape is used for collision detection. You can create a shape however you like. +/// Shapes used for simulation in b2World are created automatically when a b2Fixture +/// is created. Shapes may encapsulate a one or more child shapes. +class b2Shape +{ +public: + + enum Type + { + e_circle = 0, + e_edge = 1, + e_polygon = 2, + e_chain = 3, + e_typeCount = 4 + }; + + virtual ~b2Shape() {} + + /// Clone the concrete shape using the provided allocator. + virtual b2Shape* Clone(b2BlockAllocator* allocator) const = 0; + + /// Get the type of this shape. You can use this to down cast to the concrete shape. + /// @return the shape type. + Type GetType() const; + + /// Get the number of child primitives. + virtual int32 GetChildCount() const = 0; + + /// Test a point for containment in this shape. This only works for convex shapes. + /// @param xf the shape world transform. + /// @param p a point in world coordinates. + virtual bool TestPoint(const b2Transform& xf, const b2Vec2& p) const = 0; + + /// Cast a ray against a child shape. + /// @param output the ray-cast results. + /// @param input the ray-cast input parameters. + /// @param transform the transform to be applied to the shape. + /// @param childIndex the child shape index + virtual bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, + const b2Transform& transform, int32 childIndex) const = 0; + + /// Given a transform, compute the associated axis aligned bounding box for a child shape. + /// @param aabb returns the axis aligned box. + /// @param xf the world transform of the shape. + /// @param childIndex the child shape + virtual void ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const = 0; + + /// Compute the mass properties of this shape using its dimensions and density. + /// The inertia tensor is computed about the local origin. + /// @param massData returns the mass data for this shape. + /// @param density the density in kilograms per meter squared. + virtual void ComputeMass(b2MassData* massData, float32 density) const = 0; + + Type m_type; + + /// Radius of a shape. For polygonal shapes this must be b2_polygonRadius. There is no support for + /// making rounded polygons. + float32 m_radius; +}; + +inline b2Shape::Type b2Shape::GetType() const +{ + return m_type; +} + +#endif diff --git a/Source/external/Box2D/Collision/b2BroadPhase.cpp b/Source/external/Box2D/Collision/b2BroadPhase.cpp new file mode 100644 index 0000000..e96339d --- /dev/null +++ b/Source/external/Box2D/Collision/b2BroadPhase.cpp @@ -0,0 +1,119 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2BroadPhase.h" + +b2BroadPhase::b2BroadPhase() +{ + m_proxyCount = 0; + + m_pairCapacity = 16; + m_pairCount = 0; + m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair)); + + m_moveCapacity = 16; + m_moveCount = 0; + m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32)); +} + +b2BroadPhase::~b2BroadPhase() +{ + b2Free(m_moveBuffer); + b2Free(m_pairBuffer); +} + +int32 b2BroadPhase::CreateProxy(const b2AABB& aabb, void* userData) +{ + int32 proxyId = m_tree.CreateProxy(aabb, userData); + ++m_proxyCount; + BufferMove(proxyId); + return proxyId; +} + +void b2BroadPhase::DestroyProxy(int32 proxyId) +{ + UnBufferMove(proxyId); + --m_proxyCount; + m_tree.DestroyProxy(proxyId); +} + +void b2BroadPhase::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) +{ + bool buffer = m_tree.MoveProxy(proxyId, aabb, displacement); + if (buffer) + { + BufferMove(proxyId); + } +} + +void b2BroadPhase::TouchProxy(int32 proxyId) +{ + BufferMove(proxyId); +} + +void b2BroadPhase::BufferMove(int32 proxyId) +{ + if (m_moveCount == m_moveCapacity) + { + int32* oldBuffer = m_moveBuffer; + m_moveCapacity *= 2; + m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32)); + memcpy(m_moveBuffer, oldBuffer, m_moveCount * sizeof(int32)); + b2Free(oldBuffer); + } + + m_moveBuffer[m_moveCount] = proxyId; + ++m_moveCount; +} + +void b2BroadPhase::UnBufferMove(int32 proxyId) +{ + for (int32 i = 0; i < m_moveCount; ++i) + { + if (m_moveBuffer[i] == proxyId) + { + m_moveBuffer[i] = e_nullProxy; + } + } +} + +// This is called from b2DynamicTree::Query when we are gathering pairs. +bool b2BroadPhase::QueryCallback(int32 proxyId) +{ + // A proxy cannot form a pair with itself. + if (proxyId == m_queryProxyId) + { + return true; + } + + // Grow the pair buffer as needed. + if (m_pairCount == m_pairCapacity) + { + b2Pair* oldBuffer = m_pairBuffer; + m_pairCapacity *= 2; + m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair)); + memcpy(m_pairBuffer, oldBuffer, m_pairCount * sizeof(b2Pair)); + b2Free(oldBuffer); + } + + m_pairBuffer[m_pairCount].proxyIdA = b2Min(proxyId, m_queryProxyId); + m_pairBuffer[m_pairCount].proxyIdB = b2Max(proxyId, m_queryProxyId); + ++m_pairCount; + + return true; +} diff --git a/Source/external/Box2D/Collision/b2BroadPhase.h b/Source/external/Box2D/Collision/b2BroadPhase.h new file mode 100644 index 0000000..d2965ed --- /dev/null +++ b/Source/external/Box2D/Collision/b2BroadPhase.h @@ -0,0 +1,257 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_BROAD_PHASE_H +#define B2_BROAD_PHASE_H + +#include "Box2D/Common/b2Settings.h" +#include "Box2D/Collision/b2Collision.h" +#include "Box2D/Collision/b2DynamicTree.h" +#include <algorithm> + +struct b2Pair +{ + int32 proxyIdA; + int32 proxyIdB; +}; + +/// The broad-phase is used for computing pairs and performing volume queries and ray casts. +/// This broad-phase does not persist pairs. Instead, this reports potentially new pairs. +/// It is up to the client to consume the new pairs and to track subsequent overlap. +class b2BroadPhase +{ +public: + + enum + { + e_nullProxy = -1 + }; + + b2BroadPhase(); + ~b2BroadPhase(); + + /// Create a proxy with an initial AABB. Pairs are not reported until + /// UpdatePairs is called. + int32 CreateProxy(const b2AABB& aabb, void* userData); + + /// Destroy a proxy. It is up to the client to remove any pairs. + void DestroyProxy(int32 proxyId); + + /// Call MoveProxy as many times as you like, then when you are done + /// call UpdatePairs to finalized the proxy pairs (for your time step). + void MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement); + + /// Call to trigger a re-processing of it's pairs on the next call to UpdatePairs. + void TouchProxy(int32 proxyId); + + /// Get the fat AABB for a proxy. + const b2AABB& GetFatAABB(int32 proxyId) const; + + /// Get user data from a proxy. Returns nullptr if the id is invalid. + void* GetUserData(int32 proxyId) const; + + /// Test overlap of fat AABBs. + bool TestOverlap(int32 proxyIdA, int32 proxyIdB) const; + + /// Get the number of proxies. + int32 GetProxyCount() const; + + /// Update the pairs. This results in pair callbacks. This can only add pairs. + template <typename T> + void UpdatePairs(T* callback); + + /// Query an AABB for overlapping proxies. The callback class + /// is called for each proxy that overlaps the supplied AABB. + template <typename T> + void Query(T* callback, const b2AABB& aabb) const; + + /// Ray-cast against the proxies in the tree. This relies on the callback + /// to perform a exact ray-cast in the case were the proxy contains a shape. + /// The callback also performs the any collision filtering. This has performance + /// roughly equal to k * log(n), where k is the number of collisions and n is the + /// number of proxies in the tree. + /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). + /// @param callback a callback class that is called for each proxy that is hit by the ray. + template <typename T> + void RayCast(T* callback, const b2RayCastInput& input) const; + + /// Get the height of the embedded tree. + int32 GetTreeHeight() const; + + /// Get the balance of the embedded tree. + int32 GetTreeBalance() const; + + /// Get the quality metric of the embedded tree. + float32 GetTreeQuality() const; + + /// Shift the world origin. Useful for large worlds. + /// The shift formula is: position -= newOrigin + /// @param newOrigin the new origin with respect to the old origin + void ShiftOrigin(const b2Vec2& newOrigin); + +private: + + friend class b2DynamicTree; + + void BufferMove(int32 proxyId); + void UnBufferMove(int32 proxyId); + + bool QueryCallback(int32 proxyId); + + b2DynamicTree m_tree; + + int32 m_proxyCount; + + int32* m_moveBuffer; + int32 m_moveCapacity; + int32 m_moveCount; + + b2Pair* m_pairBuffer; + int32 m_pairCapacity; + int32 m_pairCount; + + int32 m_queryProxyId; +}; + +/// This is used to sort pairs. +inline bool b2PairLessThan(const b2Pair& pair1, const b2Pair& pair2) +{ + if (pair1.proxyIdA < pair2.proxyIdA) + { + return true; + } + + if (pair1.proxyIdA == pair2.proxyIdA) + { + return pair1.proxyIdB < pair2.proxyIdB; + } + + return false; +} + +inline void* b2BroadPhase::GetUserData(int32 proxyId) const +{ + return m_tree.GetUserData(proxyId); +} + +inline bool b2BroadPhase::TestOverlap(int32 proxyIdA, int32 proxyIdB) const +{ + const b2AABB& aabbA = m_tree.GetFatAABB(proxyIdA); + const b2AABB& aabbB = m_tree.GetFatAABB(proxyIdB); + return b2TestOverlap(aabbA, aabbB); +} + +inline const b2AABB& b2BroadPhase::GetFatAABB(int32 proxyId) const +{ + return m_tree.GetFatAABB(proxyId); +} + +inline int32 b2BroadPhase::GetProxyCount() const +{ + return m_proxyCount; +} + +inline int32 b2BroadPhase::GetTreeHeight() const +{ + return m_tree.GetHeight(); +} + +inline int32 b2BroadPhase::GetTreeBalance() const +{ + return m_tree.GetMaxBalance(); +} + +inline float32 b2BroadPhase::GetTreeQuality() const +{ + return m_tree.GetAreaRatio(); +} + +template <typename T> +void b2BroadPhase::UpdatePairs(T* callback) +{ + // Reset pair buffer + m_pairCount = 0; + + // Perform tree queries for all moving proxies. + for (int32 i = 0; i < m_moveCount; ++i) + { + m_queryProxyId = m_moveBuffer[i]; + if (m_queryProxyId == e_nullProxy) + { + continue; + } + + // We have to query the tree with the fat AABB so that + // we don't fail to create a pair that may touch later. + const b2AABB& fatAABB = m_tree.GetFatAABB(m_queryProxyId); + + // Query tree, create pairs and add them pair buffer. + m_tree.Query(this, fatAABB); + } + + // Reset move buffer + m_moveCount = 0; + + // Sort the pair buffer to expose duplicates. + std::sort(m_pairBuffer, m_pairBuffer + m_pairCount, b2PairLessThan); + + // Send the pairs back to the client. + int32 i = 0; + while (i < m_pairCount) + { + b2Pair* primaryPair = m_pairBuffer + i; + void* userDataA = m_tree.GetUserData(primaryPair->proxyIdA); + void* userDataB = m_tree.GetUserData(primaryPair->proxyIdB); + + callback->AddPair(userDataA, userDataB); + ++i; + + // Skip any duplicate pairs. + while (i < m_pairCount) + { + b2Pair* pair = m_pairBuffer + i; + if (pair->proxyIdA != primaryPair->proxyIdA || pair->proxyIdB != primaryPair->proxyIdB) + { + break; + } + ++i; + } + } + + // Try to keep the tree balanced. + //m_tree.Rebalance(4); +} + +template <typename T> +inline void b2BroadPhase::Query(T* callback, const b2AABB& aabb) const +{ + m_tree.Query(callback, aabb); +} + +template <typename T> +inline void b2BroadPhase::RayCast(T* callback, const b2RayCastInput& input) const +{ + m_tree.RayCast(callback, input); +} + +inline void b2BroadPhase::ShiftOrigin(const b2Vec2& newOrigin) +{ + m_tree.ShiftOrigin(newOrigin); +} + +#endif diff --git a/Source/external/Box2D/Collision/b2CollideCircle.cpp b/Source/external/Box2D/Collision/b2CollideCircle.cpp new file mode 100644 index 0000000..f39f057 --- /dev/null +++ b/Source/external/Box2D/Collision/b2CollideCircle.cpp @@ -0,0 +1,154 @@ +/* +* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2Collision.h" +#include "Box2D/Collision/Shapes/b2CircleShape.h" +#include "Box2D/Collision/Shapes/b2PolygonShape.h" + +void b2CollideCircles( + b2Manifold* manifold, + const b2CircleShape* circleA, const b2Transform& xfA, + const b2CircleShape* circleB, const b2Transform& xfB) +{ + manifold->pointCount = 0; + + b2Vec2 pA = b2Mul(xfA, circleA->m_p); + b2Vec2 pB = b2Mul(xfB, circleB->m_p); + + b2Vec2 d = pB - pA; + float32 distSqr = b2Dot(d, d); + float32 rA = circleA->m_radius, rB = circleB->m_radius; + float32 radius = rA + rB; + if (distSqr > radius * radius) + { + return; + } + + manifold->type = b2Manifold::e_circles; + manifold->localPoint = circleA->m_p; + manifold->localNormal.SetZero(); + manifold->pointCount = 1; + + manifold->points[0].localPoint = circleB->m_p; + manifold->points[0].id.key = 0; +} + +void b2CollidePolygonAndCircle( + b2Manifold* manifold, + const b2PolygonShape* polygonA, const b2Transform& xfA, + const b2CircleShape* circleB, const b2Transform& xfB) +{ + manifold->pointCount = 0; + + // Compute circle position in the frame of the polygon. + b2Vec2 c = b2Mul(xfB, circleB->m_p); + b2Vec2 cLocal = b2MulT(xfA, c); + + // Find the min separating edge. + int32 normalIndex = 0; + float32 separation = -b2_maxFloat; + float32 radius = polygonA->m_radius + circleB->m_radius; + int32 vertexCount = polygonA->m_count; + const b2Vec2* vertices = polygonA->m_vertices; + const b2Vec2* normals = polygonA->m_normals; + + for (int32 i = 0; i < vertexCount; ++i) + { + float32 s = b2Dot(normals[i], cLocal - vertices[i]); + + if (s > radius) + { + // Early out. + return; + } + + if (s > separation) + { + separation = s; + normalIndex = i; + } + } + + // Vertices that subtend the incident face. + int32 vertIndex1 = normalIndex; + int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0; + b2Vec2 v1 = vertices[vertIndex1]; + b2Vec2 v2 = vertices[vertIndex2]; + + // If the center is inside the polygon ... + if (separation < b2_epsilon) + { + manifold->pointCount = 1; + manifold->type = b2Manifold::e_faceA; + manifold->localNormal = normals[normalIndex]; + manifold->localPoint = 0.5f * (v1 + v2); + manifold->points[0].localPoint = circleB->m_p; + manifold->points[0].id.key = 0; + return; + } + + // Compute barycentric coordinates + float32 u1 = b2Dot(cLocal - v1, v2 - v1); + float32 u2 = b2Dot(cLocal - v2, v1 - v2); + if (u1 <= 0.0f) + { + if (b2DistanceSquared(cLocal, v1) > radius * radius) + { + return; + } + + manifold->pointCount = 1; + manifold->type = b2Manifold::e_faceA; + manifold->localNormal = cLocal - v1; + manifold->localNormal.Normalize(); + manifold->localPoint = v1; + manifold->points[0].localPoint = circleB->m_p; + manifold->points[0].id.key = 0; + } + else if (u2 <= 0.0f) + { + if (b2DistanceSquared(cLocal, v2) > radius * radius) + { + return; + } + + manifold->pointCount = 1; + manifold->type = b2Manifold::e_faceA; + manifold->localNormal = cLocal - v2; + manifold->localNormal.Normalize(); + manifold->localPoint = v2; + manifold->points[0].localPoint = circleB->m_p; + manifold->points[0].id.key = 0; + } + else + { + b2Vec2 faceCenter = 0.5f * (v1 + v2); + float32 s = b2Dot(cLocal - faceCenter, normals[vertIndex1]); + if (s > radius) + { + return; + } + + manifold->pointCount = 1; + manifold->type = b2Manifold::e_faceA; + manifold->localNormal = normals[vertIndex1]; + manifold->localPoint = faceCenter; + manifold->points[0].localPoint = circleB->m_p; + manifold->points[0].id.key = 0; + } +} diff --git a/Source/external/Box2D/Collision/b2CollideEdge.cpp b/Source/external/Box2D/Collision/b2CollideEdge.cpp new file mode 100644 index 0000000..793d714 --- /dev/null +++ b/Source/external/Box2D/Collision/b2CollideEdge.cpp @@ -0,0 +1,698 @@ +/* + * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org + * + * This software is provided 'as-is', without any express or implied + * warranty. In no event will the authors be held liable for any damages + * arising from the use of this software. + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to the following restrictions: + * 1. The origin of this software must not be misrepresented; you must not + * claim that you wrote the original software. If you use this software + * in a product, an acknowledgment in the product documentation would be + * appreciated but is not required. + * 2. Altered source versions must be plainly marked as such, and must not be + * misrepresented as being the original software. + * 3. This notice may not be removed or altered from any source distribution. + */ + +#include "Box2D/Collision/b2Collision.h" +#include "Box2D/Collision/Shapes/b2CircleShape.h" +#include "Box2D/Collision/Shapes/b2EdgeShape.h" +#include "Box2D/Collision/Shapes/b2PolygonShape.h" + + +// Compute contact points for edge versus circle. +// This accounts for edge connectivity. +void b2CollideEdgeAndCircle(b2Manifold* manifold, + const b2EdgeShape* edgeA, const b2Transform& xfA, + const b2CircleShape* circleB, const b2Transform& xfB) +{ + manifold->pointCount = 0; + + // Compute circle in frame of edge + b2Vec2 Q = b2MulT(xfA, b2Mul(xfB, circleB->m_p)); + + b2Vec2 A = edgeA->m_vertex1, B = edgeA->m_vertex2; + b2Vec2 e = B - A; + + // Barycentric coordinates + float32 u = b2Dot(e, B - Q); + float32 v = b2Dot(e, Q - A); + + float32 radius = edgeA->m_radius + circleB->m_radius; + + b2ContactFeature cf; + cf.indexB = 0; + cf.typeB = b2ContactFeature::e_vertex; + + // Region A + if (v <= 0.0f) + { + b2Vec2 P = A; + b2Vec2 d = Q - P; + float32 dd = b2Dot(d, d); + if (dd > radius * radius) + { + return; + } + + // Is there an edge connected to A? + if (edgeA->m_hasVertex0) + { + b2Vec2 A1 = edgeA->m_vertex0; + b2Vec2 B1 = A; + b2Vec2 e1 = B1 - A1; + float32 u1 = b2Dot(e1, B1 - Q); + + // Is the circle in Region AB of the previous edge? + if (u1 > 0.0f) + { + return; + } + } + + cf.indexA = 0; + cf.typeA = b2ContactFeature::e_vertex; + manifold->pointCount = 1; + manifold->type = b2Manifold::e_circles; + manifold->localNormal.SetZero(); + manifold->localPoint = P; + manifold->points[0].id.key = 0; + manifold->points[0].id.cf = cf; + manifold->points[0].localPoint = circleB->m_p; + return; + } + + // Region B + if (u <= 0.0f) + { + b2Vec2 P = B; + b2Vec2 d = Q - P; + float32 dd = b2Dot(d, d); + if (dd > radius * radius) + { + return; + } + + // Is there an edge connected to B? + if (edgeA->m_hasVertex3) + { + b2Vec2 B2 = edgeA->m_vertex3; + b2Vec2 A2 = B; + b2Vec2 e2 = B2 - A2; + float32 v2 = b2Dot(e2, Q - A2); + + // Is the circle in Region AB of the next edge? + if (v2 > 0.0f) + { + return; + } + } + + cf.indexA = 1; + cf.typeA = b2ContactFeature::e_vertex; + manifold->pointCount = 1; + manifold->type = b2Manifold::e_circles; + manifold->localNormal.SetZero(); + manifold->localPoint = P; + manifold->points[0].id.key = 0; + manifold->points[0].id.cf = cf; + manifold->points[0].localPoint = circleB->m_p; + return; + } + + // Region AB + float32 den = b2Dot(e, e); + b2Assert(den > 0.0f); + b2Vec2 P = (1.0f / den) * (u * A + v * B); + b2Vec2 d = Q - P; + float32 dd = b2Dot(d, d); + if (dd > radius * radius) + { + return; + } + + b2Vec2 n(-e.y, e.x); + if (b2Dot(n, Q - A) < 0.0f) + { + n.Set(-n.x, -n.y); + } + n.Normalize(); + + cf.indexA = 0; + cf.typeA = b2ContactFeature::e_face; + manifold->pointCount = 1; + manifold->type = b2Manifold::e_faceA; + manifold->localNormal = n; + manifold->localPoint = A; + manifold->points[0].id.key = 0; + manifold->points[0].id.cf = cf; + manifold->points[0].localPoint = circleB->m_p; +} + +// This structure is used to keep track of the best separating axis. +struct b2EPAxis +{ + enum Type + { + e_unknown, + e_edgeA, + e_edgeB + }; + + Type type; + int32 index; + float32 separation; +}; + +// This holds polygon B expressed in frame A. +struct b2TempPolygon +{ + b2Vec2 vertices[b2_maxPolygonVertices]; + b2Vec2 normals[b2_maxPolygonVertices]; + int32 count; +}; + +// Reference face used for clipping +struct b2ReferenceFace +{ + int32 i1, i2; + + b2Vec2 v1, v2; + + b2Vec2 normal; + + b2Vec2 sideNormal1; + float32 sideOffset1; + + b2Vec2 sideNormal2; + float32 sideOffset2; +}; + +// This class collides and edge and a polygon, taking into account edge adjacency. +struct b2EPCollider +{ + void Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA, + const b2PolygonShape* polygonB, const b2Transform& xfB); + b2EPAxis ComputeEdgeSeparation(); + b2EPAxis ComputePolygonSeparation(); + + enum VertexType + { + e_isolated, + e_concave, + e_convex + }; + + b2TempPolygon m_polygonB; + + b2Transform m_xf; + b2Vec2 m_centroidB; + b2Vec2 m_v0, m_v1, m_v2, m_v3; + b2Vec2 m_normal0, m_normal1, m_normal2; + b2Vec2 m_normal; + VertexType m_type1, m_type2; + b2Vec2 m_lowerLimit, m_upperLimit; + float32 m_radius; + bool m_front; +}; + +// Algorithm: +// 1. Classify v1 and v2 +// 2. Classify polygon centroid as front or back +// 3. Flip normal if necessary +// 4. Initialize normal range to [-pi, pi] about face normal +// 5. Adjust normal range according to adjacent edges +// 6. Visit each separating axes, only accept axes within the range +// 7. Return if _any_ axis indicates separation +// 8. Clip +void b2EPCollider::Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA, + const b2PolygonShape* polygonB, const b2Transform& xfB) +{ + m_xf = b2MulT(xfA, xfB); + + m_centroidB = b2Mul(m_xf, polygonB->m_centroid); + + m_v0 = edgeA->m_vertex0; + m_v1 = edgeA->m_vertex1; + m_v2 = edgeA->m_vertex2; + m_v3 = edgeA->m_vertex3; + + bool hasVertex0 = edgeA->m_hasVertex0; + bool hasVertex3 = edgeA->m_hasVertex3; + + b2Vec2 edge1 = m_v2 - m_v1; + edge1.Normalize(); + m_normal1.Set(edge1.y, -edge1.x); + float32 offset1 = b2Dot(m_normal1, m_centroidB - m_v1); + float32 offset0 = 0.0f, offset2 = 0.0f; + bool convex1 = false, convex2 = false; + + // Is there a preceding edge? + if (hasVertex0) + { + b2Vec2 edge0 = m_v1 - m_v0; + edge0.Normalize(); + m_normal0.Set(edge0.y, -edge0.x); + convex1 = b2Cross(edge0, edge1) >= 0.0f; + offset0 = b2Dot(m_normal0, m_centroidB - m_v0); + } + + // Is there a following edge? + if (hasVertex3) + { + b2Vec2 edge2 = m_v3 - m_v2; + edge2.Normalize(); + m_normal2.Set(edge2.y, -edge2.x); + convex2 = b2Cross(edge1, edge2) > 0.0f; + offset2 = b2Dot(m_normal2, m_centroidB - m_v2); + } + + // Determine front or back collision. Determine collision normal limits. + if (hasVertex0 && hasVertex3) + { + if (convex1 && convex2) + { + m_front = offset0 >= 0.0f || offset1 >= 0.0f || offset2 >= 0.0f; + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = m_normal0; + m_upperLimit = m_normal2; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = -m_normal1; + m_upperLimit = -m_normal1; + } + } + else if (convex1) + { + m_front = offset0 >= 0.0f || (offset1 >= 0.0f && offset2 >= 0.0f); + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = m_normal0; + m_upperLimit = m_normal1; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = -m_normal2; + m_upperLimit = -m_normal1; + } + } + else if (convex2) + { + m_front = offset2 >= 0.0f || (offset0 >= 0.0f && offset1 >= 0.0f); + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = m_normal1; + m_upperLimit = m_normal2; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = -m_normal1; + m_upperLimit = -m_normal0; + } + } + else + { + m_front = offset0 >= 0.0f && offset1 >= 0.0f && offset2 >= 0.0f; + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = m_normal1; + m_upperLimit = m_normal1; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = -m_normal2; + m_upperLimit = -m_normal0; + } + } + } + else if (hasVertex0) + { + if (convex1) + { + m_front = offset0 >= 0.0f || offset1 >= 0.0f; + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = m_normal0; + m_upperLimit = -m_normal1; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = m_normal1; + m_upperLimit = -m_normal1; + } + } + else + { + m_front = offset0 >= 0.0f && offset1 >= 0.0f; + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = m_normal1; + m_upperLimit = -m_normal1; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = m_normal1; + m_upperLimit = -m_normal0; + } + } + } + else if (hasVertex3) + { + if (convex2) + { + m_front = offset1 >= 0.0f || offset2 >= 0.0f; + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = -m_normal1; + m_upperLimit = m_normal2; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = -m_normal1; + m_upperLimit = m_normal1; + } + } + else + { + m_front = offset1 >= 0.0f && offset2 >= 0.0f; + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = -m_normal1; + m_upperLimit = m_normal1; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = -m_normal2; + m_upperLimit = m_normal1; + } + } + } + else + { + m_front = offset1 >= 0.0f; + if (m_front) + { + m_normal = m_normal1; + m_lowerLimit = -m_normal1; + m_upperLimit = -m_normal1; + } + else + { + m_normal = -m_normal1; + m_lowerLimit = m_normal1; + m_upperLimit = m_normal1; + } + } + + // Get polygonB in frameA + m_polygonB.count = polygonB->m_count; + for (int32 i = 0; i < polygonB->m_count; ++i) + { + m_polygonB.vertices[i] = b2Mul(m_xf, polygonB->m_vertices[i]); + m_polygonB.normals[i] = b2Mul(m_xf.q, polygonB->m_normals[i]); + } + + m_radius = polygonB->m_radius + edgeA->m_radius; + + manifold->pointCount = 0; + + b2EPAxis edgeAxis = ComputeEdgeSeparation(); + + // If no valid normal can be found than this edge should not collide. + if (edgeAxis.type == b2EPAxis::e_unknown) + { + return; + } + + if (edgeAxis.separation > m_radius) + { + return; + } + + b2EPAxis polygonAxis = ComputePolygonSeparation(); + if (polygonAxis.type != b2EPAxis::e_unknown && polygonAxis.separation > m_radius) + { + return; + } + + // Use hysteresis for jitter reduction. + const float32 k_relativeTol = 0.98f; + const float32 k_absoluteTol = 0.001f; + + b2EPAxis primaryAxis; + if (polygonAxis.type == b2EPAxis::e_unknown) + { + primaryAxis = edgeAxis; + } + else if (polygonAxis.separation > k_relativeTol * edgeAxis.separation + k_absoluteTol) + { + primaryAxis = polygonAxis; + } + else + { + primaryAxis = edgeAxis; + } + + b2ClipVertex ie[2]; + b2ReferenceFace rf; + if (primaryAxis.type == b2EPAxis::e_edgeA) + { + manifold->type = b2Manifold::e_faceA; + + // Search for the polygon normal that is most anti-parallel to the edge normal. + int32 bestIndex = 0; + float32 bestValue = b2Dot(m_normal, m_polygonB.normals[0]); + for (int32 i = 1; i < m_polygonB.count; ++i) + { + float32 value = b2Dot(m_normal, m_polygonB.normals[i]); + if (value < bestValue) + { + bestValue = value; + bestIndex = i; + } + } + + int32 i1 = bestIndex; + int32 i2 = i1 + 1 < m_polygonB.count ? i1 + 1 : 0; + + ie[0].v = m_polygonB.vertices[i1]; + ie[0].id.cf.indexA = 0; + ie[0].id.cf.indexB = static_cast<uint8>(i1); + ie[0].id.cf.typeA = b2ContactFeature::e_face; + ie[0].id.cf.typeB = b2ContactFeature::e_vertex; + + ie[1].v = m_polygonB.vertices[i2]; + ie[1].id.cf.indexA = 0; + ie[1].id.cf.indexB = static_cast<uint8>(i2); + ie[1].id.cf.typeA = b2ContactFeature::e_face; + ie[1].id.cf.typeB = b2ContactFeature::e_vertex; + + if (m_front) + { + rf.i1 = 0; + rf.i2 = 1; + rf.v1 = m_v1; + rf.v2 = m_v2; + rf.normal = m_normal1; + } + else + { + rf.i1 = 1; + rf.i2 = 0; + rf.v1 = m_v2; + rf.v2 = m_v1; + rf.normal = -m_normal1; + } + } + else + { + manifold->type = b2Manifold::e_faceB; + + ie[0].v = m_v1; + ie[0].id.cf.indexA = 0; + ie[0].id.cf.indexB = static_cast<uint8>(primaryAxis.index); + ie[0].id.cf.typeA = b2ContactFeature::e_vertex; + ie[0].id.cf.typeB = b2ContactFeature::e_face; + + ie[1].v = m_v2; + ie[1].id.cf.indexA = 0; + ie[1].id.cf.indexB = static_cast<uint8>(primaryAxis.index); + ie[1].id.cf.typeA = b2ContactFeature::e_vertex; + ie[1].id.cf.typeB = b2ContactFeature::e_face; + + rf.i1 = primaryAxis.index; + rf.i2 = rf.i1 + 1 < m_polygonB.count ? rf.i1 + 1 : 0; + rf.v1 = m_polygonB.vertices[rf.i1]; + rf.v2 = m_polygonB.vertices[rf.i2]; + rf.normal = m_polygonB.normals[rf.i1]; + } + + rf.sideNormal1.Set(rf.normal.y, -rf.normal.x); + rf.sideNormal2 = -rf.sideNormal1; + rf.sideOffset1 = b2Dot(rf.sideNormal1, rf.v1); + rf.sideOffset2 = b2Dot(rf.sideNormal2, rf.v2); + + // Clip incident edge against extruded edge1 side edges. + b2ClipVertex clipPoints1[2]; + b2ClipVertex clipPoints2[2]; + int32 np; + + // Clip to box side 1 + np = b2ClipSegmentToLine(clipPoints1, ie, rf.sideNormal1, rf.sideOffset1, rf.i1); + + if (np < b2_maxManifoldPoints) + { + return; + } + + // Clip to negative box side 1 + np = b2ClipSegmentToLine(clipPoints2, clipPoints1, rf.sideNormal2, rf.sideOffset2, rf.i2); + + if (np < b2_maxManifoldPoints) + { + return; + } + + // Now clipPoints2 contains the clipped points. + if (primaryAxis.type == b2EPAxis::e_edgeA) + { + manifold->localNormal = rf.normal; + manifold->localPoint = rf.v1; + } + else + { + manifold->localNormal = polygonB->m_normals[rf.i1]; + manifold->localPoint = polygonB->m_vertices[rf.i1]; + } + + int32 pointCount = 0; + for (int32 i = 0; i < b2_maxManifoldPoints; ++i) + { + float32 separation; + + separation = b2Dot(rf.normal, clipPoints2[i].v - rf.v1); + + if (separation <= m_radius) + { + b2ManifoldPoint* cp = manifold->points + pointCount; + + if (primaryAxis.type == b2EPAxis::e_edgeA) + { + cp->localPoint = b2MulT(m_xf, clipPoints2[i].v); + cp->id = clipPoints2[i].id; + } + else + { + cp->localPoint = clipPoints2[i].v; + cp->id.cf.typeA = clipPoints2[i].id.cf.typeB; + cp->id.cf.typeB = clipPoints2[i].id.cf.typeA; + cp->id.cf.indexA = clipPoints2[i].id.cf.indexB; + cp->id.cf.indexB = clipPoints2[i].id.cf.indexA; + } + + ++pointCount; + } + } + + manifold->pointCount = pointCount; +} + +b2EPAxis b2EPCollider::ComputeEdgeSeparation() +{ + b2EPAxis axis; + axis.type = b2EPAxis::e_edgeA; + axis.index = m_front ? 0 : 1; + axis.separation = FLT_MAX; + + for (int32 i = 0; i < m_polygonB.count; ++i) + { + float32 s = b2Dot(m_normal, m_polygonB.vertices[i] - m_v1); + if (s < axis.separation) + { + axis.separation = s; + } + } + + return axis; +} + +b2EPAxis b2EPCollider::ComputePolygonSeparation() +{ + b2EPAxis axis; + axis.type = b2EPAxis::e_unknown; + axis.index = -1; + axis.separation = -FLT_MAX; + + b2Vec2 perp(-m_normal.y, m_normal.x); + + for (int32 i = 0; i < m_polygonB.count; ++i) + { + b2Vec2 n = -m_polygonB.normals[i]; + + float32 s1 = b2Dot(n, m_polygonB.vertices[i] - m_v1); + float32 s2 = b2Dot(n, m_polygonB.vertices[i] - m_v2); + float32 s = b2Min(s1, s2); + + if (s > m_radius) + { + // No collision + axis.type = b2EPAxis::e_edgeB; + axis.index = i; + axis.separation = s; + return axis; + } + + // Adjacency + if (b2Dot(n, perp) >= 0.0f) + { + if (b2Dot(n - m_upperLimit, m_normal) < -b2_angularSlop) + { + continue; + } + } + else + { + if (b2Dot(n - m_lowerLimit, m_normal) < -b2_angularSlop) + { + continue; + } + } + + if (s > axis.separation) + { + axis.type = b2EPAxis::e_edgeB; + axis.index = i; + axis.separation = s; + } + } + + return axis; +} + +void b2CollideEdgeAndPolygon( b2Manifold* manifold, + const b2EdgeShape* edgeA, const b2Transform& xfA, + const b2PolygonShape* polygonB, const b2Transform& xfB) +{ + b2EPCollider collider; + collider.Collide(manifold, edgeA, xfA, polygonB, xfB); +} diff --git a/Source/external/Box2D/Collision/b2CollidePolygon.cpp b/Source/external/Box2D/Collision/b2CollidePolygon.cpp new file mode 100644 index 0000000..10211e7 --- /dev/null +++ b/Source/external/Box2D/Collision/b2CollidePolygon.cpp @@ -0,0 +1,239 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2Collision.h" +#include "Box2D/Collision/Shapes/b2PolygonShape.h" + +// Find the max separation between poly1 and poly2 using edge normals from poly1. +static float32 b2FindMaxSeparation(int32* edgeIndex, + const b2PolygonShape* poly1, const b2Transform& xf1, + const b2PolygonShape* poly2, const b2Transform& xf2) +{ + int32 count1 = poly1->m_count; + int32 count2 = poly2->m_count; + const b2Vec2* n1s = poly1->m_normals; + const b2Vec2* v1s = poly1->m_vertices; + const b2Vec2* v2s = poly2->m_vertices; + b2Transform xf = b2MulT(xf2, xf1); + + int32 bestIndex = 0; + float32 maxSeparation = -b2_maxFloat; + for (int32 i = 0; i < count1; ++i) + { + // Get poly1 normal in frame2. + b2Vec2 n = b2Mul(xf.q, n1s[i]); + b2Vec2 v1 = b2Mul(xf, v1s[i]); + + // Find deepest point for normal i. + float32 si = b2_maxFloat; + for (int32 j = 0; j < count2; ++j) + { + float32 sij = b2Dot(n, v2s[j] - v1); + if (sij < si) + { + si = sij; + } + } + + if (si > maxSeparation) + { + maxSeparation = si; + bestIndex = i; + } + } + + *edgeIndex = bestIndex; + return maxSeparation; +} + +static void b2FindIncidentEdge(b2ClipVertex c[2], + const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1, + const b2PolygonShape* poly2, const b2Transform& xf2) +{ + const b2Vec2* normals1 = poly1->m_normals; + + int32 count2 = poly2->m_count; + const b2Vec2* vertices2 = poly2->m_vertices; + const b2Vec2* normals2 = poly2->m_normals; + + b2Assert(0 <= edge1 && edge1 < poly1->m_count); + + // Get the normal of the reference edge in poly2's frame. + b2Vec2 normal1 = b2MulT(xf2.q, b2Mul(xf1.q, normals1[edge1])); + + // Find the incident edge on poly2. + int32 index = 0; + float32 minDot = b2_maxFloat; + for (int32 i = 0; i < count2; ++i) + { + float32 dot = b2Dot(normal1, normals2[i]); + if (dot < minDot) + { + minDot = dot; + index = i; + } + } + + // Build the clip vertices for the incident edge. + int32 i1 = index; + int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0; + + c[0].v = b2Mul(xf2, vertices2[i1]); + c[0].id.cf.indexA = (uint8)edge1; + c[0].id.cf.indexB = (uint8)i1; + c[0].id.cf.typeA = b2ContactFeature::e_face; + c[0].id.cf.typeB = b2ContactFeature::e_vertex; + + c[1].v = b2Mul(xf2, vertices2[i2]); + c[1].id.cf.indexA = (uint8)edge1; + c[1].id.cf.indexB = (uint8)i2; + c[1].id.cf.typeA = b2ContactFeature::e_face; + c[1].id.cf.typeB = b2ContactFeature::e_vertex; +} + +// Find edge normal of max separation on A - return if separating axis is found +// Find edge normal of max separation on B - return if separation axis is found +// Choose reference edge as min(minA, minB) +// Find incident edge +// Clip + +// The normal points from 1 to 2 +void b2CollidePolygons(b2Manifold* manifold, + const b2PolygonShape* polyA, const b2Transform& xfA, + const b2PolygonShape* polyB, const b2Transform& xfB) +{ + manifold->pointCount = 0; + float32 totalRadius = polyA->m_radius + polyB->m_radius; + + int32 edgeA = 0; + float32 separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB); + if (separationA > totalRadius) + return; + + int32 edgeB = 0; + float32 separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA); + if (separationB > totalRadius) + return; + + const b2PolygonShape* poly1; // reference polygon + const b2PolygonShape* poly2; // incident polygon + b2Transform xf1, xf2; + int32 edge1; // reference edge + uint8 flip; + const float32 k_tol = 0.1f * b2_linearSlop; + + if (separationB > separationA + k_tol) + { + poly1 = polyB; + poly2 = polyA; + xf1 = xfB; + xf2 = xfA; + edge1 = edgeB; + manifold->type = b2Manifold::e_faceB; + flip = 1; + } + else + { + poly1 = polyA; + poly2 = polyB; + xf1 = xfA; + xf2 = xfB; + edge1 = edgeA; + manifold->type = b2Manifold::e_faceA; + flip = 0; + } + + b2ClipVertex incidentEdge[2]; + b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2); + + int32 count1 = poly1->m_count; + const b2Vec2* vertices1 = poly1->m_vertices; + + int32 iv1 = edge1; + int32 iv2 = edge1 + 1 < count1 ? edge1 + 1 : 0; + + b2Vec2 v11 = vertices1[iv1]; + b2Vec2 v12 = vertices1[iv2]; + + b2Vec2 localTangent = v12 - v11; + localTangent.Normalize(); + + b2Vec2 localNormal = b2Cross(localTangent, 1.0f); + b2Vec2 planePoint = 0.5f * (v11 + v12); + + b2Vec2 tangent = b2Mul(xf1.q, localTangent); + b2Vec2 normal = b2Cross(tangent, 1.0f); + + v11 = b2Mul(xf1, v11); + v12 = b2Mul(xf1, v12); + + // Face offset. + float32 frontOffset = b2Dot(normal, v11); + + // Side offsets, extended by polytope skin thickness. + float32 sideOffset1 = -b2Dot(tangent, v11) + totalRadius; + float32 sideOffset2 = b2Dot(tangent, v12) + totalRadius; + + // Clip incident edge against extruded edge1 side edges. + b2ClipVertex clipPoints1[2]; + b2ClipVertex clipPoints2[2]; + int np; + + // Clip to box side 1 + np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1, iv1); + + if (np < 2) + return; + + // Clip to negative box side 1 + np = b2ClipSegmentToLine(clipPoints2, clipPoints1, tangent, sideOffset2, iv2); + + if (np < 2) + { + return; + } + + // Now clipPoints2 contains the clipped points. + manifold->localNormal = localNormal; + manifold->localPoint = planePoint; + + int32 pointCount = 0; + for (int32 i = 0; i < b2_maxManifoldPoints; ++i) + { + float32 separation = b2Dot(normal, clipPoints2[i].v) - frontOffset; + + if (separation <= totalRadius) + { + b2ManifoldPoint* cp = manifold->points + pointCount; + cp->localPoint = b2MulT(xf2, clipPoints2[i].v); + cp->id = clipPoints2[i].id; + if (flip) + { + // Swap features + b2ContactFeature cf = cp->id.cf; + cp->id.cf.indexA = cf.indexB; + cp->id.cf.indexB = cf.indexA; + cp->id.cf.typeA = cf.typeB; + cp->id.cf.typeB = cf.typeA; + } + ++pointCount; + } + } + + manifold->pointCount = pointCount; +} diff --git a/Source/external/Box2D/Collision/b2Collision.cpp b/Source/external/Box2D/Collision/b2Collision.cpp new file mode 100644 index 0000000..10e0b59 --- /dev/null +++ b/Source/external/Box2D/Collision/b2Collision.cpp @@ -0,0 +1,252 @@ +/* +* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2Collision.h" +#include "Box2D/Collision/b2Distance.h" + +void b2WorldManifold::Initialize(const b2Manifold* manifold, + const b2Transform& xfA, float32 radiusA, + const b2Transform& xfB, float32 radiusB) +{ + if (manifold->pointCount == 0) + { + return; + } + + switch (manifold->type) + { + case b2Manifold::e_circles: + { + normal.Set(1.0f, 0.0f); + b2Vec2 pointA = b2Mul(xfA, manifold->localPoint); + b2Vec2 pointB = b2Mul(xfB, manifold->points[0].localPoint); + if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon) + { + normal = pointB - pointA; + normal.Normalize(); + } + + b2Vec2 cA = pointA + radiusA * normal; + b2Vec2 cB = pointB - radiusB * normal; + points[0] = 0.5f * (cA + cB); + separations[0] = b2Dot(cB - cA, normal); + } + break; + + case b2Manifold::e_faceA: + { + normal = b2Mul(xfA.q, manifold->localNormal); + b2Vec2 planePoint = b2Mul(xfA, manifold->localPoint); + + for (int32 i = 0; i < manifold->pointCount; ++i) + { + b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint); + b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, normal)) * normal; + b2Vec2 cB = clipPoint - radiusB * normal; + points[i] = 0.5f * (cA + cB); + separations[i] = b2Dot(cB - cA, normal); + } + } + break; + + case b2Manifold::e_faceB: + { + normal = b2Mul(xfB.q, manifold->localNormal); + b2Vec2 planePoint = b2Mul(xfB, manifold->localPoint); + + for (int32 i = 0; i < manifold->pointCount; ++i) + { + b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint); + b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, normal)) * normal; + b2Vec2 cA = clipPoint - radiusA * normal; + points[i] = 0.5f * (cA + cB); + separations[i] = b2Dot(cA - cB, normal); + } + + // Ensure normal points from A to B. + normal = -normal; + } + break; + } +} + +void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints], + const b2Manifold* manifold1, const b2Manifold* manifold2) +{ + for (int32 i = 0; i < b2_maxManifoldPoints; ++i) + { + state1[i] = b2_nullState; + state2[i] = b2_nullState; + } + + // Detect persists and removes. + for (int32 i = 0; i < manifold1->pointCount; ++i) + { + b2ContactID id = manifold1->points[i].id; + + state1[i] = b2_removeState; + + for (int32 j = 0; j < manifold2->pointCount; ++j) + { + if (manifold2->points[j].id.key == id.key) + { + state1[i] = b2_persistState; + break; + } + } + } + + // Detect persists and adds. + for (int32 i = 0; i < manifold2->pointCount; ++i) + { + b2ContactID id = manifold2->points[i].id; + + state2[i] = b2_addState; + + for (int32 j = 0; j < manifold1->pointCount; ++j) + { + if (manifold1->points[j].id.key == id.key) + { + state2[i] = b2_persistState; + break; + } + } + } +} + +// From Real-time Collision Detection, p179. +bool b2AABB::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const +{ + float32 tmin = -b2_maxFloat; + float32 tmax = b2_maxFloat; + + b2Vec2 p = input.p1; + b2Vec2 d = input.p2 - input.p1; + b2Vec2 absD = b2Abs(d); + + b2Vec2 normal; + + for (int32 i = 0; i < 2; ++i) + { + if (absD(i) < b2_epsilon) + { + // Parallel. + if (p(i) < lowerBound(i) || upperBound(i) < p(i)) + { + return false; + } + } + else + { + float32 inv_d = 1.0f / d(i); + float32 t1 = (lowerBound(i) - p(i)) * inv_d; + float32 t2 = (upperBound(i) - p(i)) * inv_d; + + // Sign of the normal vector. + float32 s = -1.0f; + + if (t1 > t2) + { + b2Swap(t1, t2); + s = 1.0f; + } + + // Push the min up + if (t1 > tmin) + { + normal.SetZero(); + normal(i) = s; + tmin = t1; + } + + // Pull the max down + tmax = b2Min(tmax, t2); + + if (tmin > tmax) + { + return false; + } + } + } + + // Does the ray start inside the box? + // Does the ray intersect beyond the max fraction? + if (tmin < 0.0f || input.maxFraction < tmin) + { + return false; + } + + // Intersection. + output->fraction = tmin; + output->normal = normal; + return true; +} + +// Sutherland-Hodgman clipping. +int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2], + const b2Vec2& normal, float32 offset, int32 vertexIndexA) +{ + // Start with no output points + int32 numOut = 0; + + // Calculate the distance of end points to the line + float32 distance0 = b2Dot(normal, vIn[0].v) - offset; + float32 distance1 = b2Dot(normal, vIn[1].v) - offset; + + // If the points are behind the plane + if (distance0 <= 0.0f) vOut[numOut++] = vIn[0]; + if (distance1 <= 0.0f) vOut[numOut++] = vIn[1]; + + // If the points are on different sides of the plane + if (distance0 * distance1 < 0.0f) + { + // Find intersection point of edge and plane + float32 interp = distance0 / (distance0 - distance1); + vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v); + + // VertexA is hitting edgeB. + vOut[numOut].id.cf.indexA = static_cast<uint8>(vertexIndexA); + vOut[numOut].id.cf.indexB = vIn[0].id.cf.indexB; + vOut[numOut].id.cf.typeA = b2ContactFeature::e_vertex; + vOut[numOut].id.cf.typeB = b2ContactFeature::e_face; + ++numOut; + } + + return numOut; +} + +bool b2TestOverlap( const b2Shape* shapeA, int32 indexA, + const b2Shape* shapeB, int32 indexB, + const b2Transform& xfA, const b2Transform& xfB) +{ + b2DistanceInput input; + input.proxyA.Set(shapeA, indexA); + input.proxyB.Set(shapeB, indexB); + input.transformA = xfA; + input.transformB = xfB; + input.useRadii = true; + + b2SimplexCache cache; + cache.count = 0; + + b2DistanceOutput output; + + b2Distance(&output, &cache, &input); + + return output.distance < 10.0f * b2_epsilon; +} diff --git a/Source/external/Box2D/Collision/b2Collision.h b/Source/external/Box2D/Collision/b2Collision.h new file mode 100644 index 0000000..fe1f4cd --- /dev/null +++ b/Source/external/Box2D/Collision/b2Collision.h @@ -0,0 +1,277 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_COLLISION_H +#define B2_COLLISION_H + +#include "Box2D/Common/b2Math.h" +#include <limits.h> + +/// @file +/// Structures and functions used for computing contact points, distance +/// queries, and TOI queries. + +class b2Shape; +class b2CircleShape; +class b2EdgeShape; +class b2PolygonShape; + +const uint8 b2_nullFeature = UCHAR_MAX; + +/// The features that intersect to form the contact point +/// This must be 4 bytes or less. +struct b2ContactFeature +{ + enum Type + { + e_vertex = 0, + e_face = 1 + }; + + uint8 indexA; ///< Feature index on shapeA + uint8 indexB; ///< Feature index on shapeB + uint8 typeA; ///< The feature type on shapeA + uint8 typeB; ///< The feature type on shapeB +}; + +/// Contact ids to facilitate warm starting. +union b2ContactID +{ + b2ContactFeature cf; + uint32 key; ///< Used to quickly compare contact ids. +}; + +/// A manifold point is a contact point belonging to a contact +/// manifold. It holds details related to the geometry and dynamics +/// of the contact points. +/// The local point usage depends on the manifold type: +/// -e_circles: the local center of circleB +/// -e_faceA: the local center of cirlceB or the clip point of polygonB +/// -e_faceB: the clip point of polygonA +/// This structure is stored across time steps, so we keep it small. +/// Note: the impulses are used for internal caching and may not +/// provide reliable contact forces, especially for high speed collisions. +struct b2ManifoldPoint +{ + b2Vec2 localPoint; ///< usage depends on manifold type + float32 normalImpulse; ///< the non-penetration impulse + float32 tangentImpulse; ///< the friction impulse + b2ContactID id; ///< uniquely identifies a contact point between two shapes +}; + +/// A manifold for two touching convex shapes. +/// Box2D supports multiple types of contact: +/// - clip point versus plane with radius +/// - point versus point with radius (circles) +/// The local point usage depends on the manifold type: +/// -e_circles: the local center of circleA +/// -e_faceA: the center of faceA +/// -e_faceB: the center of faceB +/// Similarly the local normal usage: +/// -e_circles: not used +/// -e_faceA: the normal on polygonA +/// -e_faceB: the normal on polygonB +/// We store contacts in this way so that position correction can +/// account for movement, which is critical for continuous physics. +/// All contact scenarios must be expressed in one of these types. +/// This structure is stored across time steps, so we keep it small. +struct b2Manifold +{ + enum Type + { + e_circles, + e_faceA, + e_faceB + }; + + b2ManifoldPoint points[b2_maxManifoldPoints]; ///< the points of contact + b2Vec2 localNormal; ///< not use for Type::e_points + b2Vec2 localPoint; ///< usage depends on manifold type + Type type; + int32 pointCount; ///< the number of manifold points +}; + +/// This is used to compute the current state of a contact manifold. +struct b2WorldManifold +{ + /// Evaluate the manifold with supplied transforms. This assumes + /// modest motion from the original state. This does not change the + /// point count, impulses, etc. The radii must come from the shapes + /// that generated the manifold. + void Initialize(const b2Manifold* manifold, + const b2Transform& xfA, float32 radiusA, + const b2Transform& xfB, float32 radiusB); + + b2Vec2 normal; ///< world vector pointing from A to B + b2Vec2 points[b2_maxManifoldPoints]; ///< world contact point (point of intersection) + float32 separations[b2_maxManifoldPoints]; ///< a negative value indicates overlap, in meters +}; + +/// This is used for determining the state of contact points. +enum b2PointState +{ + b2_nullState, ///< point does not exist + b2_addState, ///< point was added in the update + b2_persistState, ///< point persisted across the update + b2_removeState ///< point was removed in the update +}; + +/// Compute the point states given two manifolds. The states pertain to the transition from manifold1 +/// to manifold2. So state1 is either persist or remove while state2 is either add or persist. +void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints], + const b2Manifold* manifold1, const b2Manifold* manifold2); + +/// Used for computing contact manifolds. +struct b2ClipVertex +{ + b2Vec2 v; + b2ContactID id; +}; + +/// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). +struct b2RayCastInput +{ + b2Vec2 p1, p2; + float32 maxFraction; +}; + +/// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2 +/// come from b2RayCastInput. +struct b2RayCastOutput +{ + b2Vec2 normal; + float32 fraction; +}; + +/// An axis aligned bounding box. +struct b2AABB +{ + /// Verify that the bounds are sorted. + bool IsValid() const; + + /// Get the center of the AABB. + b2Vec2 GetCenter() const + { + return 0.5f * (lowerBound + upperBound); + } + + /// Get the extents of the AABB (half-widths). + b2Vec2 GetExtents() const + { + return 0.5f * (upperBound - lowerBound); + } + + /// Get the perimeter length + float32 GetPerimeter() const + { + float32 wx = upperBound.x - lowerBound.x; + float32 wy = upperBound.y - lowerBound.y; + return 2.0f * (wx + wy); + } + + /// Combine an AABB into this one. + void Combine(const b2AABB& aabb) + { + lowerBound = b2Min(lowerBound, aabb.lowerBound); + upperBound = b2Max(upperBound, aabb.upperBound); + } + + /// Combine two AABBs into this one. + void Combine(const b2AABB& aabb1, const b2AABB& aabb2) + { + lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound); + upperBound = b2Max(aabb1.upperBound, aabb2.upperBound); + } + + /// Does this aabb contain the provided AABB. + bool Contains(const b2AABB& aabb) const + { + bool result = true; + result = result && lowerBound.x <= aabb.lowerBound.x; + result = result && lowerBound.y <= aabb.lowerBound.y; + result = result && aabb.upperBound.x <= upperBound.x; + result = result && aabb.upperBound.y <= upperBound.y; + return result; + } + + bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const; + + b2Vec2 lowerBound; ///< the lower vertex + b2Vec2 upperBound; ///< the upper vertex +}; + +/// Compute the collision manifold between two circles. +void b2CollideCircles(b2Manifold* manifold, + const b2CircleShape* circleA, const b2Transform& xfA, + const b2CircleShape* circleB, const b2Transform& xfB); + +/// Compute the collision manifold between a polygon and a circle. +void b2CollidePolygonAndCircle(b2Manifold* manifold, + const b2PolygonShape* polygonA, const b2Transform& xfA, + const b2CircleShape* circleB, const b2Transform& xfB); + +/// Compute the collision manifold between two polygons. +void b2CollidePolygons(b2Manifold* manifold, + const b2PolygonShape* polygonA, const b2Transform& xfA, + const b2PolygonShape* polygonB, const b2Transform& xfB); + +/// Compute the collision manifold between an edge and a circle. +void b2CollideEdgeAndCircle(b2Manifold* manifold, + const b2EdgeShape* polygonA, const b2Transform& xfA, + const b2CircleShape* circleB, const b2Transform& xfB); + +/// Compute the collision manifold between an edge and a circle. +void b2CollideEdgeAndPolygon(b2Manifold* manifold, + const b2EdgeShape* edgeA, const b2Transform& xfA, + const b2PolygonShape* circleB, const b2Transform& xfB); + +/// Clipping for contact manifolds. +int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2], + const b2Vec2& normal, float32 offset, int32 vertexIndexA); + +/// Determine if two generic shapes overlap. +bool b2TestOverlap( const b2Shape* shapeA, int32 indexA, + const b2Shape* shapeB, int32 indexB, + const b2Transform& xfA, const b2Transform& xfB); + +// ---------------- Inline Functions ------------------------------------------ + +inline bool b2AABB::IsValid() const +{ + b2Vec2 d = upperBound - lowerBound; + bool valid = d.x >= 0.0f && d.y >= 0.0f; + valid = valid && lowerBound.IsValid() && upperBound.IsValid(); + return valid; +} + +inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b) +{ + b2Vec2 d1, d2; + d1 = b.lowerBound - a.upperBound; + d2 = a.lowerBound - b.upperBound; + + if (d1.x > 0.0f || d1.y > 0.0f) + return false; + + if (d2.x > 0.0f || d2.y > 0.0f) + return false; + + return true; +} + +#endif diff --git a/Source/external/Box2D/Collision/b2Distance.cpp b/Source/external/Box2D/Collision/b2Distance.cpp new file mode 100644 index 0000000..194d747 --- /dev/null +++ b/Source/external/Box2D/Collision/b2Distance.cpp @@ -0,0 +1,737 @@ +/* +* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2Distance.h" +#include "Box2D/Collision/Shapes/b2CircleShape.h" +#include "Box2D/Collision/Shapes/b2EdgeShape.h" +#include "Box2D/Collision/Shapes/b2ChainShape.h" +#include "Box2D/Collision/Shapes/b2PolygonShape.h" + +// GJK using Voronoi regions (Christer Ericson) and Barycentric coordinates. +int32 b2_gjkCalls, b2_gjkIters, b2_gjkMaxIters; + +void b2DistanceProxy::Set(const b2Shape* shape, int32 index) +{ + switch (shape->GetType()) + { + case b2Shape::e_circle: + { + const b2CircleShape* circle = static_cast<const b2CircleShape*>(shape); + m_vertices = &circle->m_p; + m_count = 1; + m_radius = circle->m_radius; + } + break; + + case b2Shape::e_polygon: + { + const b2PolygonShape* polygon = static_cast<const b2PolygonShape*>(shape); + m_vertices = polygon->m_vertices; + m_count = polygon->m_count; + m_radius = polygon->m_radius; + } + break; + + case b2Shape::e_chain: + { + const b2ChainShape* chain = static_cast<const b2ChainShape*>(shape); + b2Assert(0 <= index && index < chain->m_count); + + m_buffer[0] = chain->m_vertices[index]; + if (index + 1 < chain->m_count) + { + m_buffer[1] = chain->m_vertices[index + 1]; + } + else + { + m_buffer[1] = chain->m_vertices[0]; + } + + m_vertices = m_buffer; + m_count = 2; + m_radius = chain->m_radius; + } + break; + + case b2Shape::e_edge: + { + const b2EdgeShape* edge = static_cast<const b2EdgeShape*>(shape); + m_vertices = &edge->m_vertex1; + m_count = 2; + m_radius = edge->m_radius; + } + break; + + default: + b2Assert(false); + } +} + +void b2DistanceProxy::Set(const b2Vec2* vertices, int32 count, float32 radius) +{ + m_vertices = vertices; + m_count = count; + m_radius = radius; +} + +struct b2SimplexVertex +{ + b2Vec2 wA; // support point in proxyA + b2Vec2 wB; // support point in proxyB + b2Vec2 w; // wB - wA + float32 a; // barycentric coordinate for closest point + int32 indexA; // wA index + int32 indexB; // wB index +}; + +struct b2Simplex +{ + void ReadCache( const b2SimplexCache* cache, + const b2DistanceProxy* proxyA, const b2Transform& transformA, + const b2DistanceProxy* proxyB, const b2Transform& transformB) + { + b2Assert(cache->count <= 3); + + // Copy data from cache. + m_count = cache->count; + b2SimplexVertex* vertices = &m_v1; + for (int32 i = 0; i < m_count; ++i) + { + b2SimplexVertex* v = vertices + i; + v->indexA = cache->indexA[i]; + v->indexB = cache->indexB[i]; + b2Vec2 wALocal = proxyA->GetVertex(v->indexA); + b2Vec2 wBLocal = proxyB->GetVertex(v->indexB); + v->wA = b2Mul(transformA, wALocal); + v->wB = b2Mul(transformB, wBLocal); + v->w = v->wB - v->wA; + v->a = 0.0f; + } + + // Compute the new simplex metric, if it is substantially different than + // old metric then flush the simplex. + if (m_count > 1) + { + float32 metric1 = cache->metric; + float32 metric2 = GetMetric(); + if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < b2_epsilon) + { + // Reset the simplex. + m_count = 0; + } + } + + // If the cache is empty or invalid ... + if (m_count == 0) + { + b2SimplexVertex* v = vertices + 0; + v->indexA = 0; + v->indexB = 0; + b2Vec2 wALocal = proxyA->GetVertex(0); + b2Vec2 wBLocal = proxyB->GetVertex(0); + v->wA = b2Mul(transformA, wALocal); + v->wB = b2Mul(transformB, wBLocal); + v->w = v->wB - v->wA; + v->a = 1.0f; + m_count = 1; + } + } + + void WriteCache(b2SimplexCache* cache) const + { + cache->metric = GetMetric(); + cache->count = uint16(m_count); + const b2SimplexVertex* vertices = &m_v1; + for (int32 i = 0; i < m_count; ++i) + { + cache->indexA[i] = uint8(vertices[i].indexA); + cache->indexB[i] = uint8(vertices[i].indexB); + } + } + + b2Vec2 GetSearchDirection() const + { + switch (m_count) + { + case 1: + return -m_v1.w; + + case 2: + { + b2Vec2 e12 = m_v2.w - m_v1.w; + float32 sgn = b2Cross(e12, -m_v1.w); + if (sgn > 0.0f) + { + // Origin is left of e12. + return b2Cross(1.0f, e12); + } + else + { + // Origin is right of e12. + return b2Cross(e12, 1.0f); + } + } + + default: + b2Assert(false); + return b2Vec2_zero; + } + } + + b2Vec2 GetClosestPoint() const + { + switch (m_count) + { + case 0: + b2Assert(false); + return b2Vec2_zero; + + case 1: + return m_v1.w; + + case 2: + return m_v1.a * m_v1.w + m_v2.a * m_v2.w; + + case 3: + return b2Vec2_zero; + + default: + b2Assert(false); + return b2Vec2_zero; + } + } + + void GetWitnessPoints(b2Vec2* pA, b2Vec2* pB) const + { + switch (m_count) + { + case 0: + b2Assert(false); + break; + + case 1: + *pA = m_v1.wA; + *pB = m_v1.wB; + break; + + case 2: + *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA; + *pB = m_v1.a * m_v1.wB + m_v2.a * m_v2.wB; + break; + + case 3: + *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA + m_v3.a * m_v3.wA; + *pB = *pA; + break; + + default: + b2Assert(false); + break; + } + } + + float32 GetMetric() const + { + switch (m_count) + { + case 0: + b2Assert(false); + return 0.0f; + + case 1: + return 0.0f; + + case 2: + return b2Distance(m_v1.w, m_v2.w); + + case 3: + return b2Cross(m_v2.w - m_v1.w, m_v3.w - m_v1.w); + + default: + b2Assert(false); + return 0.0f; + } + } + + void Solve2(); + void Solve3(); + + b2SimplexVertex m_v1, m_v2, m_v3; + int32 m_count; +}; + + +// Solve a line segment using barycentric coordinates. +// +// p = a1 * w1 + a2 * w2 +// a1 + a2 = 1 +// +// The vector from the origin to the closest point on the line is +// perpendicular to the line. +// e12 = w2 - w1 +// dot(p, e) = 0 +// a1 * dot(w1, e) + a2 * dot(w2, e) = 0 +// +// 2-by-2 linear system +// [1 1 ][a1] = [1] +// [w1.e12 w2.e12][a2] = [0] +// +// Define +// d12_1 = dot(w2, e12) +// d12_2 = -dot(w1, e12) +// d12 = d12_1 + d12_2 +// +// Solution +// a1 = d12_1 / d12 +// a2 = d12_2 / d12 +void b2Simplex::Solve2() +{ + b2Vec2 w1 = m_v1.w; + b2Vec2 w2 = m_v2.w; + b2Vec2 e12 = w2 - w1; + + // w1 region + float32 d12_2 = -b2Dot(w1, e12); + if (d12_2 <= 0.0f) + { + // a2 <= 0, so we clamp it to 0 + m_v1.a = 1.0f; + m_count = 1; + return; + } + + // w2 region + float32 d12_1 = b2Dot(w2, e12); + if (d12_1 <= 0.0f) + { + // a1 <= 0, so we clamp it to 0 + m_v2.a = 1.0f; + m_count = 1; + m_v1 = m_v2; + return; + } + + // Must be in e12 region. + float32 inv_d12 = 1.0f / (d12_1 + d12_2); + m_v1.a = d12_1 * inv_d12; + m_v2.a = d12_2 * inv_d12; + m_count = 2; +} + +// Possible regions: +// - points[2] +// - edge points[0]-points[2] +// - edge points[1]-points[2] +// - inside the triangle +void b2Simplex::Solve3() +{ + b2Vec2 w1 = m_v1.w; + b2Vec2 w2 = m_v2.w; + b2Vec2 w3 = m_v3.w; + + // Edge12 + // [1 1 ][a1] = [1] + // [w1.e12 w2.e12][a2] = [0] + // a3 = 0 + b2Vec2 e12 = w2 - w1; + float32 w1e12 = b2Dot(w1, e12); + float32 w2e12 = b2Dot(w2, e12); + float32 d12_1 = w2e12; + float32 d12_2 = -w1e12; + + // Edge13 + // [1 1 ][a1] = [1] + // [w1.e13 w3.e13][a3] = [0] + // a2 = 0 + b2Vec2 e13 = w3 - w1; + float32 w1e13 = b2Dot(w1, e13); + float32 w3e13 = b2Dot(w3, e13); + float32 d13_1 = w3e13; + float32 d13_2 = -w1e13; + + // Edge23 + // [1 1 ][a2] = [1] + // [w2.e23 w3.e23][a3] = [0] + // a1 = 0 + b2Vec2 e23 = w3 - w2; + float32 w2e23 = b2Dot(w2, e23); + float32 w3e23 = b2Dot(w3, e23); + float32 d23_1 = w3e23; + float32 d23_2 = -w2e23; + + // Triangle123 + float32 n123 = b2Cross(e12, e13); + + float32 d123_1 = n123 * b2Cross(w2, w3); + float32 d123_2 = n123 * b2Cross(w3, w1); + float32 d123_3 = n123 * b2Cross(w1, w2); + + // w1 region + if (d12_2 <= 0.0f && d13_2 <= 0.0f) + { + m_v1.a = 1.0f; + m_count = 1; + return; + } + + // e12 + if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) + { + float32 inv_d12 = 1.0f / (d12_1 + d12_2); + m_v1.a = d12_1 * inv_d12; + m_v2.a = d12_2 * inv_d12; + m_count = 2; + return; + } + + // e13 + if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) + { + float32 inv_d13 = 1.0f / (d13_1 + d13_2); + m_v1.a = d13_1 * inv_d13; + m_v3.a = d13_2 * inv_d13; + m_count = 2; + m_v2 = m_v3; + return; + } + + // w2 region + if (d12_1 <= 0.0f && d23_2 <= 0.0f) + { + m_v2.a = 1.0f; + m_count = 1; + m_v1 = m_v2; + return; + } + + // w3 region + if (d13_1 <= 0.0f && d23_1 <= 0.0f) + { + m_v3.a = 1.0f; + m_count = 1; + m_v1 = m_v3; + return; + } + + // e23 + if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) + { + float32 inv_d23 = 1.0f / (d23_1 + d23_2); + m_v2.a = d23_1 * inv_d23; + m_v3.a = d23_2 * inv_d23; + m_count = 2; + m_v1 = m_v3; + return; + } + + // Must be in triangle123 + float32 inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3); + m_v1.a = d123_1 * inv_d123; + m_v2.a = d123_2 * inv_d123; + m_v3.a = d123_3 * inv_d123; + m_count = 3; +} + +void b2Distance(b2DistanceOutput* output, + b2SimplexCache* cache, + const b2DistanceInput* input) +{ + ++b2_gjkCalls; + + const b2DistanceProxy* proxyA = &input->proxyA; + const b2DistanceProxy* proxyB = &input->proxyB; + + b2Transform transformA = input->transformA; + b2Transform transformB = input->transformB; + + // Initialize the simplex. + b2Simplex simplex; + simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB); + + // Get simplex vertices as an array. + b2SimplexVertex* vertices = &simplex.m_v1; + const int32 k_maxIters = 20; + + // These store the vertices of the last simplex so that we + // can check for duplicates and prevent cycling. + int32 saveA[3], saveB[3]; + int32 saveCount = 0; + + // Main iteration loop. + int32 iter = 0; + while (iter < k_maxIters) + { + // Copy simplex so we can identify duplicates. + saveCount = simplex.m_count; + for (int32 i = 0; i < saveCount; ++i) + { + saveA[i] = vertices[i].indexA; + saveB[i] = vertices[i].indexB; + } + + switch (simplex.m_count) + { + case 1: + break; + + case 2: + simplex.Solve2(); + break; + + case 3: + simplex.Solve3(); + break; + + default: + b2Assert(false); + } + + // If we have 3 points, then the origin is in the corresponding triangle. + if (simplex.m_count == 3) + { + break; + } + + // Get search direction. + b2Vec2 d = simplex.GetSearchDirection(); + + // Ensure the search direction is numerically fit. + if (d.LengthSquared() < b2_epsilon * b2_epsilon) + { + // The origin is probably contained by a line segment + // or triangle. Thus the shapes are overlapped. + + // We can't return zero here even though there may be overlap. + // In case the simplex is a point, segment, or triangle it is difficult + // to determine if the origin is contained in the CSO or very close to it. + break; + } + + // Compute a tentative new simplex vertex using support points. + b2SimplexVertex* vertex = vertices + simplex.m_count; + vertex->indexA = proxyA->GetSupport(b2MulT(transformA.q, -d)); + vertex->wA = b2Mul(transformA, proxyA->GetVertex(vertex->indexA)); + b2Vec2 wBLocal; + vertex->indexB = proxyB->GetSupport(b2MulT(transformB.q, d)); + vertex->wB = b2Mul(transformB, proxyB->GetVertex(vertex->indexB)); + vertex->w = vertex->wB - vertex->wA; + + // Iteration count is equated to the number of support point calls. + ++iter; + ++b2_gjkIters; + + // Check for duplicate support points. This is the main termination criteria. + bool duplicate = false; + for (int32 i = 0; i < saveCount; ++i) + { + if (vertex->indexA == saveA[i] && vertex->indexB == saveB[i]) + { + duplicate = true; + break; + } + } + + // If we found a duplicate support point we must exit to avoid cycling. + if (duplicate) + { + break; + } + + // New vertex is ok and needed. + ++simplex.m_count; + } + + b2_gjkMaxIters = b2Max(b2_gjkMaxIters, iter); + + // Prepare output. + simplex.GetWitnessPoints(&output->pointA, &output->pointB); + output->distance = b2Distance(output->pointA, output->pointB); + output->iterations = iter; + + // Cache the simplex. + simplex.WriteCache(cache); + + // Apply radii if requested. + if (input->useRadii) + { + float32 rA = proxyA->m_radius; + float32 rB = proxyB->m_radius; + + if (output->distance > rA + rB && output->distance > b2_epsilon) + { + // Shapes are still no overlapped. + // Move the witness points to the outer surface. + output->distance -= rA + rB; + b2Vec2 normal = output->pointB - output->pointA; + normal.Normalize(); + output->pointA += rA * normal; + output->pointB -= rB * normal; + } + else + { + // Shapes are overlapped when radii are considered. + // Move the witness points to the middle. + b2Vec2 p = 0.5f * (output->pointA + output->pointB); + output->pointA = p; + output->pointB = p; + output->distance = 0.0f; + } + } +} + +// GJK-raycast +// Algorithm by Gino van den Bergen. +// "Smooth Mesh Contacts with GJK" in Game Physics Pearls. 2010 +bool b2ShapeCast(b2ShapeCastOutput * output, const b2ShapeCastInput * input) +{ + output->iterations = 0; + output->lambda = 1.0f; + output->normal.SetZero(); + output->point.SetZero(); + + const b2DistanceProxy* proxyA = &input->proxyA; + const b2DistanceProxy* proxyB = &input->proxyB; + + float32 radiusA = b2Max(proxyA->m_radius, b2_polygonRadius); + float32 radiusB = b2Max(proxyB->m_radius, b2_polygonRadius); + float32 radius = radiusA + radiusB; + + b2Transform xfA = input->transformA; + b2Transform xfB = input->transformB; + + b2Vec2 r = input->translationB; + b2Vec2 n(0.0f, 0.0f); + float32 lambda = 0.0f; + + // Initial simplex + b2Simplex simplex; + simplex.m_count = 0; + + // Get simplex vertices as an array. + b2SimplexVertex* vertices = &simplex.m_v1; + + // Get support point in -r direction + int32 indexA = proxyA->GetSupport(b2MulT(xfA.q, -r)); + b2Vec2 wA = b2Mul(xfA, proxyA->GetVertex(indexA)); + int32 indexB = proxyB->GetSupport(b2MulT(xfB.q, r)); + b2Vec2 wB = b2Mul(xfB, proxyB->GetVertex(indexB)); + b2Vec2 v = wA - wB; + + // Sigma is the target distance between polygons + float32 sigma = b2Max(b2_polygonRadius, radius - b2_polygonRadius); + const float32 tolerance = 0.5f * b2_linearSlop; + + // Main iteration loop. + const int32 k_maxIters = 20; + int32 iter = 0; + while (iter < k_maxIters && b2Abs(v.Length() - sigma) > tolerance) + { + b2Assert(simplex.m_count < 3); + + output->iterations += 1; + + // Support in direction -v (A - B) + indexA = proxyA->GetSupport(b2MulT(xfA.q, -v)); + wA = b2Mul(xfA, proxyA->GetVertex(indexA)); + indexB = proxyB->GetSupport(b2MulT(xfB.q, v)); + wB = b2Mul(xfB, proxyB->GetVertex(indexB)); + b2Vec2 p = wA - wB; + + // -v is a normal at p + v.Normalize(); + + // Intersect ray with plane + float32 vp = b2Dot(v, p); + float32 vr = b2Dot(v, r); + if (vp - sigma > lambda * vr) + { + if (vr <= 0.0f) + { + return false; + } + + lambda = (vp - sigma) / vr; + if (lambda > 1.0f) + { + return false; + } + + n = -v; + simplex.m_count = 0; + } + + // Reverse simplex since it works with B - A. + // Shift by lambda * r because we want the closest point to the current clip point. + // Note that the support point p is not shifted because we want the plane equation + // to be formed in unshifted space. + b2SimplexVertex* vertex = vertices + simplex.m_count; + vertex->indexA = indexB; + vertex->wA = wB + lambda * r; + vertex->indexB = indexA; + vertex->wB = wA; + vertex->w = vertex->wB - vertex->wA; + vertex->a = 1.0f; + simplex.m_count += 1; + + switch (simplex.m_count) + { + case 1: + break; + + case 2: + simplex.Solve2(); + break; + + case 3: + simplex.Solve3(); + break; + + default: + b2Assert(false); + } + + // If we have 3 points, then the origin is in the corresponding triangle. + if (simplex.m_count == 3) + { + // Overlap + return false; + } + + // Get search direction. + v = simplex.GetClosestPoint(); + + // Iteration count is equated to the number of support point calls. + ++iter; + } + + // Prepare output. + b2Vec2 pointA, pointB; + simplex.GetWitnessPoints(&pointB, &pointA); + + if (v.LengthSquared() > 0.0f) + { + n = -v; + n.Normalize(); + } + + output->point = pointA + radiusA * n; + output->normal = n; + output->lambda = lambda; + output->iterations = iter; + return true; +} diff --git a/Source/external/Box2D/Collision/b2Distance.h b/Source/external/Box2D/Collision/b2Distance.h new file mode 100644 index 0000000..d6eb985 --- /dev/null +++ b/Source/external/Box2D/Collision/b2Distance.h @@ -0,0 +1,166 @@ + +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_DISTANCE_H +#define B2_DISTANCE_H + +#include "Box2D/Common/b2Math.h" + +class b2Shape; + +/// A distance proxy is used by the GJK algorithm. +/// It encapsulates any shape. +struct b2DistanceProxy +{ + b2DistanceProxy() : m_vertices(nullptr), m_count(0), m_radius(0.0f) {} + + /// Initialize the proxy using the given shape. The shape + /// must remain in scope while the proxy is in use. + void Set(const b2Shape* shape, int32 index); + + /// Initialize the proxy using a vertex cloud and radius. The vertices + /// must remain in scope while the proxy is in use. + void Set(const b2Vec2* vertices, int32 count, float32 radius); + + /// Get the supporting vertex index in the given direction. + int32 GetSupport(const b2Vec2& d) const; + + /// Get the supporting vertex in the given direction. + const b2Vec2& GetSupportVertex(const b2Vec2& d) const; + + /// Get the vertex count. + int32 GetVertexCount() const; + + /// Get a vertex by index. Used by b2Distance. + const b2Vec2& GetVertex(int32 index) const; + + b2Vec2 m_buffer[2]; + const b2Vec2* m_vertices; + int32 m_count; + float32 m_radius; +}; + +/// Used to warm start b2Distance. +/// Set count to zero on first call. +struct b2SimplexCache +{ + float32 metric; ///< length or area + uint16 count; + uint8 indexA[3]; ///< vertices on shape A + uint8 indexB[3]; ///< vertices on shape B +}; + +/// Input for b2Distance. +/// You have to option to use the shape radii +/// in the computation. Even +struct b2DistanceInput +{ + b2DistanceProxy proxyA; + b2DistanceProxy proxyB; + b2Transform transformA; + b2Transform transformB; + bool useRadii; +}; + +/// Output for b2Distance. +struct b2DistanceOutput +{ + b2Vec2 pointA; ///< closest point on shapeA + b2Vec2 pointB; ///< closest point on shapeB + float32 distance; + int32 iterations; ///< number of GJK iterations used +}; + +/// Compute the closest points between two shapes. Supports any combination of: +/// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output. +/// On the first call set b2SimplexCache.count to zero. +void b2Distance(b2DistanceOutput* output, + b2SimplexCache* cache, + const b2DistanceInput* input); + +/// Input parameters for b2ShapeCast +struct b2ShapeCastInput +{ + b2DistanceProxy proxyA; + b2DistanceProxy proxyB; + b2Transform transformA; + b2Transform transformB; + b2Vec2 translationB; +}; + +/// Output results for b2ShapeCast +struct b2ShapeCastOutput +{ + b2Vec2 point; + b2Vec2 normal; + float32 lambda; + int32 iterations; +}; + +/// Perform a linear shape cast of shape B moving and shape A fixed. Determines the hit point, normal, and translation fraction. +bool b2ShapeCast(b2ShapeCastOutput* output, const b2ShapeCastInput* input); + +////////////////////////////////////////////////////////////////////////// + +inline int32 b2DistanceProxy::GetVertexCount() const +{ + return m_count; +} + +inline const b2Vec2& b2DistanceProxy::GetVertex(int32 index) const +{ + b2Assert(0 <= index && index < m_count); + return m_vertices[index]; +} + +inline int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const +{ + int32 bestIndex = 0; + float32 bestValue = b2Dot(m_vertices[0], d); + for (int32 i = 1; i < m_count; ++i) + { + float32 value = b2Dot(m_vertices[i], d); + if (value > bestValue) + { + bestIndex = i; + bestValue = value; + } + } + + return bestIndex; +} + +inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const +{ + int32 bestIndex = 0; + float32 bestValue = b2Dot(m_vertices[0], d); + for (int32 i = 1; i < m_count; ++i) + { + float32 value = b2Dot(m_vertices[i], d); + if (value > bestValue) + { + bestIndex = i; + bestValue = value; + } + } + + return m_vertices[bestIndex]; +} + +#endif diff --git a/Source/external/Box2D/Collision/b2DynamicTree.cpp b/Source/external/Box2D/Collision/b2DynamicTree.cpp new file mode 100644 index 0000000..4432ec1 --- /dev/null +++ b/Source/external/Box2D/Collision/b2DynamicTree.cpp @@ -0,0 +1,780 @@ +/* +* Copyright (c) 2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2DynamicTree.h" +#include <string.h> + +b2DynamicTree::b2DynamicTree() +{ + m_root = b2_nullNode; + + m_nodeCapacity = 16; + m_nodeCount = 0; + m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); + memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode)); + + // Build a linked list for the free list. + for (int32 i = 0; i < m_nodeCapacity - 1; ++i) + { + m_nodes[i].next = i + 1; + m_nodes[i].height = -1; + } + m_nodes[m_nodeCapacity-1].next = b2_nullNode; + m_nodes[m_nodeCapacity-1].height = -1; + m_freeList = 0; + + m_path = 0; + + m_insertionCount = 0; +} + +b2DynamicTree::~b2DynamicTree() +{ + // This frees the entire tree in one shot. + b2Free(m_nodes); +} + +// Allocate a node from the pool. Grow the pool if necessary. +int32 b2DynamicTree::AllocateNode() +{ + // Expand the node pool as needed. + if (m_freeList == b2_nullNode) + { + b2Assert(m_nodeCount == m_nodeCapacity); + + // The free list is empty. Rebuild a bigger pool. + b2TreeNode* oldNodes = m_nodes; + m_nodeCapacity *= 2; + m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); + memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode)); + b2Free(oldNodes); + + // Build a linked list for the free list. The parent + // pointer becomes the "next" pointer. + for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i) + { + m_nodes[i].next = i + 1; + m_nodes[i].height = -1; + } + m_nodes[m_nodeCapacity-1].next = b2_nullNode; + m_nodes[m_nodeCapacity-1].height = -1; + m_freeList = m_nodeCount; + } + + // Peel a node off the free list. + int32 nodeId = m_freeList; + m_freeList = m_nodes[nodeId].next; + m_nodes[nodeId].parent = b2_nullNode; + m_nodes[nodeId].child1 = b2_nullNode; + m_nodes[nodeId].child2 = b2_nullNode; + m_nodes[nodeId].height = 0; + m_nodes[nodeId].userData = nullptr; + ++m_nodeCount; + return nodeId; +} + +// Return a node to the pool. +void b2DynamicTree::FreeNode(int32 nodeId) +{ + b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); + b2Assert(0 < m_nodeCount); + m_nodes[nodeId].next = m_freeList; + m_nodes[nodeId].height = -1; + m_freeList = nodeId; + --m_nodeCount; +} + +// Create a proxy in the tree as a leaf node. We return the index +// of the node instead of a pointer so that we can grow +// the node pool. +int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData) +{ + int32 proxyId = AllocateNode(); + + // Fatten the aabb. + b2Vec2 r(b2_aabbExtension, b2_aabbExtension); + m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r; + m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r; + m_nodes[proxyId].userData = userData; + m_nodes[proxyId].height = 0; + + InsertLeaf(proxyId); + + return proxyId; +} + +void b2DynamicTree::DestroyProxy(int32 proxyId) +{ + b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); + b2Assert(m_nodes[proxyId].IsLeaf()); + + RemoveLeaf(proxyId); + FreeNode(proxyId); +} + +bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) +{ + b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); + + b2Assert(m_nodes[proxyId].IsLeaf()); + + if (m_nodes[proxyId].aabb.Contains(aabb)) + { + return false; + } + + RemoveLeaf(proxyId); + + // Extend AABB. + b2AABB b = aabb; + b2Vec2 r(b2_aabbExtension, b2_aabbExtension); + b.lowerBound = b.lowerBound - r; + b.upperBound = b.upperBound + r; + + // Predict AABB displacement. + b2Vec2 d = b2_aabbMultiplier * displacement; + + if (d.x < 0.0f) + { + b.lowerBound.x += d.x; + } + else + { + b.upperBound.x += d.x; + } + + if (d.y < 0.0f) + { + b.lowerBound.y += d.y; + } + else + { + b.upperBound.y += d.y; + } + + m_nodes[proxyId].aabb = b; + + InsertLeaf(proxyId); + return true; +} + +void b2DynamicTree::InsertLeaf(int32 leaf) +{ + ++m_insertionCount; + + if (m_root == b2_nullNode) + { + m_root = leaf; + m_nodes[m_root].parent = b2_nullNode; + return; + } + + // Find the best sibling for this node + b2AABB leafAABB = m_nodes[leaf].aabb; + int32 index = m_root; + while (m_nodes[index].IsLeaf() == false) + { + int32 child1 = m_nodes[index].child1; + int32 child2 = m_nodes[index].child2; + + float32 area = m_nodes[index].aabb.GetPerimeter(); + + b2AABB combinedAABB; + combinedAABB.Combine(m_nodes[index].aabb, leafAABB); + float32 combinedArea = combinedAABB.GetPerimeter(); + + // Cost of creating a new parent for this node and the new leaf + float32 cost = 2.0f * combinedArea; + + // Minimum cost of pushing the leaf further down the tree + float32 inheritanceCost = 2.0f * (combinedArea - area); + + // Cost of descending into child1 + float32 cost1; + if (m_nodes[child1].IsLeaf()) + { + b2AABB aabb; + aabb.Combine(leafAABB, m_nodes[child1].aabb); + cost1 = aabb.GetPerimeter() + inheritanceCost; + } + else + { + b2AABB aabb; + aabb.Combine(leafAABB, m_nodes[child1].aabb); + float32 oldArea = m_nodes[child1].aabb.GetPerimeter(); + float32 newArea = aabb.GetPerimeter(); + cost1 = (newArea - oldArea) + inheritanceCost; + } + + // Cost of descending into child2 + float32 cost2; + if (m_nodes[child2].IsLeaf()) + { + b2AABB aabb; + aabb.Combine(leafAABB, m_nodes[child2].aabb); + cost2 = aabb.GetPerimeter() + inheritanceCost; + } + else + { + b2AABB aabb; + aabb.Combine(leafAABB, m_nodes[child2].aabb); + float32 oldArea = m_nodes[child2].aabb.GetPerimeter(); + float32 newArea = aabb.GetPerimeter(); + cost2 = newArea - oldArea + inheritanceCost; + } + + // Descend according to the minimum cost. + if (cost < cost1 && cost < cost2) + { + break; + } + + // Descend + if (cost1 < cost2) + { + index = child1; + } + else + { + index = child2; + } + } + + int32 sibling = index; + + // Create a new parent. + int32 oldParent = m_nodes[sibling].parent; + int32 newParent = AllocateNode(); + m_nodes[newParent].parent = oldParent; + m_nodes[newParent].userData = nullptr; + m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb); + m_nodes[newParent].height = m_nodes[sibling].height + 1; + + if (oldParent != b2_nullNode) + { + // The sibling was not the root. + if (m_nodes[oldParent].child1 == sibling) + { + m_nodes[oldParent].child1 = newParent; + } + else + { + m_nodes[oldParent].child2 = newParent; + } + + m_nodes[newParent].child1 = sibling; + m_nodes[newParent].child2 = leaf; + m_nodes[sibling].parent = newParent; + m_nodes[leaf].parent = newParent; + } + else + { + // The sibling was the root. + m_nodes[newParent].child1 = sibling; + m_nodes[newParent].child2 = leaf; + m_nodes[sibling].parent = newParent; + m_nodes[leaf].parent = newParent; + m_root = newParent; + } + + // Walk back up the tree fixing heights and AABBs + index = m_nodes[leaf].parent; + while (index != b2_nullNode) + { + index = Balance(index); + + int32 child1 = m_nodes[index].child1; + int32 child2 = m_nodes[index].child2; + + b2Assert(child1 != b2_nullNode); + b2Assert(child2 != b2_nullNode); + + m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); + m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); + + index = m_nodes[index].parent; + } + + //Validate(); +} + +void b2DynamicTree::RemoveLeaf(int32 leaf) +{ + if (leaf == m_root) + { + m_root = b2_nullNode; + return; + } + + int32 parent = m_nodes[leaf].parent; + int32 grandParent = m_nodes[parent].parent; + int32 sibling; + if (m_nodes[parent].child1 == leaf) + { + sibling = m_nodes[parent].child2; + } + else + { + sibling = m_nodes[parent].child1; + } + + if (grandParent != b2_nullNode) + { + // Destroy parent and connect sibling to grandParent. + if (m_nodes[grandParent].child1 == parent) + { + m_nodes[grandParent].child1 = sibling; + } + else + { + m_nodes[grandParent].child2 = sibling; + } + m_nodes[sibling].parent = grandParent; + FreeNode(parent); + + // Adjust ancestor bounds. + int32 index = grandParent; + while (index != b2_nullNode) + { + index = Balance(index); + + int32 child1 = m_nodes[index].child1; + int32 child2 = m_nodes[index].child2; + + m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); + m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); + + index = m_nodes[index].parent; + } + } + else + { + m_root = sibling; + m_nodes[sibling].parent = b2_nullNode; + FreeNode(parent); + } + + //Validate(); +} + +// Perform a left or right rotation if node A is imbalanced. +// Returns the new root index. +int32 b2DynamicTree::Balance(int32 iA) +{ + b2Assert(iA != b2_nullNode); + + b2TreeNode* A = m_nodes + iA; + if (A->IsLeaf() || A->height < 2) + { + return iA; + } + + int32 iB = A->child1; + int32 iC = A->child2; + b2Assert(0 <= iB && iB < m_nodeCapacity); + b2Assert(0 <= iC && iC < m_nodeCapacity); + + b2TreeNode* B = m_nodes + iB; + b2TreeNode* C = m_nodes + iC; + + int32 balance = C->height - B->height; + + // Rotate C up + if (balance > 1) + { + int32 iF = C->child1; + int32 iG = C->child2; + b2TreeNode* F = m_nodes + iF; + b2TreeNode* G = m_nodes + iG; + b2Assert(0 <= iF && iF < m_nodeCapacity); + b2Assert(0 <= iG && iG < m_nodeCapacity); + + // Swap A and C + C->child1 = iA; + C->parent = A->parent; + A->parent = iC; + + // A's old parent should point to C + if (C->parent != b2_nullNode) + { + if (m_nodes[C->parent].child1 == iA) + { + m_nodes[C->parent].child1 = iC; + } + else + { + b2Assert(m_nodes[C->parent].child2 == iA); + m_nodes[C->parent].child2 = iC; + } + } + else + { + m_root = iC; + } + + // Rotate + if (F->height > G->height) + { + C->child2 = iF; + A->child2 = iG; + G->parent = iA; + A->aabb.Combine(B->aabb, G->aabb); + C->aabb.Combine(A->aabb, F->aabb); + + A->height = 1 + b2Max(B->height, G->height); + C->height = 1 + b2Max(A->height, F->height); + } + else + { + C->child2 = iG; + A->child2 = iF; + F->parent = iA; + A->aabb.Combine(B->aabb, F->aabb); + C->aabb.Combine(A->aabb, G->aabb); + + A->height = 1 + b2Max(B->height, F->height); + C->height = 1 + b2Max(A->height, G->height); + } + + return iC; + } + + // Rotate B up + if (balance < -1) + { + int32 iD = B->child1; + int32 iE = B->child2; + b2TreeNode* D = m_nodes + iD; + b2TreeNode* E = m_nodes + iE; + b2Assert(0 <= iD && iD < m_nodeCapacity); + b2Assert(0 <= iE && iE < m_nodeCapacity); + + // Swap A and B + B->child1 = iA; + B->parent = A->parent; + A->parent = iB; + + // A's old parent should point to B + if (B->parent != b2_nullNode) + { + if (m_nodes[B->parent].child1 == iA) + { + m_nodes[B->parent].child1 = iB; + } + else + { + b2Assert(m_nodes[B->parent].child2 == iA); + m_nodes[B->parent].child2 = iB; + } + } + else + { + m_root = iB; + } + + // Rotate + if (D->height > E->height) + { + B->child2 = iD; + A->child1 = iE; + E->parent = iA; + A->aabb.Combine(C->aabb, E->aabb); + B->aabb.Combine(A->aabb, D->aabb); + + A->height = 1 + b2Max(C->height, E->height); + B->height = 1 + b2Max(A->height, D->height); + } + else + { + B->child2 = iE; + A->child1 = iD; + D->parent = iA; + A->aabb.Combine(C->aabb, D->aabb); + B->aabb.Combine(A->aabb, E->aabb); + + A->height = 1 + b2Max(C->height, D->height); + B->height = 1 + b2Max(A->height, E->height); + } + + return iB; + } + + return iA; +} + +int32 b2DynamicTree::GetHeight() const +{ + if (m_root == b2_nullNode) + { + return 0; + } + + return m_nodes[m_root].height; +} + +// +float32 b2DynamicTree::GetAreaRatio() const +{ + if (m_root == b2_nullNode) + { + return 0.0f; + } + + const b2TreeNode* root = m_nodes + m_root; + float32 rootArea = root->aabb.GetPerimeter(); + + float32 totalArea = 0.0f; + for (int32 i = 0; i < m_nodeCapacity; ++i) + { + const b2TreeNode* node = m_nodes + i; + if (node->height < 0) + { + // Free node in pool + continue; + } + + totalArea += node->aabb.GetPerimeter(); + } + + return totalArea / rootArea; +} + +// Compute the height of a sub-tree. +int32 b2DynamicTree::ComputeHeight(int32 nodeId) const +{ + b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); + b2TreeNode* node = m_nodes + nodeId; + + if (node->IsLeaf()) + { + return 0; + } + + int32 height1 = ComputeHeight(node->child1); + int32 height2 = ComputeHeight(node->child2); + return 1 + b2Max(height1, height2); +} + +int32 b2DynamicTree::ComputeHeight() const +{ + int32 height = ComputeHeight(m_root); + return height; +} + +void b2DynamicTree::ValidateStructure(int32 index) const +{ + if (index == b2_nullNode) + { + return; + } + + if (index == m_root) + { + b2Assert(m_nodes[index].parent == b2_nullNode); + } + + const b2TreeNode* node = m_nodes + index; + + int32 child1 = node->child1; + int32 child2 = node->child2; + + if (node->IsLeaf()) + { + b2Assert(child1 == b2_nullNode); + b2Assert(child2 == b2_nullNode); + b2Assert(node->height == 0); + return; + } + + b2Assert(0 <= child1 && child1 < m_nodeCapacity); + b2Assert(0 <= child2 && child2 < m_nodeCapacity); + + b2Assert(m_nodes[child1].parent == index); + b2Assert(m_nodes[child2].parent == index); + + ValidateStructure(child1); + ValidateStructure(child2); +} + +void b2DynamicTree::ValidateMetrics(int32 index) const +{ + if (index == b2_nullNode) + { + return; + } + + const b2TreeNode* node = m_nodes + index; + + int32 child1 = node->child1; + int32 child2 = node->child2; + + if (node->IsLeaf()) + { + b2Assert(child1 == b2_nullNode); + b2Assert(child2 == b2_nullNode); + b2Assert(node->height == 0); + return; + } + + b2Assert(0 <= child1 && child1 < m_nodeCapacity); + b2Assert(0 <= child2 && child2 < m_nodeCapacity); + + int32 height1 = m_nodes[child1].height; + int32 height2 = m_nodes[child2].height; + int32 height; + height = 1 + b2Max(height1, height2); + b2Assert(node->height == height); + + b2AABB aabb; + aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); + + b2Assert(aabb.lowerBound == node->aabb.lowerBound); + b2Assert(aabb.upperBound == node->aabb.upperBound); + + ValidateMetrics(child1); + ValidateMetrics(child2); +} + +void b2DynamicTree::Validate() const +{ +#if defined(b2DEBUG) + ValidateStructure(m_root); + ValidateMetrics(m_root); + + int32 freeCount = 0; + int32 freeIndex = m_freeList; + while (freeIndex != b2_nullNode) + { + b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity); + freeIndex = m_nodes[freeIndex].next; + ++freeCount; + } + + b2Assert(GetHeight() == ComputeHeight()); + + b2Assert(m_nodeCount + freeCount == m_nodeCapacity); +#endif +} + +int32 b2DynamicTree::GetMaxBalance() const +{ + int32 maxBalance = 0; + for (int32 i = 0; i < m_nodeCapacity; ++i) + { + const b2TreeNode* node = m_nodes + i; + if (node->height <= 1) + { + continue; + } + + b2Assert(node->IsLeaf() == false); + + int32 child1 = node->child1; + int32 child2 = node->child2; + int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height); + maxBalance = b2Max(maxBalance, balance); + } + + return maxBalance; +} + +void b2DynamicTree::RebuildBottomUp() +{ + int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32)); + int32 count = 0; + + // Build array of leaves. Free the rest. + for (int32 i = 0; i < m_nodeCapacity; ++i) + { + if (m_nodes[i].height < 0) + { + // free node in pool + continue; + } + + if (m_nodes[i].IsLeaf()) + { + m_nodes[i].parent = b2_nullNode; + nodes[count] = i; + ++count; + } + else + { + FreeNode(i); + } + } + + while (count > 1) + { + float32 minCost = b2_maxFloat; + int32 iMin = -1, jMin = -1; + for (int32 i = 0; i < count; ++i) + { + b2AABB aabbi = m_nodes[nodes[i]].aabb; + + for (int32 j = i + 1; j < count; ++j) + { + b2AABB aabbj = m_nodes[nodes[j]].aabb; + b2AABB b; + b.Combine(aabbi, aabbj); + float32 cost = b.GetPerimeter(); + if (cost < minCost) + { + iMin = i; + jMin = j; + minCost = cost; + } + } + } + + int32 index1 = nodes[iMin]; + int32 index2 = nodes[jMin]; + b2TreeNode* child1 = m_nodes + index1; + b2TreeNode* child2 = m_nodes + index2; + + int32 parentIndex = AllocateNode(); + b2TreeNode* parent = m_nodes + parentIndex; + parent->child1 = index1; + parent->child2 = index2; + parent->height = 1 + b2Max(child1->height, child2->height); + parent->aabb.Combine(child1->aabb, child2->aabb); + parent->parent = b2_nullNode; + + child1->parent = parentIndex; + child2->parent = parentIndex; + + nodes[jMin] = nodes[count-1]; + nodes[iMin] = parentIndex; + --count; + } + + m_root = nodes[0]; + b2Free(nodes); + + Validate(); +} + +void b2DynamicTree::ShiftOrigin(const b2Vec2& newOrigin) +{ + // Build array of leaves. Free the rest. + for (int32 i = 0; i < m_nodeCapacity; ++i) + { + m_nodes[i].aabb.lowerBound -= newOrigin; + m_nodes[i].aabb.upperBound -= newOrigin; + } +} diff --git a/Source/external/Box2D/Collision/b2DynamicTree.h b/Source/external/Box2D/Collision/b2DynamicTree.h new file mode 100644 index 0000000..e52b44b --- /dev/null +++ b/Source/external/Box2D/Collision/b2DynamicTree.h @@ -0,0 +1,289 @@ +/* +* Copyright (c) 2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_DYNAMIC_TREE_H +#define B2_DYNAMIC_TREE_H + +#include "Box2D/Collision/b2Collision.h" +#include "Box2D/Common/b2GrowableStack.h" + +#define b2_nullNode (-1) + +/// A node in the dynamic tree. The client does not interact with this directly. +struct b2TreeNode +{ + bool IsLeaf() const + { + return child1 == b2_nullNode; + } + + /// Enlarged AABB + b2AABB aabb; + + void* userData; + + union + { + int32 parent; + int32 next; + }; + + int32 child1; + int32 child2; + + // leaf = 0, free node = -1 + int32 height; +}; + +/// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt. +/// A dynamic tree arranges data in a binary tree to accelerate +/// queries such as volume queries and ray casts. Leafs are proxies +/// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor +/// so that the proxy AABB is bigger than the client object. This allows the client +/// object to move by small amounts without triggering a tree update. +/// +/// Nodes are pooled and relocatable, so we use node indices rather than pointers. +class b2DynamicTree +{ +public: + /// Constructing the tree initializes the node pool. + b2DynamicTree(); + + /// Destroy the tree, freeing the node pool. + ~b2DynamicTree(); + + /// Create a proxy. Provide a tight fitting AABB and a userData pointer. + int32 CreateProxy(const b2AABB& aabb, void* userData); + + /// Destroy a proxy. This asserts if the id is invalid. + void DestroyProxy(int32 proxyId); + + /// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB, + /// then the proxy is removed from the tree and re-inserted. Otherwise + /// the function returns immediately. + /// @return true if the proxy was re-inserted. + bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement); + + /// Get proxy user data. + /// @return the proxy user data or 0 if the id is invalid. + void* GetUserData(int32 proxyId) const; + + /// Get the fat AABB for a proxy. + const b2AABB& GetFatAABB(int32 proxyId) const; + + /// Query an AABB for overlapping proxies. The callback class + /// is called for each proxy that overlaps the supplied AABB. + template <typename T> + void Query(T* callback, const b2AABB& aabb) const; + + /// Ray-cast against the proxies in the tree. This relies on the callback + /// to perform a exact ray-cast in the case were the proxy contains a shape. + /// The callback also performs the any collision filtering. This has performance + /// roughly equal to k * log(n), where k is the number of collisions and n is the + /// number of proxies in the tree. + /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). + /// @param callback a callback class that is called for each proxy that is hit by the ray. + template <typename T> + void RayCast(T* callback, const b2RayCastInput& input) const; + + /// Validate this tree. For testing. + void Validate() const; + + /// Compute the height of the binary tree in O(N) time. Should not be + /// called often. + int32 GetHeight() const; + + /// Get the maximum balance of an node in the tree. The balance is the difference + /// in height of the two children of a node. + int32 GetMaxBalance() const; + + /// Get the ratio of the sum of the node areas to the root area. + float32 GetAreaRatio() const; + + /// Build an optimal tree. Very expensive. For testing. + void RebuildBottomUp(); + + /// Shift the world origin. Useful for large worlds. + /// The shift formula is: position -= newOrigin + /// @param newOrigin the new origin with respect to the old origin + void ShiftOrigin(const b2Vec2& newOrigin); + +private: + + int32 AllocateNode(); + void FreeNode(int32 node); + + void InsertLeaf(int32 node); + void RemoveLeaf(int32 node); + + int32 Balance(int32 index); + + int32 ComputeHeight() const; + int32 ComputeHeight(int32 nodeId) const; + + void ValidateStructure(int32 index) const; + void ValidateMetrics(int32 index) const; + + int32 m_root; + + b2TreeNode* m_nodes; + int32 m_nodeCount; + int32 m_nodeCapacity; + + int32 m_freeList; + + /// This is used to incrementally traverse the tree for re-balancing. + uint32 m_path; + + int32 m_insertionCount; +}; + +inline void* b2DynamicTree::GetUserData(int32 proxyId) const +{ + b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); + return m_nodes[proxyId].userData; +} + +inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const +{ + b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); + return m_nodes[proxyId].aabb; +} + +template <typename T> +inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const +{ + b2GrowableStack<int32, 256> stack; + stack.Push(m_root); + + while (stack.GetCount() > 0) + { + int32 nodeId = stack.Pop(); + if (nodeId == b2_nullNode) + { + continue; + } + + const b2TreeNode* node = m_nodes + nodeId; + + if (b2TestOverlap(node->aabb, aabb)) + { + if (node->IsLeaf()) + { + bool proceed = callback->QueryCallback(nodeId); + if (proceed == false) + { + return; + } + } + else + { + stack.Push(node->child1); + stack.Push(node->child2); + } + } + } +} + +template <typename T> +inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const +{ + b2Vec2 p1 = input.p1; + b2Vec2 p2 = input.p2; + b2Vec2 r = p2 - p1; + b2Assert(r.LengthSquared() > 0.0f); + r.Normalize(); + + // v is perpendicular to the segment. + b2Vec2 v = b2Cross(1.0f, r); + b2Vec2 abs_v = b2Abs(v); + + // Separating axis for segment (Gino, p80). + // |dot(v, p1 - c)| > dot(|v|, h) + + float32 maxFraction = input.maxFraction; + + // Build a bounding box for the segment. + b2AABB segmentAABB; + { + b2Vec2 t = p1 + maxFraction * (p2 - p1); + segmentAABB.lowerBound = b2Min(p1, t); + segmentAABB.upperBound = b2Max(p1, t); + } + + b2GrowableStack<int32, 256> stack; + stack.Push(m_root); + + while (stack.GetCount() > 0) + { + int32 nodeId = stack.Pop(); + if (nodeId == b2_nullNode) + { + continue; + } + + const b2TreeNode* node = m_nodes + nodeId; + + if (b2TestOverlap(node->aabb, segmentAABB) == false) + { + continue; + } + + // Separating axis for segment (Gino, p80). + // |dot(v, p1 - c)| > dot(|v|, h) + b2Vec2 c = node->aabb.GetCenter(); + b2Vec2 h = node->aabb.GetExtents(); + float32 separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h); + if (separation > 0.0f) + { + continue; + } + + if (node->IsLeaf()) + { + b2RayCastInput subInput; + subInput.p1 = input.p1; + subInput.p2 = input.p2; + subInput.maxFraction = maxFraction; + + float32 value = callback->RayCastCallback(subInput, nodeId); + + if (value == 0.0f) + { + // The client has terminated the ray cast. + return; + } + + if (value > 0.0f) + { + // Update segment bounding box. + maxFraction = value; + b2Vec2 t = p1 + maxFraction * (p2 - p1); + segmentAABB.lowerBound = b2Min(p1, t); + segmentAABB.upperBound = b2Max(p1, t); + } + } + else + { + stack.Push(node->child1); + stack.Push(node->child2); + } + } +} + +#endif diff --git a/Source/external/Box2D/Collision/b2TimeOfImpact.cpp b/Source/external/Box2D/Collision/b2TimeOfImpact.cpp new file mode 100644 index 0000000..4bc1769 --- /dev/null +++ b/Source/external/Box2D/Collision/b2TimeOfImpact.cpp @@ -0,0 +1,486 @@ +/* +* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#include "Box2D/Collision/b2Collision.h" +#include "Box2D/Collision/b2Distance.h" +#include "Box2D/Collision/b2TimeOfImpact.h" +#include "Box2D/Collision/Shapes/b2CircleShape.h" +#include "Box2D/Collision/Shapes/b2PolygonShape.h" +#include "Box2D/Common/b2Timer.h" + +#include <stdio.h> + +float32 b2_toiTime, b2_toiMaxTime; +int32 b2_toiCalls, b2_toiIters, b2_toiMaxIters; +int32 b2_toiRootIters, b2_toiMaxRootIters; + +// +struct b2SeparationFunction +{ + enum Type + { + e_points, + e_faceA, + e_faceB + }; + + // TODO_ERIN might not need to return the separation + + float32 Initialize(const b2SimplexCache* cache, + const b2DistanceProxy* proxyA, const b2Sweep& sweepA, + const b2DistanceProxy* proxyB, const b2Sweep& sweepB, + float32 t1) + { + m_proxyA = proxyA; + m_proxyB = proxyB; + int32 count = cache->count; + b2Assert(0 < count && count < 3); + + m_sweepA = sweepA; + m_sweepB = sweepB; + + b2Transform xfA, xfB; + m_sweepA.GetTransform(&xfA, t1); + m_sweepB.GetTransform(&xfB, t1); + + if (count == 1) + { + m_type = e_points; + b2Vec2 localPointA = m_proxyA->GetVertex(cache->indexA[0]); + b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]); + b2Vec2 pointA = b2Mul(xfA, localPointA); + b2Vec2 pointB = b2Mul(xfB, localPointB); + m_axis = pointB - pointA; + float32 s = m_axis.Normalize(); + return s; + } + else if (cache->indexA[0] == cache->indexA[1]) + { + // Two points on B and one on A. + m_type = e_faceB; + b2Vec2 localPointB1 = proxyB->GetVertex(cache->indexB[0]); + b2Vec2 localPointB2 = proxyB->GetVertex(cache->indexB[1]); + + m_axis = b2Cross(localPointB2 - localPointB1, 1.0f); + m_axis.Normalize(); + b2Vec2 normal = b2Mul(xfB.q, m_axis); + + m_localPoint = 0.5f * (localPointB1 + localPointB2); + b2Vec2 pointB = b2Mul(xfB, m_localPoint); + + b2Vec2 localPointA = proxyA->GetVertex(cache->indexA[0]); + b2Vec2 pointA = b2Mul(xfA, localPointA); + + float32 s = b2Dot(pointA - pointB, normal); + if (s < 0.0f) + { + m_axis = -m_axis; + s = -s; + } + return s; + } + else + { + // Two points on A and one or two points on B. + m_type = e_faceA; + b2Vec2 localPointA1 = m_proxyA->GetVertex(cache->indexA[0]); + b2Vec2 localPointA2 = m_proxyA->GetVertex(cache->indexA[1]); + + m_axis = b2Cross(localPointA2 - localPointA1, 1.0f); + m_axis.Normalize(); + b2Vec2 normal = b2Mul(xfA.q, m_axis); + + m_localPoint = 0.5f * (localPointA1 + localPointA2); + b2Vec2 pointA = b2Mul(xfA, m_localPoint); + + b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]); + b2Vec2 pointB = b2Mul(xfB, localPointB); + + float32 s = b2Dot(pointB - pointA, normal); + if (s < 0.0f) + { + m_axis = -m_axis; + s = -s; + } + return s; + } + } + + // + float32 FindMinSeparation(int32* indexA, int32* indexB, float32 t) const + { + b2Transform xfA, xfB; + m_sweepA.GetTransform(&xfA, t); + m_sweepB.GetTransform(&xfB, t); + + switch (m_type) + { + case e_points: + { + b2Vec2 axisA = b2MulT(xfA.q, m_axis); + b2Vec2 axisB = b2MulT(xfB.q, -m_axis); + + *indexA = m_proxyA->GetSupport(axisA); + *indexB = m_proxyB->GetSupport(axisB); + + b2Vec2 localPointA = m_proxyA->GetVertex(*indexA); + b2Vec2 localPointB = m_proxyB->GetVertex(*indexB); + + b2Vec2 pointA = b2Mul(xfA, localPointA); + b2Vec2 pointB = b2Mul(xfB, localPointB); + + float32 separation = b2Dot(pointB - pointA, m_axis); + return separation; + } + + case e_faceA: + { + b2Vec2 normal = b2Mul(xfA.q, m_axis); + b2Vec2 pointA = b2Mul(xfA, m_localPoint); + + b2Vec2 axisB = b2MulT(xfB.q, -normal); + + *indexA = -1; + *indexB = m_proxyB->GetSupport(axisB); + + b2Vec2 localPointB = m_proxyB->GetVertex(*indexB); + b2Vec2 pointB = b2Mul(xfB, localPointB); + + float32 separation = b2Dot(pointB - pointA, normal); + return separation; + } + + case e_faceB: + { + b2Vec2 normal = b2Mul(xfB.q, m_axis); + b2Vec2 pointB = b2Mul(xfB, m_localPoint); + + b2Vec2 axisA = b2MulT(xfA.q, -normal); + + *indexB = -1; + *indexA = m_proxyA->GetSupport(axisA); + + b2Vec2 localPointA = m_proxyA->GetVertex(*indexA); + b2Vec2 pointA = b2Mul(xfA, localPointA); + + float32 separation = b2Dot(pointA - pointB, normal); + return separation; + } + + default: + b2Assert(false); + *indexA = -1; + *indexB = -1; + return 0.0f; + } + } + + // + float32 Evaluate(int32 indexA, int32 indexB, float32 t) const + { + b2Transform xfA, xfB; + m_sweepA.GetTransform(&xfA, t); + m_sweepB.GetTransform(&xfB, t); + + switch (m_type) + { + case e_points: + { + b2Vec2 localPointA = m_proxyA->GetVertex(indexA); + b2Vec2 localPointB = m_proxyB->GetVertex(indexB); + + b2Vec2 pointA = b2Mul(xfA, localPointA); + b2Vec2 pointB = b2Mul(xfB, localPointB); + float32 separation = b2Dot(pointB - pointA, m_axis); + + return separation; + } + + case e_faceA: + { + b2Vec2 normal = b2Mul(xfA.q, m_axis); + b2Vec2 pointA = b2Mul(xfA, m_localPoint); + + b2Vec2 localPointB = m_proxyB->GetVertex(indexB); + b2Vec2 pointB = b2Mul(xfB, localPointB); + + float32 separation = b2Dot(pointB - pointA, normal); + return separation; + } + + case e_faceB: + { + b2Vec2 normal = b2Mul(xfB.q, m_axis); + b2Vec2 pointB = b2Mul(xfB, m_localPoint); + + b2Vec2 localPointA = m_proxyA->GetVertex(indexA); + b2Vec2 pointA = b2Mul(xfA, localPointA); + + float32 separation = b2Dot(pointA - pointB, normal); + return separation; + } + + default: + b2Assert(false); + return 0.0f; + } + } + + const b2DistanceProxy* m_proxyA; + const b2DistanceProxy* m_proxyB; + b2Sweep m_sweepA, m_sweepB; + Type m_type; + b2Vec2 m_localPoint; + b2Vec2 m_axis; +}; + +// CCD via the local separating axis method. This seeks progression +// by computing the largest time at which separation is maintained. +void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input) +{ + b2Timer timer; + + ++b2_toiCalls; + + output->state = b2TOIOutput::e_unknown; + output->t = input->tMax; + + const b2DistanceProxy* proxyA = &input->proxyA; + const b2DistanceProxy* proxyB = &input->proxyB; + + b2Sweep sweepA = input->sweepA; + b2Sweep sweepB = input->sweepB; + + // Large rotations can make the root finder fail, so we normalize the + // sweep angles. + sweepA.Normalize(); + sweepB.Normalize(); + + float32 tMax = input->tMax; + + float32 totalRadius = proxyA->m_radius + proxyB->m_radius; + float32 target = b2Max(b2_linearSlop, totalRadius - 3.0f * b2_linearSlop); + float32 tolerance = 0.25f * b2_linearSlop; + b2Assert(target > tolerance); + + float32 t1 = 0.0f; + const int32 k_maxIterations = 20; // TODO_ERIN b2Settings + int32 iter = 0; + + // Prepare input for distance query. + b2SimplexCache cache; + cache.count = 0; + b2DistanceInput distanceInput; + distanceInput.proxyA = input->proxyA; + distanceInput.proxyB = input->proxyB; + distanceInput.useRadii = false; + + // The outer loop progressively attempts to compute new separating axes. + // This loop terminates when an axis is repeated (no progress is made). + for(;;) + { + b2Transform xfA, xfB; + sweepA.GetTransform(&xfA, t1); + sweepB.GetTransform(&xfB, t1); + + // Get the distance between shapes. We can also use the results + // to get a separating axis. + distanceInput.transformA = xfA; + distanceInput.transformB = xfB; + b2DistanceOutput distanceOutput; + b2Distance(&distanceOutput, &cache, &distanceInput); + + // If the shapes are overlapped, we give up on continuous collision. + if (distanceOutput.distance <= 0.0f) + { + // Failure! + output->state = b2TOIOutput::e_overlapped; + output->t = 0.0f; + break; + } + + if (distanceOutput.distance < target + tolerance) + { + // Victory! + output->state = b2TOIOutput::e_touching; + output->t = t1; + break; + } + + // Initialize the separating axis. + b2SeparationFunction fcn; + fcn.Initialize(&cache, proxyA, sweepA, proxyB, sweepB, t1); +#if 0 + // Dump the curve seen by the root finder + { + const int32 N = 100; + float32 dx = 1.0f / N; + float32 xs[N+1]; + float32 fs[N+1]; + + float32 x = 0.0f; + + for (int32 i = 0; i <= N; ++i) + { + sweepA.GetTransform(&xfA, x); + sweepB.GetTransform(&xfB, x); + float32 f = fcn.Evaluate(xfA, xfB) - target; + + printf("%g %g\n", x, f); + + xs[i] = x; + fs[i] = f; + + x += dx; + } + } +#endif + + // Compute the TOI on the separating axis. We do this by successively + // resolving the deepest point. This loop is bounded by the number of vertices. + bool done = false; + float32 t2 = tMax; + int32 pushBackIter = 0; + for (;;) + { + // Find the deepest point at t2. Store the witness point indices. + int32 indexA, indexB; + float32 s2 = fcn.FindMinSeparation(&indexA, &indexB, t2); + + // Is the final configuration separated? + if (s2 > target + tolerance) + { + // Victory! + output->state = b2TOIOutput::e_separated; + output->t = tMax; + done = true; + break; + } + + // Has the separation reached tolerance? + if (s2 > target - tolerance) + { + // Advance the sweeps + t1 = t2; + break; + } + + // Compute the initial separation of the witness points. + float32 s1 = fcn.Evaluate(indexA, indexB, t1); + + // Check for initial overlap. This might happen if the root finder + // runs out of iterations. + if (s1 < target - tolerance) + { + output->state = b2TOIOutput::e_failed; + output->t = t1; + done = true; + break; + } + + // Check for touching + if (s1 <= target + tolerance) + { + // Victory! t1 should hold the TOI (could be 0.0). + output->state = b2TOIOutput::e_touching; + output->t = t1; + done = true; + break; + } + + // Compute 1D root of: f(x) - target = 0 + int32 rootIterCount = 0; + float32 a1 = t1, a2 = t2; + for (;;) + { + // Use a mix of the secant rule and bisection. + float32 t; + if (rootIterCount & 1) + { + // Secant rule to improve convergence. + t = a1 + (target - s1) * (a2 - a1) / (s2 - s1); + } + else + { + // Bisection to guarantee progress. + t = 0.5f * (a1 + a2); + } + + ++rootIterCount; + ++b2_toiRootIters; + + float32 s = fcn.Evaluate(indexA, indexB, t); + + if (b2Abs(s - target) < tolerance) + { + // t2 holds a tentative value for t1 + t2 = t; + break; + } + + // Ensure we continue to bracket the root. + if (s > target) + { + a1 = t; + s1 = s; + } + else + { + a2 = t; + s2 = s; + } + + if (rootIterCount == 50) + { + break; + } + } + + b2_toiMaxRootIters = b2Max(b2_toiMaxRootIters, rootIterCount); + + ++pushBackIter; + + if (pushBackIter == b2_maxPolygonVertices) + { + break; + } + } + + ++iter; + ++b2_toiIters; + + if (done) + { + break; + } + + if (iter == k_maxIterations) + { + // Root finder got stuck. Semi-victory. + output->state = b2TOIOutput::e_failed; + output->t = t1; + break; + } + } + + b2_toiMaxIters = b2Max(b2_toiMaxIters, iter); + + float32 time = timer.GetMilliseconds(); + b2_toiMaxTime = b2Max(b2_toiMaxTime, time); + b2_toiTime += time; +} diff --git a/Source/external/Box2D/Collision/b2TimeOfImpact.h b/Source/external/Box2D/Collision/b2TimeOfImpact.h new file mode 100644 index 0000000..3af2c32 --- /dev/null +++ b/Source/external/Box2D/Collision/b2TimeOfImpact.h @@ -0,0 +1,58 @@ +/* +* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org +* +* This software is provided 'as-is', without any express or implied +* warranty. In no event will the authors be held liable for any damages +* arising from the use of this software. +* Permission is granted to anyone to use this software for any purpose, +* including commercial applications, and to alter it and redistribute it +* freely, subject to the following restrictions: +* 1. The origin of this software must not be misrepresented; you must not +* claim that you wrote the original software. If you use this software +* in a product, an acknowledgment in the product documentation would be +* appreciated but is not required. +* 2. Altered source versions must be plainly marked as such, and must not be +* misrepresented as being the original software. +* 3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef B2_TIME_OF_IMPACT_H +#define B2_TIME_OF_IMPACT_H + +#include "Box2D/Common/b2Math.h" +#include "Box2D/Collision/b2Distance.h" + +/// Input parameters for b2TimeOfImpact +struct b2TOIInput +{ + b2DistanceProxy proxyA; + b2DistanceProxy proxyB; + b2Sweep sweepA; + b2Sweep sweepB; + float32 tMax; // defines sweep interval [0, tMax] +}; + +/// Output parameters for b2TimeOfImpact. +struct b2TOIOutput +{ + enum State + { + e_unknown, + e_failed, + e_overlapped, + e_touching, + e_separated + }; + + State state; + float32 t; +}; + +/// Compute the upper bound on time before two shapes penetrate. Time is represented as +/// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate, +/// non-tunneling collisions. If you change the time interval, you should call this function +/// again. +/// Note: use b2Distance to compute the contact point and normal at the time of impact. +void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input); + +#endif |