diff options
Diffstat (limited to 'Source/3rdParty/Box2D/Collision/Shapes/b2PolygonShape.cpp')
-rw-r--r-- | Source/3rdParty/Box2D/Collision/Shapes/b2PolygonShape.cpp | 468 |
1 files changed, 0 insertions, 468 deletions
diff --git a/Source/3rdParty/Box2D/Collision/Shapes/b2PolygonShape.cpp b/Source/3rdParty/Box2D/Collision/Shapes/b2PolygonShape.cpp deleted file mode 100644 index 3c8c47d..0000000 --- a/Source/3rdParty/Box2D/Collision/Shapes/b2PolygonShape.cpp +++ /dev/null @@ -1,468 +0,0 @@ -/* -* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org -* -* This software is provided 'as-is', without any express or implied -* warranty. In no event will the authors be held liable for any damages -* arising from the use of this software. -* Permission is granted to anyone to use this software for any purpose, -* including commercial applications, and to alter it and redistribute it -* freely, subject to the following restrictions: -* 1. The origin of this software must not be misrepresented; you must not -* claim that you wrote the original software. If you use this software -* in a product, an acknowledgment in the product documentation would be -* appreciated but is not required. -* 2. Altered source versions must be plainly marked as such, and must not be -* misrepresented as being the original software. -* 3. This notice may not be removed or altered from any source distribution. -*/ - -#include "Box2D/Collision/Shapes/b2PolygonShape.h" -#include <new> - -b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const -{ - void* mem = allocator->Allocate(sizeof(b2PolygonShape)); - b2PolygonShape* clone = new (mem) b2PolygonShape; - *clone = *this; - return clone; -} - -void b2PolygonShape::SetAsBox(float32 hx, float32 hy) -{ - m_count = 4; - m_vertices[0].Set(-hx, -hy); - m_vertices[1].Set( hx, -hy); - m_vertices[2].Set( hx, hy); - m_vertices[3].Set(-hx, hy); - m_normals[0].Set(0.0f, -1.0f); - m_normals[1].Set(1.0f, 0.0f); - m_normals[2].Set(0.0f, 1.0f); - m_normals[3].Set(-1.0f, 0.0f); - m_centroid.SetZero(); -} - -void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle) -{ - m_count = 4; - m_vertices[0].Set(-hx, -hy); - m_vertices[1].Set( hx, -hy); - m_vertices[2].Set( hx, hy); - m_vertices[3].Set(-hx, hy); - m_normals[0].Set(0.0f, -1.0f); - m_normals[1].Set(1.0f, 0.0f); - m_normals[2].Set(0.0f, 1.0f); - m_normals[3].Set(-1.0f, 0.0f); - m_centroid = center; - - b2Transform xf; - xf.p = center; - xf.q.Set(angle); - - // Transform vertices and normals. - for (int32 i = 0; i < m_count; ++i) - { - m_vertices[i] = b2Mul(xf, m_vertices[i]); - m_normals[i] = b2Mul(xf.q, m_normals[i]); - } -} - -int32 b2PolygonShape::GetChildCount() const -{ - return 1; -} - -static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) -{ - b2Assert(count >= 3); - - b2Vec2 c; c.Set(0.0f, 0.0f); - float32 area = 0.0f; - - // pRef is the reference point for forming triangles. - // It's location doesn't change the result (except for rounding error). - b2Vec2 pRef(0.0f, 0.0f); -#if 0 - // This code would put the reference point inside the polygon. - for (int32 i = 0; i < count; ++i) - { - pRef += vs[i]; - } - pRef *= 1.0f / count; -#endif - - const float32 inv3 = 1.0f / 3.0f; - - for (int32 i = 0; i < count; ++i) - { - // Triangle vertices. - b2Vec2 p1 = pRef; - b2Vec2 p2 = vs[i]; - b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0]; - - b2Vec2 e1 = p2 - p1; - b2Vec2 e2 = p3 - p1; - - float32 D = b2Cross(e1, e2); - - float32 triangleArea = 0.5f * D; - area += triangleArea; - - // Area weighted centroid - c += triangleArea * inv3 * (p1 + p2 + p3); - } - - // Centroid - b2Assert(area > b2_epsilon); - c *= 1.0f / area; - return c; -} - -void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) -{ - b2Assert(3 <= count && count <= b2_maxPolygonVertices); - if (count < 3) - { - SetAsBox(1.0f, 1.0f); - return; - } - - int32 n = b2Min(count, b2_maxPolygonVertices); - - // Perform welding and copy vertices into local buffer. - b2Vec2 ps[b2_maxPolygonVertices]; - int32 tempCount = 0; - for (int32 i = 0; i < n; ++i) - { - b2Vec2 v = vertices[i]; - - bool unique = true; - for (int32 j = 0; j < tempCount; ++j) - { - if (b2DistanceSquared(v, ps[j]) < ((0.5f * b2_linearSlop) * (0.5f * b2_linearSlop))) - { - unique = false; - break; - } - } - - if (unique) - { - ps[tempCount++] = v; - } - } - - n = tempCount; - if (n < 3) - { - // Polygon is degenerate. - b2Assert(false); - SetAsBox(1.0f, 1.0f); - return; - } - - // Create the convex hull using the Gift wrapping algorithm - // http://en.wikipedia.org/wiki/Gift_wrapping_algorithm - - // Find the right most point on the hull - int32 i0 = 0; - float32 x0 = ps[0].x; - for (int32 i = 1; i < n; ++i) - { - float32 x = ps[i].x; - if (x > x0 || (x == x0 && ps[i].y < ps[i0].y)) - { - i0 = i; - x0 = x; - } - } - - int32 hull[b2_maxPolygonVertices]; - int32 m = 0; - int32 ih = i0; - - for (;;) - { - b2Assert(m < b2_maxPolygonVertices); - hull[m] = ih; - - int32 ie = 0; - for (int32 j = 1; j < n; ++j) - { - if (ie == ih) - { - ie = j; - continue; - } - - b2Vec2 r = ps[ie] - ps[hull[m]]; - b2Vec2 v = ps[j] - ps[hull[m]]; - float32 c = b2Cross(r, v); - if (c < 0.0f) - { - ie = j; - } - - // Collinearity check - if (c == 0.0f && v.LengthSquared() > r.LengthSquared()) - { - ie = j; - } - } - - ++m; - ih = ie; - - if (ie == i0) - { - break; - } - } - - if (m < 3) - { - // Polygon is degenerate. - b2Assert(false); - SetAsBox(1.0f, 1.0f); - return; - } - - m_count = m; - - // Copy vertices. - for (int32 i = 0; i < m; ++i) - { - m_vertices[i] = ps[hull[i]]; - } - - // Compute normals. Ensure the edges have non-zero length. - for (int32 i = 0; i < m; ++i) - { - int32 i1 = i; - int32 i2 = i + 1 < m ? i + 1 : 0; - b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; - b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); - m_normals[i] = b2Cross(edge, 1.0f); - m_normals[i].Normalize(); - } - - // Compute the polygon centroid. - m_centroid = ComputeCentroid(m_vertices, m); -} - -bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const -{ - b2Vec2 pLocal = b2MulT(xf.q, p - xf.p); - - for (int32 i = 0; i < m_count; ++i) - { - float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); - if (dot > 0.0f) - { - return false; - } - } - - return true; -} - -bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, - const b2Transform& xf, int32 childIndex) const -{ - B2_NOT_USED(childIndex); - - // Put the ray into the polygon's frame of reference. - b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); - b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); - b2Vec2 d = p2 - p1; - - float32 lower = 0.0f, upper = input.maxFraction; - - int32 index = -1; - - for (int32 i = 0; i < m_count; ++i) - { - // p = p1 + a * d - // dot(normal, p - v) = 0 - // dot(normal, p1 - v) + a * dot(normal, d) = 0 - float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1); - float32 denominator = b2Dot(m_normals[i], d); - - if (denominator == 0.0f) - { - if (numerator < 0.0f) - { - return false; - } - } - else - { - // Note: we want this predicate without division: - // lower < numerator / denominator, where denominator < 0 - // Since denominator < 0, we have to flip the inequality: - // lower < numerator / denominator <==> denominator * lower > numerator. - if (denominator < 0.0f && numerator < lower * denominator) - { - // Increase lower. - // The segment enters this half-space. - lower = numerator / denominator; - index = i; - } - else if (denominator > 0.0f && numerator < upper * denominator) - { - // Decrease upper. - // The segment exits this half-space. - upper = numerator / denominator; - } - } - - // The use of epsilon here causes the assert on lower to trip - // in some cases. Apparently the use of epsilon was to make edge - // shapes work, but now those are handled separately. - //if (upper < lower - b2_epsilon) - if (upper < lower) - { - return false; - } - } - - b2Assert(0.0f <= lower && lower <= input.maxFraction); - - if (index >= 0) - { - output->fraction = lower; - output->normal = b2Mul(xf.q, m_normals[index]); - return true; - } - - return false; -} - -void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const -{ - B2_NOT_USED(childIndex); - - b2Vec2 lower = b2Mul(xf, m_vertices[0]); - b2Vec2 upper = lower; - - for (int32 i = 1; i < m_count; ++i) - { - b2Vec2 v = b2Mul(xf, m_vertices[i]); - lower = b2Min(lower, v); - upper = b2Max(upper, v); - } - - b2Vec2 r(m_radius, m_radius); - aabb->lowerBound = lower - r; - aabb->upperBound = upper + r; -} - -void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const -{ - // Polygon mass, centroid, and inertia. - // Let rho be the polygon density in mass per unit area. - // Then: - // mass = rho * int(dA) - // centroid.x = (1/mass) * rho * int(x * dA) - // centroid.y = (1/mass) * rho * int(y * dA) - // I = rho * int((x*x + y*y) * dA) - // - // We can compute these integrals by summing all the integrals - // for each triangle of the polygon. To evaluate the integral - // for a single triangle, we make a change of variables to - // the (u,v) coordinates of the triangle: - // x = x0 + e1x * u + e2x * v - // y = y0 + e1y * u + e2y * v - // where 0 <= u && 0 <= v && u + v <= 1. - // - // We integrate u from [0,1-v] and then v from [0,1]. - // We also need to use the Jacobian of the transformation: - // D = cross(e1, e2) - // - // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) - // - // The rest of the derivation is handled by computer algebra. - - b2Assert(m_count >= 3); - - b2Vec2 center; center.Set(0.0f, 0.0f); - float32 area = 0.0f; - float32 I = 0.0f; - - // s is the reference point for forming triangles. - // It's location doesn't change the result (except for rounding error). - b2Vec2 s(0.0f, 0.0f); - - // This code would put the reference point inside the polygon. - for (int32 i = 0; i < m_count; ++i) - { - s += m_vertices[i]; - } - s *= 1.0f / m_count; - - const float32 k_inv3 = 1.0f / 3.0f; - - for (int32 i = 0; i < m_count; ++i) - { - // Triangle vertices. - b2Vec2 e1 = m_vertices[i] - s; - b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s; - - float32 D = b2Cross(e1, e2); - - float32 triangleArea = 0.5f * D; - area += triangleArea; - - // Area weighted centroid - center += triangleArea * k_inv3 * (e1 + e2); - - float32 ex1 = e1.x, ey1 = e1.y; - float32 ex2 = e2.x, ey2 = e2.y; - - float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; - float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; - - I += (0.25f * k_inv3 * D) * (intx2 + inty2); - } - - // Total mass - massData->mass = density * area; - - // Center of mass - b2Assert(area > b2_epsilon); - center *= 1.0f / area; - massData->center = center + s; - - // Inertia tensor relative to the local origin (point s). - massData->I = density * I; - - // Shift to center of mass then to original body origin. - massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center)); -} - -bool b2PolygonShape::Validate() const -{ - for (int32 i = 0; i < m_count; ++i) - { - int32 i1 = i; - int32 i2 = i < m_count - 1 ? i1 + 1 : 0; - b2Vec2 p = m_vertices[i1]; - b2Vec2 e = m_vertices[i2] - p; - - for (int32 j = 0; j < m_count; ++j) - { - if (j == i1 || j == i2) - { - continue; - } - - b2Vec2 v = m_vertices[j] - p; - float32 c = b2Cross(e, v); - if (c < 0.0f) - { - return false; - } - } - } - - return true; -} |