diff options
author | chai <chaifix@163.com> | 2021-12-02 14:44:36 +0800 |
---|---|---|
committer | chai <chaifix@163.com> | 2021-12-02 14:44:36 +0800 |
commit | fdd228071a3112aeebda20766c7df3b20b8651aa (patch) | |
tree | edc6e05bda6c537582235dbe110e3ed783e0e36a /Client/ThirdParty | |
parent | b1d4e9866de19c70174553e543e81ef4473dee6c (diff) |
+Fix32
Diffstat (limited to 'Client/ThirdParty')
-rw-r--r-- | Client/ThirdParty/fix32/fix32.cpp | 0 | ||||
-rw-r--r-- | Client/ThirdParty/fix32/fix32.h | 7 | ||||
-rw-r--r-- | Client/ThirdParty/fix32/fix32.hpp | 161 | ||||
-rw-r--r-- | Client/ThirdParty/math-sll/LICENSE | 23 | ||||
-rw-r--r-- | Client/ThirdParty/math-sll/Makefile | 69 | ||||
-rw-r--r-- | Client/ThirdParty/math-sll/README | 51 | ||||
-rw-r--r-- | Client/ThirdParty/math-sll/math-sll.c | 957 | ||||
-rw-r--r-- | Client/ThirdParty/math-sll/math-sll.h | 770 |
8 files changed, 2031 insertions, 7 deletions
diff --git a/Client/ThirdParty/fix32/fix32.cpp b/Client/ThirdParty/fix32/fix32.cpp deleted file mode 100644 index e69de29..0000000 --- a/Client/ThirdParty/fix32/fix32.cpp +++ /dev/null diff --git a/Client/ThirdParty/fix32/fix32.h b/Client/ThirdParty/fix32/fix32.h deleted file mode 100644 index fb3d65c..0000000 --- a/Client/ThirdParty/fix32/fix32.h +++ /dev/null @@ -1,7 +0,0 @@ -#pragma once
-
-#include <stdint.h>
-
-// -2,147,483,648 to 2,147,483,647
-typedef int64_t fix32_t;
-
diff --git a/Client/ThirdParty/fix32/fix32.hpp b/Client/ThirdParty/fix32/fix32.hpp new file mode 100644 index 0000000..7999ad4 --- /dev/null +++ b/Client/ThirdParty/fix32/fix32.hpp @@ -0,0 +1,161 @@ +#pragma once
+
+#include <stdint.h>
+extern "C" {
+#include "math-sll/math-sll.h"
+}
+
+typedef sll fixed32_t;
+
+// Q32.32
+class Fix32
+{
+public:
+ sll value;
+
+ inline Fix32() { value = 0; }
+ inline Fix32(const Fix32 &inValue) { value = inValue.value; }
+ inline Fix32(const float inValue) { value = dbl2sll(inValue); }
+ inline Fix32(const double inValue) { value = dbl2sll(inValue); }
+ inline Fix32(const int32_t inValue) { value = int2sll(inValue); }
+ inline Fix32(const sll inValue) { value = inValue; }
+
+ inline operator sll() const { return value; }
+ inline operator double() const { return sll2dbl(value); }
+ inline operator float() const { return (float)sll2dbl(value); }
+ inline operator int32_t() const { return (int32_t)sll2int(value); }
+
+ inline Fix32 & operator=(const Fix32 &rhs) { value = rhs.value; return *this; }
+ inline Fix32 & operator=(const sll rhs) { value = rhs; return *this; }
+ inline Fix32 & operator=(const double rhs) { value = dbl2sll(rhs); return *this; }
+ inline Fix32 & operator=(const float rhs) { value = (float)dbl2sll(rhs); return *this; }
+ inline Fix32 & operator=(const int32_t rhs) { value = int2sll(rhs); return *this; }
+
+ inline Fix32 & operator+=(const Fix32 &rhs) { value += rhs.value; return *this; }
+ inline Fix32 & operator+=(const sll rhs) { value += rhs; return *this; }
+ inline Fix32 & operator+=(const double rhs) { value += dbl2sll(rhs); return *this; }
+ inline Fix32 & operator+=(const float rhs) { value += (float)dbl2sll(rhs); return *this; }
+ inline Fix32 & operator+=(const int32_t rhs) { value += int2sll(rhs); return *this; }
+
+ inline Fix32 & operator-=(const Fix32 &rhs) { value -= rhs.value; return *this; }
+ inline Fix32 & operator-=(const sll rhs) { value -= rhs; return *this; }
+ inline Fix32 & operator-=(const double rhs) { value -= dbl2sll(rhs); return *this; }
+ inline Fix32 & operator-=(const float rhs) { value -= (float)dbl2sll(rhs); return *this; }
+ inline Fix32 & operator-=(const int32_t rhs) { value -= int2sll(rhs); return *this; }
+
+ inline Fix32 & operator*=(const Fix32 &rhs) { value = sllmul(value, rhs.value); return *this; }
+ inline Fix32 & operator*=(const sll rhs) { value = sllmul(value, rhs); return *this; }
+ inline Fix32 & operator*=(const double rhs) { value = sllmul(value, dbl2sll(rhs)); return *this; }
+ inline Fix32 & operator*=(const float rhs) { value = sllmul(value, (float)dbl2sll(rhs)); return *this; }
+ inline Fix32 & operator*=(const int32_t rhs) { value *= rhs; return *this; }
+
+ inline Fix32 & operator/=(const Fix32 &rhs) { value = slldiv(value, rhs.value); return *this; }
+ inline Fix32 & operator/=(const sll rhs) { value = slldiv(value, rhs); return *this; }
+ inline Fix32 & operator/=(const double rhs) { value = slldiv(value, dbl2sll(rhs)); return *this; }
+ inline Fix32 & operator/=(const float rhs) { value = slldiv(value, (float)dbl2sll(rhs)); return *this; }
+ inline Fix32 & operator/=(const int32_t rhs) { value /= rhs; return *this; }
+
+ inline const Fix32 operator+(const Fix32 &other) const { Fix32 ret = *this; ret += other; return ret; }
+ inline const Fix32 operator+(const sll other) const { Fix32 ret = *this; ret += other; return ret; }
+ inline const Fix32 operator+(const double other) const { Fix32 ret = *this; ret += other; return ret; }
+ inline const Fix32 operator+(const float other) const { Fix32 ret = *this; ret += other; return ret; }
+ inline const Fix32 operator+(const int32_t other) const { Fix32 ret = *this; ret += other; return ret; }
+
+#ifndef FIXMATH_NO_OVERFLOW
+ inline const Fix32 sadd(const Fix32 &other) const { Fix32 ret = slladd(value, other.value); return ret; }
+ inline const Fix32 sadd(const sll other) const { Fix32 ret = slladd(value, other); return ret; }
+ inline const Fix32 sadd(const double other) const { Fix32 ret = slladd(value, dbl2sll(other)); return ret; }
+ inline const Fix32 sadd(const float other) const { Fix32 ret = slladd(value, (float)dbl2sll(other)); return ret; }
+ inline const Fix32 sadd(const int32_t other) const { Fix32 ret = slladd(value, int2sll(other)); return ret; }
+#endif
+
+ inline const Fix32 operator-(const Fix32 &other) const { Fix32 ret = *this; ret -= other; return ret; }
+ inline const Fix32 operator-(const sll other) const { Fix32 ret = *this; ret -= other; return ret; }
+ inline const Fix32 operator-(const double other) const { Fix32 ret = *this; ret -= other; return ret; }
+ inline const Fix32 operator-(const float other) const { Fix32 ret = *this; ret -= other; return ret; }
+ inline const Fix32 operator-(const int32_t other) const { Fix32 ret = *this; ret -= other; return ret; }
+
+ inline const Fix32 operator-() const { Fix32 ret = sllsub(0, value); return ret; }
+
+#ifndef FIXMATH_NO_OVERFLOW
+ inline const Fix32 ssub(const Fix32 &other) const { Fix32 ret = slladd(value, -other.value); return ret; }
+ inline const Fix32 ssub(const sll other) const { Fix32 ret = slladd(value, -other); return ret; }
+ inline const Fix32 ssub(const double other) const { Fix32 ret = slladd(value, -dbl2sll(other)); return ret; }
+ inline const Fix32 ssub(const float other) const { Fix32 ret = slladd(value, -(float)dbl2sll(other)); return ret; }
+ inline const Fix32 ssub(const int32_t other) const { Fix32 ret = slladd(value, -int2sll(other)); return ret; }
+#endif
+
+ inline const Fix32 operator*(const Fix32 &other) const { Fix32 ret = *this; ret *= other; return ret; }
+ inline const Fix32 operator*(const sll other) const { Fix32 ret = *this; ret *= other; return ret; }
+ inline const Fix32 operator*(const double other) const { Fix32 ret = *this; ret *= other; return ret; }
+ inline const Fix32 operator*(const float other) const { Fix32 ret = *this; ret *= other; return ret; }
+ inline const Fix32 operator*(const int32_t other) const { Fix32 ret = *this; ret *= other; return ret; }
+
+#ifndef FIXMATH_NO_OVERFLOW
+ inline const Fix32 smul(const Fix32 &other) const { Fix32 ret = sllmul(value, other.value); return ret; }
+ inline const Fix32 smul(const sll other) const { Fix32 ret = sllmul(value, other); return ret; }
+ inline const Fix32 smul(const double other) const { Fix32 ret = sllmul(value, dbl2sll(other)); return ret; }
+ inline const Fix32 smul(const float other) const { Fix32 ret = sllmul(value, (float)dbl2sll(other)); return ret; }
+ inline const Fix32 smul(const int32_t other) const { Fix32 ret = sllmul(value, int2sll(other)); return ret; }
+#endif
+
+ inline const Fix32 operator/(const Fix32 &other) const { Fix32 ret = *this; ret /= other; return ret; }
+ inline const Fix32 operator/(const sll other) const { Fix32 ret = *this; ret /= other; return ret; }
+ inline const Fix32 operator/(const double other) const { Fix32 ret = *this; ret /= other; return ret; }
+ inline const Fix32 operator/(const float other) const { Fix32 ret = *this; ret /= other; return ret; }
+ inline const Fix32 operator/(const int32_t other) const { Fix32 ret = *this; ret /= other; return ret; }
+
+#ifndef FIXMATH_NO_OVERFLOW
+ inline const Fix32 sdiv(const Fix32 &other) const { Fix32 ret = slldiv(value, other.value); return ret; }
+ inline const Fix32 sdiv(const sll other) const { Fix32 ret = slldiv(value, other); return ret; }
+ inline const Fix32 sdiv(const double other) const { Fix32 ret = slldiv(value, dbl2sll(other)); return ret; }
+ inline const Fix32 sdiv(const float other) const { Fix32 ret = slldiv(value, (float)dbl2sll(other)); return ret; }
+ inline const Fix32 sdiv(const int32_t other) const { Fix32 ret = slldiv(value, int2sll(other)); return ret; }
+#endif
+
+ inline int operator==(const Fix32 &other) const { return (value == other.value); }
+ inline int operator==(const sll other) const { return (value == other); }
+ inline int operator==(const double other) const { return (value == dbl2sll(other)); }
+ inline int operator==(const float other) const { return (value == (float)dbl2sll(other)); }
+ inline int operator==(const int32_t other) const { return (value == int2sll(other)); }
+
+ inline int operator!=(const Fix32 &other) const { return (value != other.value); }
+ inline int operator!=(const sll other) const { return (value != other); }
+ inline int operator!=(const double other) const { return (value != dbl2sll(other)); }
+ inline int operator!=(const float other) const { return (value != (float)dbl2sll(other)); }
+ inline int operator!=(const int32_t other) const { return (value != int2sll(other)); }
+
+ inline int operator<=(const Fix32 &other) const { return (value <= other.value); }
+ inline int operator<=(const sll other) const { return (value <= other); }
+ inline int operator<=(const double other) const { return (value <= dbl2sll(other)); }
+ inline int operator<=(const float other) const { return (value <= (float)dbl2sll(other)); }
+ inline int operator<=(const int32_t other) const { return (value <= int2sll(other)); }
+
+ inline int operator>=(const Fix32 &other) const { return (value >= other.value); }
+ inline int operator>=(const sll other) const { return (value >= other); }
+ inline int operator>=(const double other) const { return (value >= dbl2sll(other)); }
+ inline int operator>=(const float other) const { return (value >= (float)dbl2sll(other)); }
+ inline int operator>=(const int32_t other) const { return (value >= int2sll(other)); }
+
+ inline int operator< (const Fix32 &other) const { return (value < other.value); }
+ inline int operator< (const sll other) const { return (value < other); }
+ inline int operator< (const double other) const { return (value < dbl2sll(other)); }
+ inline int operator< (const float other) const { return (value < (float)dbl2sll(other)); }
+ inline int operator< (const int32_t other) const { return (value < int2sll(other)); }
+
+ inline int operator> (const Fix32 &other) const { return (value > other.value); }
+ inline int operator> (const sll other) const { return (value > other); }
+ inline int operator> (const double other) const { return (value > dbl2sll(other)); }
+ inline int operator> (const float other) const { return (value > (float)dbl2sll(other)); }
+ inline int operator> (const int32_t other) const { return (value > int2sll(other)); }
+
+ inline Fix32 sin() const { return Fix32(sllsin(value)); }
+ inline Fix32 cos() const { return Fix32(sllcos(value)); }
+ inline Fix32 tan() const { return Fix32(slltan(value)); }
+ inline Fix32 asin() const { return Fix32(sllasin(value)); }
+ inline Fix32 acos() const { return Fix32(sllacos(value)); }
+ inline Fix32 atan() const { return Fix32(sllatan(value)); }
+ //inline Fix32 atan2(const Fix32 &inY) const { return Fix32(fix16_atan2(value, inY.value)); }
+ inline Fix32 sqrt() const { return Fix32(sllsqrt(value)); }
+
+};
\ No newline at end of file diff --git a/Client/ThirdParty/math-sll/LICENSE b/Client/ThirdParty/math-sll/LICENSE new file mode 100644 index 0000000..4e683cf --- /dev/null +++ b/Client/ThirdParty/math-sll/LICENSE @@ -0,0 +1,23 @@ + +Licensed under the terms of the MIT license: + +Copyright (c) 2000,2002,2006,2012,2016 Andrew E. Mileski <andrewm@isoar.ca> + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to +deal in the Software without restriction, including without limitation the +rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +sell copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The copyright notice, and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. + diff --git a/Client/ThirdParty/math-sll/Makefile b/Client/ThirdParty/math-sll/Makefile new file mode 100644 index 0000000..b7b512f --- /dev/null +++ b/Client/ThirdParty/math-sll/Makefile @@ -0,0 +1,69 @@ +# +# Licensed under the terms of the MIT license: +# +# Copyright (c) 2000,2002,2006,2012,2016 Andrew E. Mileski <andrewm@isoar.ca> +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to +# deal in the Software without restriction, including without limitation the +# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +# sell copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The copyright notice, and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +# DEALINGS IN THE SOFTWARE. +# + +# +# Installation directories +# + +PREFIX := /usr/local +INCDIR := $(PREFIX)/include +LIBDIR := $(PREFIX)/lib + +# +# Executables +# + +AR := ar +CC := gcc +CFLAGS := -O2 -W -Wall +INSTALL := install +RANLIB := ranlib +RM := rm -f +STRIP := strip --strip-unneeded + +# +# Recipes +# + +OBJS := math-sll.o +LIBS := math-sll.a + +.PHONY: all clean install + +all: $(LIBS) + +clean: + $(RM) $(LIBS) $(OBJS) + +install: $(LIBS) math-sll.h + $(INSTALL) -m a=rx,u+w math-sll.a $(LIBDIR) + $(INSTALL) -m a=r,u+w math-sll.h $(INCDIR) + +math-sll.o: math-sll.c math-sll.h + +math-sll.a: math-sll.o + $(STRIP) $< + $(AR) rcs $@ $< + $(RANLIB) $@ + diff --git a/Client/ThirdParty/math-sll/README b/Client/ThirdParty/math-sll/README new file mode 100644 index 0000000..e53ca36 --- /dev/null +++ b/Client/ThirdParty/math-sll/README @@ -0,0 +1,51 @@ + +math-sll + + A fixed point (32.32 bit) math library. + + See math-sll.h for details. + +License + + Licensed under the terms of the MIT license as of revision v1.19 + + See the LICENSE file for details. + + Earlier revisions were licensed under the terms of GPL or LGPL. + +Installation + + The source can be added as-is into your project, or a library can optionally + be built and installed, then statically-linked into your project. + + To build: + + make clean + make all + + Optionally: + + make install + + The default installation path prefix is /usr/local + + See the Makefile for details. + +Repository + + A math-sll project is being maintained at: + + http://github.com/aemileski/math-sll + + You can also obtain a copy of the latest source code directly via GIT: + + git clone git://github.com/aemileski/math-sll.git + +Contact + + Feel free to contact me with questions, bug reports, patches, feature + requests, etc., or just to tell me about how you are using math-sll in + your project! + + Andrew E. Mileski <andrewm@isoar.ca> + diff --git a/Client/ThirdParty/math-sll/math-sll.c b/Client/ThirdParty/math-sll/math-sll.c new file mode 100644 index 0000000..ecc4238 --- /dev/null +++ b/Client/ThirdParty/math-sll/math-sll.c @@ -0,0 +1,957 @@ +/* + * Revision v1.24 + * + * Credits + * + * Maintained, conceived, written, and fiddled with by: + * + * Andrew E. Mileski <andrewm@isoar.ca> + * + * Other source code contributors: + * + * Kevin Rockel + * Kevin Michael Woley + * Mark Anthony Lisher + * Nicolas Pitre + * Anonymous + * + * License + * + * Licensed under the terms of the MIT license: + * + * Copyright (c) 2000,2002,2006,2012,2016 Andrew E. Mileski <andrewm@isoar.ca> + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The copyright notice, and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/* See header for full details */ +#include "math-sll.h" + +/* + * Local prototypes + */ + +static sll _sllcos(sll x); +static sll _sllsin(sll x); + +static sll _sllexp(sll x); + +/* + * Unpack IEEE 754 floating point double format into fixed point sll format + * + * Description + * + * IEEE 754 specifies the binary64 type ("double" in C) as having: + * + * 1 bit sign + * 11 bit exponent + * 53 bit significand + * + * The first bit of the significand is an implied 1 which is not stored. + * The decimal would be to the right of that implied 1, or to the left of + * the stored significand. + * + * The exponent is unsigned, and biased with an offset of 1023. + * + * The IEEE 754 standard does not specify endianess, but the endian used is + * traditionally the same endian that the processor uses. + */ + +sll dbl2sll(double dbl) +{ + union { + double d; + unsigned u[2]; + ull ull; + sll sll; + } in, retval; + register unsigned exp; + + /* Move into memory as args might be passed in regs */ + in.d = dbl; + +#if defined(BROKEN_IEEE754_DOUBLE) + + exp = in.u[0]; + in.u[0] = in.u[1]; + in.u[1] = exp; + +#endif /* defined(BROKEN_IEEE754_DOUBLE) */ + + /* Leading 1 is assumed by IEEE */ + retval.u[1] = 0x40000000; + + /* Unpack the mantissa into the unsigned long */ + retval.u[1] |= (in.u[1] << 10) & 0x3ffffc00; + retval.u[1] |= (in.u[0] >> 22) & 0x000003ff; + retval.u[0] = in.u[0] << 10; + + /* Extract the exponent and align the decimals */ + exp = (in.u[1] >> 20) & 0x7ff; + if (exp) + /* IEEE 754 decimal begins at right of bit position 30 */ + retval.ull >>= (1023 + 30) - exp; + else + return 0L; + + /* Negate if negative flag set */ + if (in.u[1] & 0x80000000) + retval.sll = _sllneg(retval.sll); + + return retval.sll; +} + +/* + * Pack fixed point sll format into IEEE 754 floating point double format + * + * Description + * + * IEEE 754 specifies the binary64 type ("double" in C) as having: + * + * 1 bit sign + * 11 bit exponent + * 53 bit significand + * + * The first bit of the significand is an implied 1 which is not stored. + * The decimal would be to the right of that implied 1, or to the left of + * the stored significand. + * + * The exponent is unsigned, and biased with an offset of 1023. + * + * The IEEE 754 standard does not specify endianess, but the endian used is + * traditionally the same endian that the processor uses. + */ + +double sll2dbl(sll s) +{ + union { + double d; + unsigned u[2]; + ull ull; + sll sll; + } in, retval; + register unsigned exp; + register unsigned flag; + + if (s == 0) + return 0.0; + + /* Move into memory as args might be passed in regs */ + in.sll = s; + + /* Handle the negative flag */ + if (in.sll < 1) { + flag = 0x80000000; + in.ull = _sllneg(in.sll); + } else + flag = 0x00000000; + + /* + * Normalize + * + * IEEE 754 decimal-point begins at right of bit position 30 + */ + for (exp = (1023 + 30); in.ull && (in.u[1] & 0x80000000) == 0; exp--) { + in.ull <<= 1; + } + in.ull <<= 1; + exp++; + in.ull >>= 12; + retval.ull = in.ull; + retval.u[1] |= flag | (exp << 20); + +#if defined(BROKEN_IEEE754_DOUBLE) + + exp = retval.u[0]; + retval.u[0] = retval.u[1]; + retval.u[1] = exp; + +#endif /* defined(BROKEN_IEEE754_DOUBLE) */ + + return retval.d; +} + +/* + * Multiply two sll values + * + * Description + * + * When multiplying two 64 bit sll numbers, the result is 128 bits, but there + * is only room for a 64 bit result with sll! + * + * The 128 bit result has 64 bits on either side of the decimal, so 32 bits + * of overflow to the left of the decimal, and 32 bits of underflow to the + * right of the decmial. + * + * 32.32 * 32.32 = 64.64 = overflow(32) + 32.32 + underflow(32) + * + * However, a "long long" multiply has 64 bits of overflow to the left of the + * decimal, resulting in the entire integer part being lost! + * + * 32.32 * 32.32 = 64.64 = overflow(64) + .64 + * + * Hence a custom multiply routine is required, to preserve the parts + * of the result that sll needs. + * + * Consider two sll numbers, x and y: + * + * Let x = x_hi * 2^0 + x_lo * 2^(-32) + * Let y = y_hi * 2^0 + y_lo * 2^(-32) + * + * Where: + * + * *_hi is the signed 32 bit integer part to the left of the decimal + * *_lo is the unsigned 32 bit fractional part to the right of the decimal + * + * x * y = (x_hi * 2^0 + x_lo * 2^(-32)) + * * (y_hi * 2^0 + y_lo * 2^(-32)) + * + * Expanding the terms, we get: + * + * = x_hi * y_hi * 2^0 + x_hi * y_lo * 2^(-32) + * + x_lo * y_hi * 2^(-32) + x_lo * y_lo * 2^(-64) + * + * Grouping by powers of 2, we get: + * + * (x_hi * y_hi) * 2^0 + * We only need the low 32 bits of this term, as the rest is overflow + * + * (x_hi * y_lo + x_lo * y_hi) * 2^-32 + * We need all bits of this term + * + * x_lo * y_lo * 2^-64 + * We only need the high 32 bits of this term, as the rest is underflow + */ + +sll sllmul(sll x, sll y) +{ + register unsigned int x_lo; + register signed int x_hi; + + register unsigned int y_lo; + register signed int y_hi; + + x_hi = (signed int) ((ull) x >> 32); // Discard lower 32 bits + x_lo = (unsigned int) x; // Discard upper 32 bits + + y_hi = (signed int) ((ull) y >> 32); // Discard lower 32 bits + y_lo = (unsigned int) y; // Discard upper 32 bits + + return (sll) ( + ((ull) (x_hi * y_hi) << 32) + + ((ull) x_hi * y_lo + x_lo * (ull) y_hi) + + (((ull) x_lo * y_lo) >> 32) + ); +} + +/* + * Calculate cos x where -pi/4 <= x <= pi/4 + * + * Description + * + * cos x = 1 - x^2 / 2! + x^4 / 4! - ... + x^(2N) / (2N)! + * Note that (pi/4)^12 / 12! < 2^-32 which is the smallest possible number. + * + * cos x = t0 + t1 + t2 + t3 + t4 + t5 + t6 + * + * Consider only the factorials: + * f0 = 0! = 1 + * f1 = 2! = 2 * 1 * f0 = 2 * f0 + * f2 = 4! = 4 * 3 * f1 = 12 * f1 + * f3 = 6! = 6 * 5 * f2 = 30 * f2 + * f4 = 8! = 8 * 7 * f3 = 56 * f3 + * f5 = 10! = 10 * 9 * f4 = 90 * f4 + * f6 = 12! = 12 * 11 * f5 = 132 * f5 + * + * Now consider each term of the series: + * t0 = 1 + * t1 = -t0 * x^2 / f1 = -t0 * x^2 * CONST_1_2 + * t2 = -t1 * x^2 / f2 = -t1 * x^2 * CONST_1_12 + * t3 = -t2 * x^2 / f3 = -t2 * x^2 * CONST_1_30 + * t4 = -t3 * x^2 / f4 = -t3 * x^2 * CONST_1_56 + * t5 = -t4 * x^2 / f5 = -t4 * x^2 * CONST_1_90 + * t6 = -t5 * x^2 / f6 = -t5 * x^2 * CONST_1_132 + */ + +sll _sllcos(sll x) +{ + sll retval; + sll x2; + + x2 = sllmul(x, x); + + retval = _sllsub(CONST_1, sllmul(x2, CONST_1_132)); + retval = _sllsub(CONST_1, sllmul(sllmul(x2, retval), CONST_1_90)); + retval = _sllsub(CONST_1, sllmul(sllmul(x2, retval), CONST_1_56)); + retval = _sllsub(CONST_1, sllmul(sllmul(x2, retval), CONST_1_30)); + retval = _sllsub(CONST_1, sllmul(sllmul(x2, retval), CONST_1_12)); + retval = _sllsub(CONST_1, slldiv2(sllmul(x2, retval))); + + return retval; +} + +/* + * Calculate sin x where -pi/4 <= x <= pi/4 + * + * Description + * + * sin x = x - x^3 / 3! + x^5 / 5! - ... + x^(2N+1) / (2N+1)! + * Note that (pi/4)^13 / 13! < 2^-32 which is the smallest possible number. + * + * sin x = t0 + t1 + t2 + t3 + t4 + t5 + t6 + * + * Consider only the factorials: + * f0 = 0! = 1 + * f1 = 3! = 3 * 2 * f0 = 6 * f0 + * f2 = 5! = 5 * 4 * f1 = 20 * f1 + * f3 = 7! = 7 * 6 * f2 = 42 * f2 + * f4 = 9! = 9 * 8 * f3 = 72 * f3 + * f5 = 11! = 11 * 10 * f4 = 110 * f4 + * f6 = 13! = 13 * 12 * f5 = 156 * f5 + * + * Now consider each term of the series: + * t0 = 1 + * t1 = -t0 * x^2 / 6 = -t0 * x^2 * CONST_1_6 + * t2 = -t1 * x^2 / 20 = -t1 * x^2 * CONST_1_20 + * t3 = -t2 * x^2 / 42 = -t2 * x^2 * CONST_1_42 + * t4 = -t3 * x^2 / 72 = -t3 * x^2 * CONST_1_72 + * t5 = -t4 * x^2 / 110 = -t4 * x^2 * CONST_1_110 + * t6 = -t5 * x^2 / 156 = -t5 * x^2 * CONST_1_156 + */ + +sll _sllsin(sll x) +{ + sll retval; + sll x2; + + x2 = sllmul(x, x); + + retval = _sllsub(x, sllmul(x2, CONST_1_156)); + retval = _sllsub(x, sllmul(sllmul(x2, retval), CONST_1_110)); + retval = _sllsub(x, sllmul(sllmul(x2, retval), CONST_1_72)); + retval = _sllsub(x, sllmul(sllmul(x2, retval), CONST_1_42)); + retval = _sllsub(x, sllmul(sllmul(x2, retval), CONST_1_20)); + retval = _sllsub(x, sllmul(sllmul(x2, retval), CONST_1_6)); + + return retval; +} + +/* + * Calculate cos x for any value of x, by quadrant + */ + +sll sllcos(sll x) +{ + int i; + sll retval; + + /* Calculate cos (x - i * pi/2), where -pi/4 <= x - i * pi/2 <= pi/4 */ + i = _sll2int(_slladd(sllmul(x, CONST_2_PI), CONST_1_2)); + x = _sllsub(x, sllmul(_int2sll(i), CONST_PI_2)); + + /* Locate the quadrant */ + switch (i & 3) { + default: + case 0: + retval = _sllcos(x); + break; + case 1: + retval = sllneg(_sllsin(x)); + break; + case 2: + retval = sllneg(_sllcos(x)); + break; + case 3: + retval = _sllsin(x); + break; + } + + return retval; +} + +/* + * Calculate sin x for any value of x, by quadrant + */ + +sll sllsin(sll x) +{ + int i; + sll retval; + + /* Calculate sin (x - n * pi/2), where -pi/4 <= x - i * pi/2 <= pi/4 */ + i = _sll2int(_slladd(sllmul(x, CONST_2_PI), CONST_1_2)); + x = _sllsub(x, sllmul(_int2sll(i), CONST_PI_2)); + + /* Locate the quadrant */ + switch (i & 3) { + default: + case 0: + retval = _sllsin(x); + break; + case 1: + retval = _sllcos(x); + break; + case 2: + retval = sllneg(_sllsin(x)); + break; + case 3: + retval = sllneg(_sllcos(x)); + break; + } + + return retval; +} + +/* + * Calculate tan x for any value of x, by quadrant + */ + +sll slltan(sll x) +{ + int i; + sll retval; + + i = _sll2int(_slladd(sllmul(x, CONST_2_PI), CONST_1_2)); + x = _sllsub(x, sllmul(_int2sll(i), CONST_PI_2)); + + /* Locate the quadrant */ + switch (i & 3) { + default: + case 0: + case 2: + retval = slldiv(_sllsin(x), _sllcos(x)); + break; + case 1: + case 3: + retval = _sllneg(slldiv(_sllcos(x), _sllsin(x))); + break; + } + + return retval; +} + +/* + * + * Calculate asin x, where |x| <= 1 + * + * Description + * + * asin x = SUM[n=0,) C(2 * n, n) * x^(2 * n + 1) / (4^n * (2 * n + 1)), |x| <= 1 + * + * where C(n, r) = nCr = n! / (r! * (n - r)!) + * + * Using a two term approximation: + * [1] a = x + x^3 / 6 + * + * Results in: + * asin x = a + D + * where D is the difference from the exact result + * + * Letting D = asin d results in: + * [2] asin x = a + asin d + * + * Re-arranging: + * asin x - a = asin d + * + * Applying sin to both sides: + * sin (asin x - a) = sin asin d + * sin (asin x - a) = d + * d = sin (asin x - a) + * + * Applying the standard identity: + * sin (u - v) = sin u * cos v - cos u * sin v + * + * Results in: + * d = sin asin x * cos a - cos asin x * sin a + * d = x * cos a - cos asin x * sin a + * + * Applying the standard identity: + * cos asin u = (1 - u^2)^(1 / 2) + * + * Results in: + * [3] d = x * cos a - (1 - x^2)^(1 / 2) * sin a + * + * Putting the pieces together: + * [1] a = x + x^3 / 6 + * [3] d = x * cos a - (1 - x^2)^(1 / 2) * sin a + * [2] asin x = a + asin d + * + * The worst case is x = 1.0 which converges after 2 iterations. + */ + +sll sllasin(sll x) +{ + int left_side; + sll a; + sll retval; + + /* asin -x = -asin x */ + if ((left_side = x < 0)) + x = _sllneg(x); + + /* Out-of-range */ + if (x > CONST_1) + return 0; + + /* Initial approximate */ + a = sllmul(x, _slladd(CONST_1, sllmul(x, sllmul(x, CONST_1_6)))); + retval = a; + + /* First iteration */ + x = _sllsub(sllmul(x, sllcos(a)), sllmul(sllsqrt(_sllsub(CONST_1, sllmul(x, x))), sllsin(a))); + a = sllmul(x, _slladd(CONST_1, sllmul(x, sllmul(x, CONST_1_6)))); + retval = _slladd(retval, a); + + /* Second iteration */ + x = _sllsub(sllmul(x, sllcos(a)), sllmul(sllsqrt(_sllsub(CONST_1, sllmul(x, x))), sllsin(a))); + a = sllmul(x, _slladd(CONST_1, sllmul(x, sllmul(x, CONST_1_6)))); + retval = _slladd(retval, a); + + /* Negate result if necessary */ + return (left_side ? _sllneg(retval): retval); +} + +/* + * Calculate atan x + * + * Description + * + * atan x = SUM[n=0,) (-1)^n * x^(2 * n + 1) / (2 * n + 1), |x| <= 1 + * + * Using a two term approximation: + * [1] a = x - x^3 / 3 + * + * Results in: + * atan x = a + D + * where D is the difference from the exact result + * + * Letting D = atan d results in: + * [2] atan x = a + atan d + * + * Re-arranging: + * atan x - a = atan d + * + * Applying tan to both sides: + * tan (atan x - a) = tan atan d + * tan (atan x - a) = d + * d = tan (atan x - a) + * + * Applying the standard identity: + * tan (u - v) = (tan u - tan v) / (1 + tan u * tan v) + * + * Results in: + * d = tan (atan x - a) = (tan atan x - tan a) / (1 + tan atan x * tan a) + * d = tan (atan x - a) = (x - tan a) / (1 + x * tan a) + * + * Let: + * [3] t = tan a + * + * Results in: + * [4] d = (x - t) / (1 + x * t) + * + * So putting the pieces together: + * [1] a = x - x^3 / 3 + * [3] t = tan a + * [4] d = (x - t) / (1 + x * t) + * [2] atan x = a + atan d + * atan x = a + atan ((x - t) / (1 + x * t)) + * + * The worst case is x = 1.0 which converges after 2 iterations. + */ + +sll sllatan(sll x) +{ + int side; + sll a; + sll t; + sll retval; + + + if (x < CONST_1) { + + /* Left: if (x < -1) then atan x = pi / 2 + atan 1 / x */ + side = -1; + x = sllinv(x); + + } else if (x > CONST_1) { + + /* Right: if (x > 1) then atan x = pi / 2 - atan 1 / x */ + side = 1; + x = sllinv(x); + + } else { + /* Middle: -1 <= x <= 1 */ + side = 0; + } + + /* Initial approximate */ + a = sllmul(x, _sllsub(CONST_1, sllmul(x, sllmul(x, CONST_1_3)))); + retval = a; + + /* First iteration */ + t = _slldiv(_sllsin(a), _sllcos(a)); + x = _slldiv(_sllsub(x, t), _slladd(CONST_1, sllmul(x, t))); + a = sllmul(x, _sllsub(CONST_1, sllmul(x, sllmul(x, CONST_1_3)))); + retval = _slladd(retval, a); + + /* Second iteration */ + t = _slldiv(_sllsin(a), _sllcos(a)); + x = _slldiv(_sllsub(x, t), _slladd(CONST_1, sllmul(x, t))); + a = sllmul(x, _sllsub(CONST_1, sllmul(x, sllmul(x, CONST_1_3)))); + retval = _slladd(retval, a); + + if (side == -1) { + + /* Left: if (x < -1) then atan x = pi / 2 + atan 1 / x */ + retval = _slladd(CONST_PI_2, retval); + + } else if (side == 1) { + + /* Right: if (x > 1) then atan x = pi / 2 - atan 1 / x */ + retval = _sllsub(CONST_PI_2, retval); + } + + return retval; +} + +/* + * Calculate e^x where -0.5 <= x <= 0.5 + * + * Description: + * e^x = x^0 / 0! + x^1 / 1! + ... + x^N / N! + * Note that 0.5^11 / 11! < 2^-32 which is the smallest possible number. + */ + +sll _sllexp(sll x) +{ + sll retval; + + retval = CONST_1; + + retval = _slladd(CONST_1, sllmul(retval, sllmul(x, CONST_1_11))); + retval = _slladd(CONST_1, sllmul(retval, sllmul(x, CONST_1_10))); + retval = _slladd(CONST_1, sllmul(retval, sllmul(x, CONST_1_9))); + retval = _slladd(CONST_1, sllmul(retval, slldiv2n(x, 3))); + retval = _slladd(CONST_1, sllmul(retval, sllmul(x, CONST_1_7))); + retval = _slladd(CONST_1, sllmul(retval, sllmul(x, CONST_1_6))); + retval = _slladd(CONST_1, sllmul(retval, sllmul(x, CONST_1_5))); + retval = _slladd(CONST_1, sllmul(retval, slldiv4(x))); + retval = _slladd(CONST_1, sllmul(retval, sllmul(x, CONST_1_3))); + retval = _slladd(CONST_1, sllmul(retval, slldiv2(x))); + retval = _slladd(CONST_1, sllmul(retval, x)); + + return retval; +} + +/* + * Calculate e^x for any value of x + */ + +sll sllexp(sll x) +{ + int i; + sll e; + sll retval; + + e = CONST_E; + + /* -0.5 <= x <= 0.5 */ + i = _sll2int(_slladd(x, CONST_1_2)); + retval = _sllexp(_sllsub(x, _int2sll(i))); + + /* i >= 0 */ + if (i < 0) { + i = -i; + e = CONST_1_E; + } + + /* Scale the result */ + for (; i; i >>= 1) { + if (i & 1) + retval = sllmul(retval, e); + e = sllmul(e, e); + } + + return retval; +} + +/* + * Calculate natural logarithm using Netwton-Raphson method + */ + +sll slllog(sll x) +{ + sll x1; + sll ln; + + ln = 0; + + /* Scale: e^(-1/2) <= x <= e^(1/2) */ + while (x < CONST_1_SQRTE) { + ln = _sllsub(ln, CONST_1); + x = sllmul(x, CONST_E); + } + while (x > CONST_SQRTE) { + ln = _slladd(ln, CONST_1); + x = sllmul(x, CONST_1_E); + } + + /* First iteration */ + x1 = sllmul(_sllsub(x, CONST_1), slldiv2(_sllsub(x, CONST_3))); + ln = _sllsub(ln, x1); + x = sllmul(x, _sllexp(x1)); + + /* Second iteration */ + x1 = sllmul(_sllsub(x, CONST_1), slldiv2(_sllsub(x, CONST_3))); + ln = _sllsub(ln, x1); + x = sllmul(x, _sllexp(x1)); + + /* Third iteration */ + x1 = sllmul(_sllsub(x, CONST_1), slldiv2(_sllsub(x, CONST_3))); + ln = _sllsub(ln, x1); + + return ln; +} + +/* + * Calculate the inverse for non-zero values + */ + +sll sllinv(sll x) +{ + int sgn; + sll u; + ull s; + + /* Use positive numbers, or the approximation won't work */ + if (x < CONST_0) { + x = _sllneg(x); + sgn = 1; + } else { + sgn = 0; + } + + /* Starting-point (gets shifted right to become positive) */ + s = -1; + + /* An approximation - must be larger than the actual value */ + for (u = x; u; u = ((ull) u) >> 1) + s >>= 1; + + /* Newton's Method */ + u = sllmul(s, _sllsub(CONST_2, sllmul(x, s))); + u = sllmul(u, _sllsub(CONST_2, sllmul(x, u))); + u = sllmul(u, _sllsub(CONST_2, sllmul(x, u))); + u = sllmul(u, _sllsub(CONST_2, sllmul(x, u))); + u = sllmul(u, _sllsub(CONST_2, sllmul(x, u))); + u = sllmul(u, _sllsub(CONST_2, sllmul(x, u))); + + return ((sgn) ? _sllneg(u): u); +} + +/* + * Calculate x^y + * + * Description + * + * The standard identity: + * ln x^y = y * log x + * + * Raising e to the power of either sides: + * e^(ln x^y) = e^(y * log x) + * + * Which simplifies to: + * x^y = e^(y * ln x) + */ + +sll sllpow(sll x, sll y) +{ + if (y == CONST_0) + return CONST_1; + if (y == CONST_1) + return x; + if (y == CONST_2) + return sllmul(x, x); + + return sllexp(sllmul(y, slllog(x))); +} + +/* + * Calculate the square-root + * + * Description + * + * Consider a parabola centered on the y-axis: + * y = a * x^2 + b + * + * Has zeros (y = 0) located at: + * a * x^2 + b = 0 + * a * x^2 = -b + * x^2 = -b / a + * x = +- (-b / a)^(1 / 2) + * + * Letting a = 1 and b = -X results in: + * y = x^2 - X + * x = +- X^(1 / 2) + * + * Which is a convenient result, since we want to find the square root of X, + * and we can * use Newton's Method to find the zeros of any f(x): + * xn = x - f(x) / f'(x) + * + * Applying Newton's Method to our parabola: + * f(x) = x^2 - X + * xn = x - (x^2 - X) / (2 * x) + * xn = x - (x - X / x) / 2 + * + * To make this converge quickly, we scale X so that: + * X = 4^N * z + * + * Taking the roots of both sides + * X^(1 / 2) = (4^n * z)^(1 / 2) + * X^(1 / 2) = 2^n * z^(1 / 2) + * + * Letting N = 2^n results in: + * x^(1 / 2) = N * z^(1 / 2) + * + * We want this to converge to the positive root, so we must start at a point + * 0 < start <= x^(1 / 2) + * or + * x^(1/2) <= start <= infinity + * + * Since: + * (1/2)^(1/2) = 0.707 + * 2^(1/2) = 1.414 + * + * A good choice is 1 which lies in the middle, and takes 4 iterations to + * converge from either extreme. + */ + +sll sllsqrt(sll x) +{ + sll n; + sll xn; + + /* Quick solutions for the simple cases */ + if (x <= CONST_0 || x == CONST_1) + return x; + + /* Start with a scaling factor of 1 */ + n = CONST_1; + + /* Scale x so that 0.5 <= x < 2 */ + while (x >= CONST_2) { + x = slldiv4(x); + n = sllmul2(n); + } + while (x < CONST_1_2) { + x = sllmul4(x); + n = slldiv2(n); + } + + /* Simple solution if x = 4^n */ + if (x == CONST_1) + return n; + + /* The starting point */ + xn = CONST_1; + + /* Four iterations will be enough */ + xn = _sllsub(xn, slldiv2(_sllsub(xn, slldiv(x, xn)))); + xn = _sllsub(xn, slldiv2(_sllsub(xn, slldiv(x, xn)))); + xn = _sllsub(xn, slldiv2(_sllsub(xn, slldiv(x, xn)))); + xn = _sllsub(xn, slldiv2(_sllsub(xn, slldiv(x, xn)))); + + /* Scale the result */ + return sllmul(n, xn); +} + +sll slld2dsqrt(sll num) +{ + if (num <= CONST_0 || num == CONST_1) + { + return num; + } + sll result = 0; + sll bit; + + // Many numbers will be less than 15, so + // this gives a good balance between time spent + // in if vs. time spent in the while loop + // when searching for the starting value. + if (num & 0xFFFFFF0000000000LL) + bit = 0x4000000000000000LL; //(sll)1 << 62; + else + bit = 0x0000004000000000LL; //(sll)1 << 38; + + while (bit > num) bit >>= 2; + + while (bit) + { + if (num >= result + bit) + { + num -= result + bit; + result = (result >> 1) + bit; + } + else + { + result = (result >> 1); + } + bit >>= 2; + } + + // Then process it again to get the lowest 8 bits. + // 尾数定点数大于等于1 + if (num > CONST_P9999) + { + // The remainder 'num' is too large to be shifted left + // by 32, so we have to add 0.5 to result manually and + // adjust 'num' accordingly. a是原本的数 + // why 0.5 is enough? because: result^2 <= a < (result+1)^2 + // num = a - (result + 0.5)^2 + // = num + result^2 - (result + 0.5)^2 + // = num - result - 0.25 + num -= result; + // 注意,严格来说,这里要左移16位才缩小到结果,但是为了后续小数不用再放大,这里提前做了放大 + num = (num << 32) - CONST_1_4; + result = (result << 32) + CONST_1_2; + } + else + { + num <<= 32; + result <<= 32; + } + + bit = 0x0000000040000000LL; //(sll)1 << 30; + + while (bit) + { + if (num >= result + bit) + { + num -= result + bit; + result = (result >> 1) + bit; + } + else + { + result = (result >> 1); + } + bit >>= 2; + } + + return result; +}
\ No newline at end of file diff --git a/Client/ThirdParty/math-sll/math-sll.h b/Client/ThirdParty/math-sll/math-sll.h new file mode 100644 index 0000000..b10dbe7 --- /dev/null +++ b/Client/ThirdParty/math-sll/math-sll.h @@ -0,0 +1,770 @@ +#if !defined(MATH_SLL_H) +# define MATH_SLL_H + +/* + * Revision v1.24 + * + * A fixed point (32.32 bit) math library. + * + * Description + * + * Floating point packs the most accuracy in the available bits, but it + * often provides more accuracy than is required. It is time consuming to + * carry the extra precision around, particularly on platforms that don't + * have a dedicated floating point processor. + * + * This library is a compromise. All math is done using the 64 bit signed + * "long long" format (sll), and is not intended to be portable, just as + * simple and as fast as possible. + * + * As some processors lack division instructions but have multiplication + * instructions, multiplication is favored over division. This can be a + * penalty when used on a processor with a division instruction, so it is + * recommended to modify the division functions and macros in that case. + * + * On procesors without multiplication instructions, other algorithms, for + * example CORDIC, are probably faster. + * + * Since "long long" is a elementary type, it can be passed around without + * resorting to the use of pointers. Since the format used is fixed point, + * there is never a need to do time consuming checks and adjustments to + * maintain normalized numbers, as is the case in floating point. + * + * Simply put, this library is limited to handling numbers with a whole + * part of up to 2^31 - 1 = 2.147483647e9 in magnitude, and fractional + * parts down to 2^-32 = 2.3283064365e-10 in magnitude. This yields a + * decent range and accuracy for many applications. + * + * IMPORTANT + * + * No checking for arguments out of range (error). + * No checking for divide by zero (error). + * No checking for overflow (error). + * No checking for underflow (warning). + * Chops, doesn't round. + * + * Functions + * + * sll dbl2sll(double d) double to sll + * double sll2dbl(sll s) sll to double + * + * sll int2sll(int i) integer to sll + * int sll2int(sll s) sll to integer + * + * sll sllint(sll s) Set fractional-part to 0 + * sll sllfrac(sll s) Set integer-part to 0 + * + * sll slladd(sll x, sll y) x + y + * sll sllneg(sll x) -x + * sll sllsub(sll x, sll y) x - y + * + * sll sllmul(sll x, sll y) x * y + * sll sllmul2(sll x) x * 2 + * sll sllmul2n(sll x, int n) x * 2^n, 0 <= n <= 31 + * sll sllmul4(sll x) x * 4 + * + * sll slldiv(sll x, sll y) x / y + * sll slldiv2(sll x) x / 2 + * sll slldiv2n(sll x, int n) x / 2^n, 0 <= n <= 31 + * sll slldiv4(sll x) x / 4 + * + * sll sllcos(sll x) cos x + * sll sllsin(sll x) sin x + * sll slltan(sll x) tan x + * + * sll sllsec(sll x) sec x = 1 / cos x + * sll sllcsc(sll x) csc x = 1 / sin x + * sll sllcot(sll x) cot x = 1 / tan x = cos x / sin x + * + * sll sllacos(sll x) acos x + * sll sllasin(sll x) asin x + * sll sllatan(sll x) atan x + * + * sll sllcosh(sll x) cosh x + * sll sllsinh(sll x) sinh x + * sll slltanh(sll x) tanh x + * + * sll sllsech(sll x) sech x + * sll sllcsch(sll x) cosh x + * sll sllcoth(sll x) coth x + * + * sll sllexp(sll x) e^x + * sll slllog(sll x) ln x + * + * sll sllinv(sll v) 1 / x + * sll sllpow(sll x, sll y) x^y + * sll sllsqrt(sll x) x^(1 / 2) + * + * sll sllfloor(sll x) floor x + * sll sllceil(sll x) ceiling x + * + * Macros + * + * Use of the following macros is optional, but may be beneficial with + * some compilers. Using the non-macro versions is strongly recommended. + * + * WARNING: macros do not type-check their arguments! + * + * _int2sll(X) See function int2sll() + * _sll2int(X) See function sll2int() + * + * _sllint(X) See function sllint() + * _sllfrac(X) See function sllfrac() + * + * _slladd(X,Y) See function slladd() + * _sllneg(X) See function sllneg() + * _sllsub(X,Y) See function sllsub() + * + * _sllmul2(X) See function sllmul2() + * _sllmul2n(X) See function sllmul2n() + * _sllmul4(X) See function sllmul4() + * + * _slldiv(X,Y) See function slldiv() + * _slldiv2(X,Y) See function slldiv2() + * _slldiv2n(X,Y) See function slldiv2n() + * _slldiv4(X,Y) See function slldiv4() + * + * Credits + * + * Maintained, conceived, written, and fiddled with by: + * + * Andrew E. Mileski <andrewm@isoar.ca> + * + * Other source code contributors: + * + * Kevin Rockel + * Kevin Michael Woley + * Mark Anthony Lisher + * Nicolas Pitre + * Anonymous + * + * License + * + * Licensed under the terms of the MIT license: + * + * Copyright (c) 2000,2002,2006,2012,2016 Andrew E. Mileski <andrewm@isoar.ca> + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The copyright notice, and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/* DEC SA-110 "StrongARM" (armv4l) architecture has a big-endian double */ +#if defined(__arm__) +# if (!defined(__BYTE_ORDER__) || (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) +# define BROKEN_IEEE754_DOUBLE +# endif +#endif + +#ifdef _MSC_VER +# define __inline__ __inline +# ifndef _MSC_STDINT_H_ +typedef signed __int64 int64_t; +typedef unsigned __int64 uint64_t; +#endif +#define __extension__ +#else +#include <stdint.h> +#if defined(__GNUC__) + +#else + #define __inline__ inline +#endif +#endif +/* + * Data types + */ + +__extension__ typedef int64_t sll; +__extension__ typedef uint64_t ull; + +/* + * Function prototypes + */ + +sll dbl2sll(double d); +double sll2dbl(sll s); + +static __inline__ sll int2sll(int i); +static __inline__ int sll2int(sll s); + +static __inline__ sll sllint(sll s); +static __inline__ sll sllfrac(sll s); + +static __inline__ sll slladd(sll x, sll y); +static __inline__ sll sllneg(sll s); +static __inline__ sll sllsub(sll x, sll y); +sll sllmul(sll x, sll y); +static __inline__ sll sllmul2(sll x); +static __inline__ sll sllmul4(sll x); +static __inline__ sll sllmul2n(sll x, int n); + +static __inline__ sll slldiv(sll x, sll y); +static __inline__ sll slldiv2(sll x); +static __inline__ sll slldiv4(sll x); +static __inline__ sll slldiv2n(sll x, int n); + +sll sllcos(sll x); +sll sllsin(sll x); +sll slltan(sll x); + +static __inline__ sll sllacos(sll x); +sll sllasin(sll x); +sll sllatan(sll x); + +static __inline__ sll sllsec(sll x); +static __inline__ sll sllcsc(sll x); +static __inline__ sll sllcot(sll x); + +static __inline__ sll sllcosh(sll x); +static __inline__ sll sllsinh(sll x); +static __inline__ sll slltanh(sll x); + +static __inline__ sll sllsech(sll x); +static __inline__ sll sllcsch(sll x); +static __inline__ sll sllcoth(sll x); + +sll sllexp(sll x); +sll slllog(sll x); + +sll sllpow(sll x, sll y); +sll sllinv(sll v); +sll sllsqrt(sll x); +sll slld2dsqrt(sll x); + +static __inline__ sll sllfloor(sll x); +static __inline__ sll sllceil(sll x); + +/* + * Macros + * + * WARNING - Macros don't type-check! + */ + +#define _int2sll(X) (((sll) (X)) << 32) +#define _sll2int(X) ((int) ((X) >> 32)) + +#define _sllint(X) ((X) & 0xffffffff00000000LL) +#define _sllfrac(X) ((X) & 0x00000000ffffffffLL) + +#define _slladd(X,Y) ((X) + (Y)) +#define _sllneg(X) (-(X)) +#define _sllsub(X,Y) ((X) - (Y)) + +#define _sllmul2(X) ((X) << 1) +#define _sllmul4(X) ((X) << 2) +#define _sllmul2n(X,N) ((X) << (N)) + +#define _slldiv(X,Y) sllmul((X), sllinv(Y)) +#define _slldiv2(X) ((X) >> 1) +#define _slldiv4(X) ((X) >> 2) +#define _slldiv2n(X,N) ((X) >> (N)) + +/* + * Constants (converted from double) +*/ + +#define CONST_0 0x0000000000000000LL // 0.0 +#define CONST_1 0x0000000100000000LL // 1.0 +#define CONST_neg1 0xffffffff00000000LL // -1.0 +#define CONST_2 0x0000000200000000LL // 2.0 +#define CONST_3 0x0000000300000000LL // 3.0 +#define CONST_4 0x0000000400000000LL // 4.0 +#define CONST_10 0x0000000a00000000LL // 10.0 +#define CONST_10 0x0000000a00000000LL // 10.0 +#define CONST_1_2 0x0000000080000000LL // 1.0 / 2.0 +#define CONST_1_3 0x0000000055555555LL // 1.0 / 3.0 +#define CONST_1_4 0x0000000040000000LL // 1.0 / 4.0 +#define CONST_1_5 0x0000000033333333LL // 1.0 / 5.0 +#define CONST_1_6 0x000000002aaaaaaaLL // 1.0 / 6.0 +#define CONST_1_7 0x0000000024924924LL // 1.0 / 7.0 +#define CONST_1_8 0x0000000020000000LL // 1.0 / 8.0 +#define CONST_1_9 0x000000001c71c71cLL // 1.0 / 9.0 +#define CONST_1_10 0x0000000019999999LL // 1.0 / 10.0 +#define CONST_1_11 0x000000001745d174LL // 1.0 / 11.0 +#define CONST_1_12 0x0000000015555555LL // 1.0 / 12.0 +#define CONST_1_20 0x000000000cccccccLL // 1.0 / 20.0 +#define CONST_1_30 0x0000000008888888LL // 1.0 / 30.0 +#define CONST_1_42 0x0000000006186186LL // 1.0 / 42.0 +#define CONST_1_56 0x0000000004924924LL // 1.0 / 56.0 +#define CONST_1_72 0x00000000038e38e3LL // 1.0 / 72.0 +#define CONST_1_90 0x0000000002d82d82LL // 1.0 / 90.0 +#define CONST_1_110 0x000000000253c825LL // 1.0 / 110.0 +#define CONST_1_132 0x0000000001f07c1fLL // 1.0 / 132.0 +#define CONST_1_156 0x0000000001a41a41LL // 1.0 / 156.0 +#define CONST_P9999 0x00000000FFFFFFFFLL // 0.999999999999 + +#define CONST_E 0x00000002b7e15162LL // E +#define CONST_1_E 0x000000005e2d58d8LL // 1 / E +#define CONST_SQRTE 0x00000001a61298e1LL // sqrt(E) +#define CONST_1_SQRTE 0x000000009b4597e3LL // 1 / sqrt(E) +#define CONST_LOG2_E 0x0000000171547652LL // ln(E) +#define CONST_LOG10_E 0x000000006f2dec54LL // log(E) +#define CONST_LN2 0x00000000b17217f7LL // ln(2) +#define CONST_LN10 0x000000024d763776LL // ln(10) + +#define CONST_PI 0x00000003243f6a88LL // PI +#define CONST_2PI 0x00000006487ED510LL // PI +#define CONST_PI_2 0x00000001921fb544LL // PI / 2 +#define CONST_PI_4 0x00000000c90fdaa2LL // PI / 4 +#define CONST_1_PI 0x00000000517cc1b7LL // 1 / PI +#define CONST_2_PI 0x00000000a2f9836eLL // 2 / PI +#define CONST_180_PI 0x000000394BB834C7LL // 180 / PI 246083499207.51537232162612011973 +#define CONST_PI_180 0x000000000477d1a8LL // PI / 180 74961320.580677883103327681382757 +#define CONST_2_SQRTPI 0x0000000120dd7504LL // 2 / sqrt(PI) +#define CONST_SQRT2 0x000000016a09e667LL // sqrt(2) +#define CONST_1_SQRT2 0x00000000b504f333LL // 1 / sqrt(2) + +#define CONST_FACT_0 0x0000000100000000LL // 0! +#define CONST_FACT_1 0x0000000100000000LL // 1! +#define CONST_FACT_2 0x0000000200000000LL // 2! +#define CONST_FACT_3 0x0000000600000000LL // 3! +#define CONST_FACT_4 0x0000001800000000LL // 4! +#define CONST_FACT_5 0x0000007800000000LL // 5! +#define CONST_FACT_6 0x000002d000000000LL // 6! +#define CONST_FACT_7 0x000013b000000000LL // 7! +#define CONST_FACT_8 0x00009d8000000000LL // 8! +#define CONST_FACT_9 0x0005898000000000LL // 9! +#define CONST_FACT_10 0x00375f0000000000LL // 10! +#define CONST_FACT_11 0x0261150000000000LL // 11! +#define CONST_FACT_12 0x1c8cfc0000000000LL // 12! + +#define CONST_MAX 0x7FFFFFFFFFFFFFFFLL // 最大 +#define CONST_MIN 0x8000000000000000LL // 最小 + +/* + * Convert integer to sll + */ + +static __inline__ sll int2sll(int i) +{ + return _int2sll(i); +} + +/* + * Convert sll to integer (truncates) + */ + +static __inline__ int sll2int(sll s) +{ + return _sll2int(s); +} + +/* + * Integer-part of sll (fractional-part set to 0) + */ + +static __inline__ sll sllint(sll s) +{ + return _sllint(s); +} + +/* + * Fractional-part of sll (integer-part set to 0) + */ + +static __inline__ sll sllfrac(sll s) +{ + return _sllfrac(s); +} + +/* + * Addition + */ + +static __inline__ sll slladd(sll x, sll y) +{ + return _slladd(x, y); +} + +/* + * Negate + */ + +static __inline__ sll sllneg(sll s) +{ + return _sllneg(s); +} + +/* + * Subtraction + */ + +static __inline__ sll sllsub(sll x, sll y) +{ + return _sllsub(x, y); +} + +/* + * Multiply two sll values + * + * Description + * + * Let a = A * 2^32 + a_h * 2^0 + a_l * 2^(-32) + * Let b = B * 2^32 + b_h * 2^0 + b_l * 2^(-32) + * + * Where: + * + * *_h is the integer part + * *_l the fractional part + * A and B are the sign (0 for positive, -1 for negative). + * + * a * b = (A * 2^32 + a_h * 2^0 + a_l * 2^-32) + * * (B * 2^32 + b_h * 2^0 + b_l * 2^-32) + * + * Expanding the terms, we get: + * + * = A * B * 2^64 + A * b_h * 2^32 + A * b_l * 2^0 + * + a_h * B * 2^32 + a_h * b_h * 2^0 + a_h * b_l * 2^-32 + * + a_l * B * 2^0 + a_l * b_h * 2^-32 + a_l * b_l * 2^-64 + * + * Grouping by powers of 2, we get: + * + * = A * B * 2^64 + * Meaningless overflow from sign extension - ignore + * + * + (A * b_h + a_h * B) * 2^32 + * Overflow which we can't handle - ignore + * + * + (A * b_l + a_h * b_h + a_l * B) * 2^0 + * We only need the low 32 bits of this term, as the rest is overflow + * + * + (a_h * b_l + a_l * b_h) * 2^-32 + * We need all 64 bits of this term + * + * + a_l * b_l * 2^-64 + * We only need the high 32 bits of this term, as the rest is underflow + * + * Note that: + * a > 0 && b > 0: A = 0, B = 0 and the third term is a_h * b_h + * a < 0 && b > 0: A = -1, B = 0 and the third term is a_h * b_h - b_l + * a > 0 && b < 0: A = 0, B = -1 and the third term is a_h * b_h - a_l + * a < 0 && b < 0: A = -1, B = -1 and the third term is a_h * b_h - a_l - b_l + */ + +/* + * Multiplication by 2 + */ + +static __inline__ sll sllmul2(sll x) +{ + return _sllmul2(x); +} + +/* + * Multiplication by 4 + */ + +static __inline__ sll sllmul4(sll x) +{ + return _sllmul4(x); +} + +/* + * Multiplication by power of 2 + */ + +static __inline__ sll sllmul2n(sll x, int n) +{ + return _sllmul2n(x, n); +} + +/* + * Division + */ + +static __inline__ sll slldiv(sll x, sll y) +{ + return _slldiv(x, y); +} + +/* + * Division by 2 + */ + +static __inline__ sll slldiv2(sll x) +{ + return _slldiv2(x); +} + +/* + * Division by 4 + */ + +static __inline__ sll slldiv4(sll x) +{ + return _slldiv4(x); +} + +/* + * Division by power of 2 + */ + +static __inline__ sll slldiv2n(sll x, int n) +{ + return _slldiv2n(x, n); +} + +/* + * + * Calculate acos x, where |x| <= 1 + * + * Description + * + * acos x = pi / 2 - asin x + * acos x = pi / 2 - SUM[n=0,) C(2 * n, n) * x^(2 * n + 1) / (4^n * (2 * n + 1)), |x| <= 1 + * + * where C(n, r) = nCr = n! / (r! * (n - r)!) + */ + +static __inline__ sll sllacos(sll x) +{ + return _sllsub(CONST_PI_2, sllasin(x)); +} + +/* + * Trigonometric secant + * + * Description + * + * sec x = 1 / cos x + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllsec(sll x) +{ + return sllinv(sllcos(x)); +} + +/* + * Trigonometric cosecant + * + * Description + * + * csc x = 1 / sin x + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllcsc(sll x) +{ + return sllinv(sllsin(x)); +} + +/* + * Trigonometric cotangent + * + * Description + * + * cot x = 1 / tan x + * + * cot x = cos x / sin x + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllcot(sll x) +{ + return _slldiv(sllcos(x), sllsin(x)); +} + +/* + * Hyperbolic cosine + * + * Description + * + * cosh x = (e^x + e^(-x)) / 2 + * + * cosh x = 1 + x^2 / 2! + ... + x^(2 * N) / (2 * N)! + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllcosh(sll x) +{ + return _slldiv2(_slladd(sllexp(x), sllexp(_sllneg(x)))); +} + +/* + * Hyperbolic sine + * + * Description + * + * sinh x = (e^x - e^(-x)) / 2 + * + * sinh x = 1 + x^3 / 3! + ... + x^(2 * N + 1) / (2 * N + 1)! + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllsinh(sll x) +{ + return _slldiv2(_sllsub(sllexp(x), sllexp(_sllneg(x)))); +} + +/* + * Hyperbolic tangent + * + * Description + * + * tanh x = sinh x / cosh x + * + * tanh x = (e^x - e^(-x)) / (e^x + e^(-x)) + * + * tanh x = (e^(2 * x) - 1) / (e^(2 * x) + 1) + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll slltanh(sll x) +{ + register sll e2x; + + e2x = sllexp(_sllmul2(x)); + + return _slldiv(_sllsub(e2x, CONST_1), _slladd(e2x, CONST_1)); +} + +/* + * Hyperbolic secant + * + * Description + * + * sech x = 1 / cosh x + * + * sech x = 2 / (e^x + e^(-x)) + * + * sech x = 2 * e^x / (e^(2 * x) + 1) + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllsech(sll x) +{ + return _slldiv(_sllmul2(sllexp(x)), _slladd(sllexp(_sllmul2(x)), CONST_1)); +} + +/* + * Hyperbolic cosecant + * + * Description + * + * csch x = = 1 / sinh x + * + * csch x = 2 / (e^x - e^(-x)) + * + * csch x = 2 * e^x / (e^(2 * x) - 1) + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllcsch(sll x) +{ + return _slldiv(_sllmul2(sllexp(x)), _sllsub(sllexp(_sllmul2(x)), CONST_1)); +} + +/* + * Hyperbolic cotangent + * + * Description + * + * coth x = 1 / tanh x + * + * coth x = cosh x / sinh x + * + * coth x = (e^x + e^(-x)) / (e^x - e^(-x)) + * + * coth x = (e^(2 * x) + 1) / (e^(2 * x) - 1) + * + * An alternate algorithm, like a power series, would be more accurate. + */ + +static __inline__ sll sllcoth(sll x) +{ + register sll e2x; + + e2x = sllexp(sllmul2(x)); + + return _slldiv(_slladd(e2x, CONST_1), _sllsub(e2x, CONST_1)); +} + +/* + * Floor + * + * Description + * + * floor x = largest integer not larger than x + */ + +static __inline__ sll sllfloor(sll x) +{ + register sll retval; + + retval = _sllint(x); + + return ((retval > x) ? _sllsub(retval, CONST_1): retval); +} + +/* + * Ceiling + * + * Description + * + * ceil x = smallest integer not smaller than x + */ + +static __inline__ sll sllceil(sll x) +{ + register sll retval; + + retval = _sllint(x); + + return ((retval < x) ? _slladd(retval, CONST_1): retval); +} + +#define sllabs(x) ((x) < 0 ? -(x) : (x)) +#define __VECTOR2_META__ "__VECTOR2_META__" +#define __VECTOR3_META__ "__VECTOR3_META__" +#define __ROT2_META__ "__ROT2_META__" +#define __ROT4_META__ "__ROT4_META__" +#define __METATABLE_NAME "__FIX_METATABLE__" + +static int _mul[] = {1, 10, 100, 1000, 10000, 100000, 1000000}; + +typedef struct Vector2 +{ + sll x; + sll y; +}Vector2; + +typedef struct Vector3 +{ + sll x; + sll y; + sll z; +}Vector3; + +typedef struct Vector4 +{ + sll x; + sll y; + sll z; + sll w; + +}Vector4; +#endif |