diff options
Diffstat (limited to 'Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp')
| -rw-r--r-- | Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp | 843 | 
1 files changed, 843 insertions, 0 deletions
diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp new file mode 100644 index 0000000..e6f432a --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp @@ -0,0 +1,843 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_contact_solver.h" + +#include "box2d/b2_body.h" +#include "box2d/b2_contact.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_stack_allocator.h" +#include "box2d/b2_world.h" + +// Solver debugging is normally disabled because the block solver sometimes has to deal with a poorly conditioned effective mass matrix. +#define B2_DEBUG_SOLVER 0 + +B2_API bool g_blockSolve = true; + +struct b2ContactPositionConstraint +{ +	b2Vec2 localPoints[b2_maxManifoldPoints]; +	b2Vec2 localNormal; +	b2Vec2 localPoint; +	int32 indexA; +	int32 indexB; +	float invMassA, invMassB; +	b2Vec2 localCenterA, localCenterB; +	float invIA, invIB; +	b2Manifold::Type type; +	float radiusA, radiusB; +	int32 pointCount; +}; + +b2ContactSolver::b2ContactSolver(b2ContactSolverDef* def) +{ +	m_step = def->step; +	m_allocator = def->allocator; +	m_count = def->count; +	m_positionConstraints = (b2ContactPositionConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactPositionConstraint)); +	m_velocityConstraints = (b2ContactVelocityConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactVelocityConstraint)); +	m_positions = def->positions; +	m_velocities = def->velocities; +	m_contacts = def->contacts; + +	// Initialize position independent portions of the constraints. +	for (int32 i = 0; i < m_count; ++i) +	{ +		b2Contact* contact = m_contacts[i]; + +		b2Fixture* fixtureA = contact->m_fixtureA; +		b2Fixture* fixtureB = contact->m_fixtureB; +		b2Shape* shapeA = fixtureA->GetShape(); +		b2Shape* shapeB = fixtureB->GetShape(); +		float radiusA = shapeA->m_radius; +		float radiusB = shapeB->m_radius; +		b2Body* bodyA = fixtureA->GetBody(); +		b2Body* bodyB = fixtureB->GetBody(); +		b2Manifold* manifold = contact->GetManifold(); + +		int32 pointCount = manifold->pointCount; +		b2Assert(pointCount > 0); + +		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; +		vc->friction = contact->m_friction; +		vc->restitution = contact->m_restitution; +		vc->threshold = contact->m_restitutionThreshold; +		vc->tangentSpeed = contact->m_tangentSpeed; +		vc->indexA = bodyA->m_islandIndex; +		vc->indexB = bodyB->m_islandIndex; +		vc->invMassA = bodyA->m_invMass; +		vc->invMassB = bodyB->m_invMass; +		vc->invIA = bodyA->m_invI; +		vc->invIB = bodyB->m_invI; +		vc->contactIndex = i; +		vc->pointCount = pointCount; +		vc->K.SetZero(); +		vc->normalMass.SetZero(); + +		b2ContactPositionConstraint* pc = m_positionConstraints + i; +		pc->indexA = bodyA->m_islandIndex; +		pc->indexB = bodyB->m_islandIndex; +		pc->invMassA = bodyA->m_invMass; +		pc->invMassB = bodyB->m_invMass; +		pc->localCenterA = bodyA->m_sweep.localCenter; +		pc->localCenterB = bodyB->m_sweep.localCenter; +		pc->invIA = bodyA->m_invI; +		pc->invIB = bodyB->m_invI; +		pc->localNormal = manifold->localNormal; +		pc->localPoint = manifold->localPoint; +		pc->pointCount = pointCount; +		pc->radiusA = radiusA; +		pc->radiusB = radiusB; +		pc->type = manifold->type; + +		for (int32 j = 0; j < pointCount; ++j) +		{ +			b2ManifoldPoint* cp = manifold->points + j; +			b2VelocityConstraintPoint* vcp = vc->points + j; +	 +			if (m_step.warmStarting) +			{ +				vcp->normalImpulse = m_step.dtRatio * cp->normalImpulse; +				vcp->tangentImpulse = m_step.dtRatio * cp->tangentImpulse; +			} +			else +			{ +				vcp->normalImpulse = 0.0f; +				vcp->tangentImpulse = 0.0f; +			} + +			vcp->rA.SetZero(); +			vcp->rB.SetZero(); +			vcp->normalMass = 0.0f; +			vcp->tangentMass = 0.0f; +			vcp->velocityBias = 0.0f; + +			pc->localPoints[j] = cp->localPoint; +		} +	} +} + +b2ContactSolver::~b2ContactSolver() +{ +	m_allocator->Free(m_velocityConstraints); +	m_allocator->Free(m_positionConstraints); +} + +// Initialize position dependent portions of the velocity constraints. +void b2ContactSolver::InitializeVelocityConstraints() +{ +	for (int32 i = 0; i < m_count; ++i) +	{ +		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; +		b2ContactPositionConstraint* pc = m_positionConstraints + i; + +		float radiusA = pc->radiusA; +		float radiusB = pc->radiusB; +		b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); + +		int32 indexA = vc->indexA; +		int32 indexB = vc->indexB; + +		float mA = vc->invMassA; +		float mB = vc->invMassB; +		float iA = vc->invIA; +		float iB = vc->invIB; +		b2Vec2 localCenterA = pc->localCenterA; +		b2Vec2 localCenterB = pc->localCenterB; + +		b2Vec2 cA = m_positions[indexA].c; +		float aA = m_positions[indexA].a; +		b2Vec2 vA = m_velocities[indexA].v; +		float wA = m_velocities[indexA].w; + +		b2Vec2 cB = m_positions[indexB].c; +		float aB = m_positions[indexB].a; +		b2Vec2 vB = m_velocities[indexB].v; +		float wB = m_velocities[indexB].w; + +		b2Assert(manifold->pointCount > 0); + +		b2Transform xfA, xfB; +		xfA.q.Set(aA); +		xfB.q.Set(aB); +		xfA.p = cA - b2Mul(xfA.q, localCenterA); +		xfB.p = cB - b2Mul(xfB.q, localCenterB); + +		b2WorldManifold worldManifold; +		worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); + +		vc->normal = worldManifold.normal; + +		int32 pointCount = vc->pointCount; +		for (int32 j = 0; j < pointCount; ++j) +		{ +			b2VelocityConstraintPoint* vcp = vc->points + j; + +			vcp->rA = worldManifold.points[j] - cA; +			vcp->rB = worldManifold.points[j] - cB; + +			float rnA = b2Cross(vcp->rA, vc->normal); +			float rnB = b2Cross(vcp->rB, vc->normal); + +			float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; + +			vcp->normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; + +			b2Vec2 tangent = b2Cross(vc->normal, 1.0f); + +			float rtA = b2Cross(vcp->rA, tangent); +			float rtB = b2Cross(vcp->rB, tangent); + +			float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; + +			vcp->tangentMass = kTangent > 0.0f ? 1.0f /  kTangent : 0.0f; + +			// Setup a velocity bias for restitution. +			vcp->velocityBias = 0.0f; +			float vRel = b2Dot(vc->normal, vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA)); +			if (vRel < -vc->threshold) +			{ +				vcp->velocityBias = -vc->restitution * vRel; +			} +		} + +		// If we have two points, then prepare the block solver. +		if (vc->pointCount == 2 && g_blockSolve) +		{ +			b2VelocityConstraintPoint* vcp1 = vc->points + 0; +			b2VelocityConstraintPoint* vcp2 = vc->points + 1; + +			float rn1A = b2Cross(vcp1->rA, vc->normal); +			float rn1B = b2Cross(vcp1->rB, vc->normal); +			float rn2A = b2Cross(vcp2->rA, vc->normal); +			float rn2B = b2Cross(vcp2->rB, vc->normal); + +			float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; +			float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; +			float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; + +			// Ensure a reasonable condition number. +			const float k_maxConditionNumber = 1000.0f; +			if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) +			{ +				// K is safe to invert. +				vc->K.ex.Set(k11, k12); +				vc->K.ey.Set(k12, k22); +				vc->normalMass = vc->K.GetInverse(); +			} +			else +			{ +				// The constraints are redundant, just use one. +				// TODO_ERIN use deepest? +				vc->pointCount = 1; +			} +		} +	} +} + +void b2ContactSolver::WarmStart() +{ +	// Warm start. +	for (int32 i = 0; i < m_count; ++i) +	{ +		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; + +		int32 indexA = vc->indexA; +		int32 indexB = vc->indexB; +		float mA = vc->invMassA; +		float iA = vc->invIA; +		float mB = vc->invMassB; +		float iB = vc->invIB; +		int32 pointCount = vc->pointCount; + +		b2Vec2 vA = m_velocities[indexA].v; +		float wA = m_velocities[indexA].w; +		b2Vec2 vB = m_velocities[indexB].v; +		float wB = m_velocities[indexB].w; + +		b2Vec2 normal = vc->normal; +		b2Vec2 tangent = b2Cross(normal, 1.0f); + +		for (int32 j = 0; j < pointCount; ++j) +		{ +			b2VelocityConstraintPoint* vcp = vc->points + j; +			b2Vec2 P = vcp->normalImpulse * normal + vcp->tangentImpulse * tangent; +			wA -= iA * b2Cross(vcp->rA, P); +			vA -= mA * P; +			wB += iB * b2Cross(vcp->rB, P); +			vB += mB * P; +		} + +		m_velocities[indexA].v = vA; +		m_velocities[indexA].w = wA; +		m_velocities[indexB].v = vB; +		m_velocities[indexB].w = wB; +	} +} + +void b2ContactSolver::SolveVelocityConstraints() +{ +	for (int32 i = 0; i < m_count; ++i) +	{ +		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; + +		int32 indexA = vc->indexA; +		int32 indexB = vc->indexB; +		float mA = vc->invMassA; +		float iA = vc->invIA; +		float mB = vc->invMassB; +		float iB = vc->invIB; +		int32 pointCount = vc->pointCount; + +		b2Vec2 vA = m_velocities[indexA].v; +		float wA = m_velocities[indexA].w; +		b2Vec2 vB = m_velocities[indexB].v; +		float wB = m_velocities[indexB].w; + +		b2Vec2 normal = vc->normal; +		b2Vec2 tangent = b2Cross(normal, 1.0f); +		float friction = vc->friction; + +		b2Assert(pointCount == 1 || pointCount == 2); + +		// Solve tangent constraints first because non-penetration is more important +		// than friction. +		for (int32 j = 0; j < pointCount; ++j) +		{ +			b2VelocityConstraintPoint* vcp = vc->points + j; + +			// Relative velocity at contact +			b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); + +			// Compute tangent force +			float vt = b2Dot(dv, tangent) - vc->tangentSpeed; +			float lambda = vcp->tangentMass * (-vt); + +			// b2Clamp the accumulated force +			float maxFriction = friction * vcp->normalImpulse; +			float newImpulse = b2Clamp(vcp->tangentImpulse + lambda, -maxFriction, maxFriction); +			lambda = newImpulse - vcp->tangentImpulse; +			vcp->tangentImpulse = newImpulse; + +			// Apply contact impulse +			b2Vec2 P = lambda * tangent; + +			vA -= mA * P; +			wA -= iA * b2Cross(vcp->rA, P); + +			vB += mB * P; +			wB += iB * b2Cross(vcp->rB, P); +		} + +		// Solve normal constraints +		if (pointCount == 1 || g_blockSolve == false) +		{ +			for (int32 j = 0; j < pointCount; ++j) +			{ +				b2VelocityConstraintPoint* vcp = vc->points + j; + +				// Relative velocity at contact +				b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); + +				// Compute normal impulse +				float vn = b2Dot(dv, normal); +				float lambda = -vcp->normalMass * (vn - vcp->velocityBias); + +				// b2Clamp the accumulated impulse +				float newImpulse = b2Max(vcp->normalImpulse + lambda, 0.0f); +				lambda = newImpulse - vcp->normalImpulse; +				vcp->normalImpulse = newImpulse; + +				// Apply contact impulse +				b2Vec2 P = lambda * normal; +				vA -= mA * P; +				wA -= iA * b2Cross(vcp->rA, P); + +				vB += mB * P; +				wB += iB * b2Cross(vcp->rB, P); +			} +		} +		else +		{ +			// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). +			// Build the mini LCP for this contact patch +			// +			// vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 +			// +			// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) +			// b = vn0 - velocityBias +			// +			// The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i +			// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases +			// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid +			// solution that satisfies the problem is chosen. +			//  +			// In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires +			// that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). +			// +			// Substitute: +			//  +			// x = a + d +			//  +			// a := old total impulse +			// x := new total impulse +			// d := incremental impulse  +			// +			// For the current iteration we extend the formula for the incremental impulse +			// to compute the new total impulse: +			// +			// vn = A * d + b +			//    = A * (x - a) + b +			//    = A * x + b - A * a +			//    = A * x + b' +			// b' = b - A * a; + +			b2VelocityConstraintPoint* cp1 = vc->points + 0; +			b2VelocityConstraintPoint* cp2 = vc->points + 1; + +			b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse); +			b2Assert(a.x >= 0.0f && a.y >= 0.0f); + +			// Relative velocity at contact +			b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); +			b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); + +			// Compute normal velocity +			float vn1 = b2Dot(dv1, normal); +			float vn2 = b2Dot(dv2, normal); + +			b2Vec2 b; +			b.x = vn1 - cp1->velocityBias; +			b.y = vn2 - cp2->velocityBias; + +			// Compute b' +			b -= b2Mul(vc->K, a); + +			const float k_errorTol = 1e-3f; +			B2_NOT_USED(k_errorTol); + +			for (;;) +			{ +				// +				// Case 1: vn = 0 +				// +				// 0 = A * x + b' +				// +				// Solve for x: +				// +				// x = - inv(A) * b' +				// +				b2Vec2 x = - b2Mul(vc->normalMass, b); + +				if (x.x >= 0.0f && x.y >= 0.0f) +				{ +					// Get the incremental impulse +					b2Vec2 d = x - a; + +					// Apply incremental impulse +					b2Vec2 P1 = d.x * normal; +					b2Vec2 P2 = d.y * normal; +					vA -= mA * (P1 + P2); +					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + +					vB += mB * (P1 + P2); +					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + +					// Accumulate +					cp1->normalImpulse = x.x; +					cp2->normalImpulse = x.y; + +#if B2_DEBUG_SOLVER == 1 +					// Postconditions +					dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); +					dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); + +					// Compute normal velocity +					vn1 = b2Dot(dv1, normal); +					vn2 = b2Dot(dv2, normal); + +					b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); +					b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); +#endif +					break; +				} + +				// +				// Case 2: vn1 = 0 and x2 = 0 +				// +				//   0 = a11 * x1 + a12 * 0 + b1'  +				// vn2 = a21 * x1 + a22 * 0 + b2' +				// +				x.x = - cp1->normalMass * b.x; +				x.y = 0.0f; +				vn1 = 0.0f; +				vn2 = vc->K.ex.y * x.x + b.y; +				if (x.x >= 0.0f && vn2 >= 0.0f) +				{ +					// Get the incremental impulse +					b2Vec2 d = x - a; + +					// Apply incremental impulse +					b2Vec2 P1 = d.x * normal; +					b2Vec2 P2 = d.y * normal; +					vA -= mA * (P1 + P2); +					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + +					vB += mB * (P1 + P2); +					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + +					// Accumulate +					cp1->normalImpulse = x.x; +					cp2->normalImpulse = x.y; + +#if B2_DEBUG_SOLVER == 1 +					// Postconditions +					dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); + +					// Compute normal velocity +					vn1 = b2Dot(dv1, normal); + +					b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); +#endif +					break; +				} + + +				// +				// Case 3: vn2 = 0 and x1 = 0 +				// +				// vn1 = a11 * 0 + a12 * x2 + b1'  +				//   0 = a21 * 0 + a22 * x2 + b2' +				// +				x.x = 0.0f; +				x.y = - cp2->normalMass * b.y; +				vn1 = vc->K.ey.x * x.y + b.x; +				vn2 = 0.0f; + +				if (x.y >= 0.0f && vn1 >= 0.0f) +				{ +					// Resubstitute for the incremental impulse +					b2Vec2 d = x - a; + +					// Apply incremental impulse +					b2Vec2 P1 = d.x * normal; +					b2Vec2 P2 = d.y * normal; +					vA -= mA * (P1 + P2); +					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + +					vB += mB * (P1 + P2); +					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + +					// Accumulate +					cp1->normalImpulse = x.x; +					cp2->normalImpulse = x.y; + +#if B2_DEBUG_SOLVER == 1 +					// Postconditions +					dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); + +					// Compute normal velocity +					vn2 = b2Dot(dv2, normal); + +					b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); +#endif +					break; +				} + +				// +				// Case 4: x1 = 0 and x2 = 0 +				//  +				// vn1 = b1 +				// vn2 = b2; +				x.x = 0.0f; +				x.y = 0.0f; +				vn1 = b.x; +				vn2 = b.y; + +				if (vn1 >= 0.0f && vn2 >= 0.0f ) +				{ +					// Resubstitute for the incremental impulse +					b2Vec2 d = x - a; + +					// Apply incremental impulse +					b2Vec2 P1 = d.x * normal; +					b2Vec2 P2 = d.y * normal; +					vA -= mA * (P1 + P2); +					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + +					vB += mB * (P1 + P2); +					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + +					// Accumulate +					cp1->normalImpulse = x.x; +					cp2->normalImpulse = x.y; + +					break; +				} + +				// No solution, give up. This is hit sometimes, but it doesn't seem to matter. +				break; +			} +		} + +		m_velocities[indexA].v = vA; +		m_velocities[indexA].w = wA; +		m_velocities[indexB].v = vB; +		m_velocities[indexB].w = wB; +	} +} + +void b2ContactSolver::StoreImpulses() +{ +	for (int32 i = 0; i < m_count; ++i) +	{ +		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; +		b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); + +		for (int32 j = 0; j < vc->pointCount; ++j) +		{ +			manifold->points[j].normalImpulse = vc->points[j].normalImpulse; +			manifold->points[j].tangentImpulse = vc->points[j].tangentImpulse; +		} +	} +} + +struct b2PositionSolverManifold +{ +	void Initialize(b2ContactPositionConstraint* pc, const b2Transform& xfA, const b2Transform& xfB, int32 index) +	{ +		b2Assert(pc->pointCount > 0); + +		switch (pc->type) +		{ +		case b2Manifold::e_circles: +			{ +				b2Vec2 pointA = b2Mul(xfA, pc->localPoint); +				b2Vec2 pointB = b2Mul(xfB, pc->localPoints[0]); +				normal = pointB - pointA; +				normal.Normalize(); +				point = 0.5f * (pointA + pointB); +				separation = b2Dot(pointB - pointA, normal) - pc->radiusA - pc->radiusB; +			} +			break; + +		case b2Manifold::e_faceA: +			{ +				normal = b2Mul(xfA.q, pc->localNormal); +				b2Vec2 planePoint = b2Mul(xfA, pc->localPoint); + +				b2Vec2 clipPoint = b2Mul(xfB, pc->localPoints[index]); +				separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; +				point = clipPoint; +			} +			break; + +		case b2Manifold::e_faceB: +			{ +				normal = b2Mul(xfB.q, pc->localNormal); +				b2Vec2 planePoint = b2Mul(xfB, pc->localPoint); + +				b2Vec2 clipPoint = b2Mul(xfA, pc->localPoints[index]); +				separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; +				point = clipPoint; + +				// Ensure normal points from A to B +				normal = -normal; +			} +			break; +		} +	} + +	b2Vec2 normal; +	b2Vec2 point; +	float separation; +}; + +// Sequential solver. +bool b2ContactSolver::SolvePositionConstraints() +{ +	float minSeparation = 0.0f; + +	for (int32 i = 0; i < m_count; ++i) +	{ +		b2ContactPositionConstraint* pc = m_positionConstraints + i; + +		int32 indexA = pc->indexA; +		int32 indexB = pc->indexB; +		b2Vec2 localCenterA = pc->localCenterA; +		float mA = pc->invMassA; +		float iA = pc->invIA; +		b2Vec2 localCenterB = pc->localCenterB; +		float mB = pc->invMassB; +		float iB = pc->invIB; +		int32 pointCount = pc->pointCount; + +		b2Vec2 cA = m_positions[indexA].c; +		float aA = m_positions[indexA].a; + +		b2Vec2 cB = m_positions[indexB].c; +		float aB = m_positions[indexB].a; + +		// Solve normal constraints +		for (int32 j = 0; j < pointCount; ++j) +		{ +			b2Transform xfA, xfB; +			xfA.q.Set(aA); +			xfB.q.Set(aB); +			xfA.p = cA - b2Mul(xfA.q, localCenterA); +			xfB.p = cB - b2Mul(xfB.q, localCenterB); + +			b2PositionSolverManifold psm; +			psm.Initialize(pc, xfA, xfB, j); +			b2Vec2 normal = psm.normal; + +			b2Vec2 point = psm.point; +			float separation = psm.separation; + +			b2Vec2 rA = point - cA; +			b2Vec2 rB = point - cB; + +			// Track max constraint error. +			minSeparation = b2Min(minSeparation, separation); + +			// Prevent large corrections and allow slop. +			float C = b2Clamp(b2_baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); + +			// Compute the effective mass. +			float rnA = b2Cross(rA, normal); +			float rnB = b2Cross(rB, normal); +			float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; + +			// Compute normal impulse +			float impulse = K > 0.0f ? - C / K : 0.0f; + +			b2Vec2 P = impulse * normal; + +			cA -= mA * P; +			aA -= iA * b2Cross(rA, P); + +			cB += mB * P; +			aB += iB * b2Cross(rB, P); +		} + +		m_positions[indexA].c = cA; +		m_positions[indexA].a = aA; + +		m_positions[indexB].c = cB; +		m_positions[indexB].a = aB; +	} + +	// We can't expect minSpeparation >= -b2_linearSlop because we don't +	// push the separation above -b2_linearSlop. +	return minSeparation >= -3.0f * b2_linearSlop; +} + +// Sequential position solver for position constraints. +bool b2ContactSolver::SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB) +{ +	float minSeparation = 0.0f; + +	for (int32 i = 0; i < m_count; ++i) +	{ +		b2ContactPositionConstraint* pc = m_positionConstraints + i; + +		int32 indexA = pc->indexA; +		int32 indexB = pc->indexB; +		b2Vec2 localCenterA = pc->localCenterA; +		b2Vec2 localCenterB = pc->localCenterB; +		int32 pointCount = pc->pointCount; + +		float mA = 0.0f; +		float iA = 0.0f; +		if (indexA == toiIndexA || indexA == toiIndexB) +		{ +			mA = pc->invMassA; +			iA = pc->invIA; +		} + +		float mB = 0.0f; +		float iB = 0.; +		if (indexB == toiIndexA || indexB == toiIndexB) +		{ +			mB = pc->invMassB; +			iB = pc->invIB; +		} + +		b2Vec2 cA = m_positions[indexA].c; +		float aA = m_positions[indexA].a; + +		b2Vec2 cB = m_positions[indexB].c; +		float aB = m_positions[indexB].a; + +		// Solve normal constraints +		for (int32 j = 0; j < pointCount; ++j) +		{ +			b2Transform xfA, xfB; +			xfA.q.Set(aA); +			xfB.q.Set(aB); +			xfA.p = cA - b2Mul(xfA.q, localCenterA); +			xfB.p = cB - b2Mul(xfB.q, localCenterB); + +			b2PositionSolverManifold psm; +			psm.Initialize(pc, xfA, xfB, j); +			b2Vec2 normal = psm.normal; + +			b2Vec2 point = psm.point; +			float separation = psm.separation; + +			b2Vec2 rA = point - cA; +			b2Vec2 rB = point - cB; + +			// Track max constraint error. +			minSeparation = b2Min(minSeparation, separation); + +			// Prevent large corrections and allow slop. +			float C = b2Clamp(b2_toiBaumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); + +			// Compute the effective mass. +			float rnA = b2Cross(rA, normal); +			float rnB = b2Cross(rB, normal); +			float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; + +			// Compute normal impulse +			float impulse = K > 0.0f ? - C / K : 0.0f; + +			b2Vec2 P = impulse * normal; + +			cA -= mA * P; +			aA -= iA * b2Cross(rA, P); + +			cB += mB * P; +			aB += iB * b2Cross(rB, P); +		} + +		m_positions[indexA].c = cA; +		m_positions[indexA].a = aA; + +		m_positions[indexB].c = cB; +		m_positions[indexB].a = aB; +	} + +	// We can't expect minSpeparation >= -b2_linearSlop because we don't +	// push the separation above -b2_linearSlop. +	return minSeparation >= -1.5f * b2_linearSlop; +}  | 
