diff options
Diffstat (limited to 'Client/ThirdParty/Box2D/src/dynamics')
35 files changed, 9471 insertions, 0 deletions
diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_body.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_body.cpp new file mode 100644 index 0000000..5746664 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_body.cpp @@ -0,0 +1,565 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_contact.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_joint.h" +#include "box2d/b2_world.h" + +#include <new> + +b2Body::b2Body(const b2BodyDef* bd, b2World* world) +{ + b2Assert(bd->position.IsValid()); + b2Assert(bd->linearVelocity.IsValid()); + b2Assert(b2IsValid(bd->angle)); + b2Assert(b2IsValid(bd->angularVelocity)); + b2Assert(b2IsValid(bd->angularDamping) && bd->angularDamping >= 0.0f); + b2Assert(b2IsValid(bd->linearDamping) && bd->linearDamping >= 0.0f); + + m_flags = 0; + + if (bd->bullet) + { + m_flags |= e_bulletFlag; + } + if (bd->fixedRotation) + { + m_flags |= e_fixedRotationFlag; + } + if (bd->allowSleep) + { + m_flags |= e_autoSleepFlag; + } + if (bd->awake && bd->type != b2_staticBody) + { + m_flags |= e_awakeFlag; + } + if (bd->enabled) + { + m_flags |= e_enabledFlag; + } + + m_world = world; + + m_xf.p = bd->position; + m_xf.q.Set(bd->angle); + + m_sweep.localCenter.SetZero(); + m_sweep.c0 = m_xf.p; + m_sweep.c = m_xf.p; + m_sweep.a0 = bd->angle; + m_sweep.a = bd->angle; + m_sweep.alpha0 = 0.0f; + + m_jointList = nullptr; + m_contactList = nullptr; + m_prev = nullptr; + m_next = nullptr; + + m_linearVelocity = bd->linearVelocity; + m_angularVelocity = bd->angularVelocity; + + m_linearDamping = bd->linearDamping; + m_angularDamping = bd->angularDamping; + m_gravityScale = bd->gravityScale; + + m_force.SetZero(); + m_torque = 0.0f; + + m_sleepTime = 0.0f; + + m_type = bd->type; + + m_mass = 0.0f; + m_invMass = 0.0f; + + m_I = 0.0f; + m_invI = 0.0f; + + m_userData = bd->userData; + + m_fixtureList = nullptr; + m_fixtureCount = 0; +} + +b2Body::~b2Body() +{ + // shapes and joints are destroyed in b2World::Destroy +} + +void b2Body::SetType(b2BodyType type) +{ + b2Assert(m_world->IsLocked() == false); + if (m_world->IsLocked() == true) + { + return; + } + + if (m_type == type) + { + return; + } + + m_type = type; + + ResetMassData(); + + if (m_type == b2_staticBody) + { + m_linearVelocity.SetZero(); + m_angularVelocity = 0.0f; + m_sweep.a0 = m_sweep.a; + m_sweep.c0 = m_sweep.c; + m_flags &= ~e_awakeFlag; + SynchronizeFixtures(); + } + + SetAwake(true); + + m_force.SetZero(); + m_torque = 0.0f; + + // Delete the attached contacts. + b2ContactEdge* ce = m_contactList; + while (ce) + { + b2ContactEdge* ce0 = ce; + ce = ce->next; + m_world->m_contactManager.Destroy(ce0->contact); + } + m_contactList = nullptr; + + // Touch the proxies so that new contacts will be created (when appropriate) + b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + int32 proxyCount = f->m_proxyCount; + for (int32 i = 0; i < proxyCount; ++i) + { + broadPhase->TouchProxy(f->m_proxies[i].proxyId); + } + } +} + +b2Fixture* b2Body::CreateFixture(const b2FixtureDef* def) +{ + b2Assert(m_world->IsLocked() == false); + if (m_world->IsLocked() == true) + { + return nullptr; + } + + b2BlockAllocator* allocator = &m_world->m_blockAllocator; + + void* memory = allocator->Allocate(sizeof(b2Fixture)); + b2Fixture* fixture = new (memory) b2Fixture; + fixture->Create(allocator, this, def); + + if (m_flags & e_enabledFlag) + { + b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; + fixture->CreateProxies(broadPhase, m_xf); + } + + fixture->m_next = m_fixtureList; + m_fixtureList = fixture; + ++m_fixtureCount; + + fixture->m_body = this; + + // Adjust mass properties if needed. + if (fixture->m_density > 0.0f) + { + ResetMassData(); + } + + // Let the world know we have a new fixture. This will cause new contacts + // to be created at the beginning of the next time step. + m_world->m_newContacts = true; + + return fixture; +} + +b2Fixture* b2Body::CreateFixture(const b2Shape* shape, float density) +{ + b2FixtureDef def; + def.shape = shape; + def.density = density; + + return CreateFixture(&def); +} + +void b2Body::DestroyFixture(b2Fixture* fixture) +{ + if (fixture == NULL) + { + return; + } + + b2Assert(m_world->IsLocked() == false); + if (m_world->IsLocked() == true) + { + return; + } + + b2Assert(fixture->m_body == this); + + // Remove the fixture from this body's singly linked list. + b2Assert(m_fixtureCount > 0); + b2Fixture** node = &m_fixtureList; + bool found = false; + while (*node != nullptr) + { + if (*node == fixture) + { + *node = fixture->m_next; + found = true; + break; + } + + node = &(*node)->m_next; + } + + // You tried to remove a shape that is not attached to this body. + b2Assert(found); + + // Destroy any contacts associated with the fixture. + b2ContactEdge* edge = m_contactList; + while (edge) + { + b2Contact* c = edge->contact; + edge = edge->next; + + b2Fixture* fixtureA = c->GetFixtureA(); + b2Fixture* fixtureB = c->GetFixtureB(); + + if (fixture == fixtureA || fixture == fixtureB) + { + // This destroys the contact and removes it from + // this body's contact list. + m_world->m_contactManager.Destroy(c); + } + } + + b2BlockAllocator* allocator = &m_world->m_blockAllocator; + + if (m_flags & e_enabledFlag) + { + b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; + fixture->DestroyProxies(broadPhase); + } + + fixture->m_body = nullptr; + fixture->m_next = nullptr; + fixture->Destroy(allocator); + fixture->~b2Fixture(); + allocator->Free(fixture, sizeof(b2Fixture)); + + --m_fixtureCount; + + // Reset the mass data. + ResetMassData(); +} + +void b2Body::ResetMassData() +{ + // Compute mass data from shapes. Each shape has its own density. + m_mass = 0.0f; + m_invMass = 0.0f; + m_I = 0.0f; + m_invI = 0.0f; + m_sweep.localCenter.SetZero(); + + // Static and kinematic bodies have zero mass. + if (m_type == b2_staticBody || m_type == b2_kinematicBody) + { + m_sweep.c0 = m_xf.p; + m_sweep.c = m_xf.p; + m_sweep.a0 = m_sweep.a; + return; + } + + b2Assert(m_type == b2_dynamicBody); + + // Accumulate mass over all fixtures. + b2Vec2 localCenter = b2Vec2_zero; + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + if (f->m_density == 0.0f) + { + continue; + } + + b2MassData massData; + f->GetMassData(&massData); + m_mass += massData.mass; + localCenter += massData.mass * massData.center; + m_I += massData.I; + } + + // Compute center of mass. + if (m_mass > 0.0f) + { + m_invMass = 1.0f / m_mass; + localCenter *= m_invMass; + } + + if (m_I > 0.0f && (m_flags & e_fixedRotationFlag) == 0) + { + // Center the inertia about the center of mass. + m_I -= m_mass * b2Dot(localCenter, localCenter); + b2Assert(m_I > 0.0f); + m_invI = 1.0f / m_I; + + } + else + { + m_I = 0.0f; + m_invI = 0.0f; + } + + // Move center of mass. + b2Vec2 oldCenter = m_sweep.c; + m_sweep.localCenter = localCenter; + m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter); + + // Update center of mass velocity. + m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter); +} + +void b2Body::SetMassData(const b2MassData* massData) +{ + b2Assert(m_world->IsLocked() == false); + if (m_world->IsLocked() == true) + { + return; + } + + if (m_type != b2_dynamicBody) + { + return; + } + + m_invMass = 0.0f; + m_I = 0.0f; + m_invI = 0.0f; + + m_mass = massData->mass; + if (m_mass <= 0.0f) + { + m_mass = 1.0f; + } + + m_invMass = 1.0f / m_mass; + + if (massData->I > 0.0f && (m_flags & b2Body::e_fixedRotationFlag) == 0) + { + m_I = massData->I - m_mass * b2Dot(massData->center, massData->center); + b2Assert(m_I > 0.0f); + m_invI = 1.0f / m_I; + } + + // Move center of mass. + b2Vec2 oldCenter = m_sweep.c; + m_sweep.localCenter = massData->center; + m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter); + + // Update center of mass velocity. + m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter); +} + +bool b2Body::ShouldCollide(const b2Body* other) const +{ + // At least one body should be dynamic. + if (m_type != b2_dynamicBody && other->m_type != b2_dynamicBody) + { + return false; + } + + // Does a joint prevent collision? + for (b2JointEdge* jn = m_jointList; jn; jn = jn->next) + { + if (jn->other == other) + { + if (jn->joint->m_collideConnected == false) + { + return false; + } + } + } + + return true; +} + +void b2Body::SetTransform(const b2Vec2& position, float angle) +{ + b2Assert(m_world->IsLocked() == false); + if (m_world->IsLocked() == true) + { + return; + } + + m_xf.q.Set(angle); + m_xf.p = position; + + m_sweep.c = b2Mul(m_xf, m_sweep.localCenter); + m_sweep.a = angle; + + m_sweep.c0 = m_sweep.c; + m_sweep.a0 = angle; + + b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + f->Synchronize(broadPhase, m_xf, m_xf); + } + + // Check for new contacts the next step + m_world->m_newContacts = true; +} + +void b2Body::SynchronizeFixtures() +{ + b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; + + if (m_flags & b2Body::e_awakeFlag) + { + b2Transform xf1; + xf1.q.Set(m_sweep.a0); + xf1.p = m_sweep.c0 - b2Mul(xf1.q, m_sweep.localCenter); + + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + f->Synchronize(broadPhase, xf1, m_xf); + } + } + else + { + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + f->Synchronize(broadPhase, m_xf, m_xf); + } + } +} + +void b2Body::SetEnabled(bool flag) +{ + b2Assert(m_world->IsLocked() == false); + + if (flag == IsEnabled()) + { + return; + } + + if (flag) + { + m_flags |= e_enabledFlag; + + // Create all proxies. + b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + f->CreateProxies(broadPhase, m_xf); + } + + // Contacts are created at the beginning of the next + m_world->m_newContacts = true; + } + else + { + m_flags &= ~e_enabledFlag; + + // Destroy all proxies. + b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + f->DestroyProxies(broadPhase); + } + + // Destroy the attached contacts. + b2ContactEdge* ce = m_contactList; + while (ce) + { + b2ContactEdge* ce0 = ce; + ce = ce->next; + m_world->m_contactManager.Destroy(ce0->contact); + } + m_contactList = nullptr; + } +} + +void b2Body::SetFixedRotation(bool flag) +{ + bool status = (m_flags & e_fixedRotationFlag) == e_fixedRotationFlag; + if (status == flag) + { + return; + } + + if (flag) + { + m_flags |= e_fixedRotationFlag; + } + else + { + m_flags &= ~e_fixedRotationFlag; + } + + m_angularVelocity = 0.0f; + + ResetMassData(); +} + +void b2Body::Dump() +{ + int32 bodyIndex = m_islandIndex; + + // %.9g is sufficient to save and load the same value using text + // FLT_DECIMAL_DIG == 9 + + b2Dump("{\n"); + b2Dump(" b2BodyDef bd;\n"); + b2Dump(" bd.type = b2BodyType(%d);\n", m_type); + b2Dump(" bd.position.Set(%.9g, %.9g);\n", m_xf.p.x, m_xf.p.y); + b2Dump(" bd.angle = %.9g;\n", m_sweep.a); + b2Dump(" bd.linearVelocity.Set(%.9g, %.9g);\n", m_linearVelocity.x, m_linearVelocity.y); + b2Dump(" bd.angularVelocity = %.9g;\n", m_angularVelocity); + b2Dump(" bd.linearDamping = %.9g;\n", m_linearDamping); + b2Dump(" bd.angularDamping = %.9g;\n", m_angularDamping); + b2Dump(" bd.allowSleep = bool(%d);\n", m_flags & e_autoSleepFlag); + b2Dump(" bd.awake = bool(%d);\n", m_flags & e_awakeFlag); + b2Dump(" bd.fixedRotation = bool(%d);\n", m_flags & e_fixedRotationFlag); + b2Dump(" bd.bullet = bool(%d);\n", m_flags & e_bulletFlag); + b2Dump(" bd.enabled = bool(%d);\n", m_flags & e_enabledFlag); + b2Dump(" bd.gravityScale = %.9g;\n", m_gravityScale); + b2Dump(" bodies[%d] = m_world->CreateBody(&bd);\n", m_islandIndex); + b2Dump("\n"); + for (b2Fixture* f = m_fixtureList; f; f = f->m_next) + { + b2Dump(" {\n"); + f->Dump(bodyIndex); + b2Dump(" }\n"); + } + b2Dump("}\n"); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_chain_circle_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_circle_contact.cpp new file mode 100644 index 0000000..8464fe8 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_circle_contact.cpp @@ -0,0 +1,57 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_chain_circle_contact.h" +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_chain_shape.h" +#include "box2d/b2_edge_shape.h" + +#include <new> + +b2Contact* b2ChainAndCircleContact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) +{ + void* mem = allocator->Allocate(sizeof(b2ChainAndCircleContact)); + return new (mem) b2ChainAndCircleContact(fixtureA, indexA, fixtureB, indexB); +} + +void b2ChainAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + ((b2ChainAndCircleContact*)contact)->~b2ChainAndCircleContact(); + allocator->Free(contact, sizeof(b2ChainAndCircleContact)); +} + +b2ChainAndCircleContact::b2ChainAndCircleContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB) +: b2Contact(fixtureA, indexA, fixtureB, indexB) +{ + b2Assert(m_fixtureA->GetType() == b2Shape::e_chain); + b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); +} + +void b2ChainAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) +{ + b2ChainShape* chain = (b2ChainShape*)m_fixtureA->GetShape(); + b2EdgeShape edge; + chain->GetChildEdge(&edge, m_indexA); + b2CollideEdgeAndCircle( manifold, &edge, xfA, + (b2CircleShape*)m_fixtureB->GetShape(), xfB); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_chain_circle_contact.h b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_circle_contact.h new file mode 100644 index 0000000..33ced64 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_circle_contact.h @@ -0,0 +1,43 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_CHAIN_AND_CIRCLE_CONTACT_H +#define B2_CHAIN_AND_CIRCLE_CONTACT_H + +#include "box2d/b2_contact.h" + +class b2BlockAllocator; + +class b2ChainAndCircleContact : public b2Contact +{ +public: + static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, + b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); + static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); + + b2ChainAndCircleContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB); + ~b2ChainAndCircleContact() {} + + void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_chain_polygon_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_polygon_contact.cpp new file mode 100644 index 0000000..b8257aa --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_polygon_contact.cpp @@ -0,0 +1,57 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_chain_polygon_contact.h" +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_chain_shape.h" +#include "box2d/b2_edge_shape.h" + +#include <new> + +b2Contact* b2ChainAndPolygonContact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) +{ + void* mem = allocator->Allocate(sizeof(b2ChainAndPolygonContact)); + return new (mem) b2ChainAndPolygonContact(fixtureA, indexA, fixtureB, indexB); +} + +void b2ChainAndPolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + ((b2ChainAndPolygonContact*)contact)->~b2ChainAndPolygonContact(); + allocator->Free(contact, sizeof(b2ChainAndPolygonContact)); +} + +b2ChainAndPolygonContact::b2ChainAndPolygonContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB) +: b2Contact(fixtureA, indexA, fixtureB, indexB) +{ + b2Assert(m_fixtureA->GetType() == b2Shape::e_chain); + b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon); +} + +void b2ChainAndPolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) +{ + b2ChainShape* chain = (b2ChainShape*)m_fixtureA->GetShape(); + b2EdgeShape edge; + chain->GetChildEdge(&edge, m_indexA); + b2CollideEdgeAndPolygon( manifold, &edge, xfA, + (b2PolygonShape*)m_fixtureB->GetShape(), xfB); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_chain_polygon_contact.h b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_polygon_contact.h new file mode 100644 index 0000000..058154f --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_chain_polygon_contact.h @@ -0,0 +1,43 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_CHAIN_AND_POLYGON_CONTACT_H +#define B2_CHAIN_AND_POLYGON_CONTACT_H + +#include "box2d/b2_contact.h" + +class b2BlockAllocator; + +class b2ChainAndPolygonContact : public b2Contact +{ +public: + static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, + b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); + static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); + + b2ChainAndPolygonContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB); + ~b2ChainAndPolygonContact() {} + + void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_circle_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_circle_contact.cpp new file mode 100644 index 0000000..738aa84 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_circle_contact.cpp @@ -0,0 +1,56 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_circle_contact.h" +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_body.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_time_of_impact.h" +#include "box2d/b2_world_callbacks.h" + +#include <new> + +b2Contact* b2CircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) +{ + void* mem = allocator->Allocate(sizeof(b2CircleContact)); + return new (mem) b2CircleContact(fixtureA, fixtureB); +} + +void b2CircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + ((b2CircleContact*)contact)->~b2CircleContact(); + allocator->Free(contact, sizeof(b2CircleContact)); +} + +b2CircleContact::b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB) + : b2Contact(fixtureA, 0, fixtureB, 0) +{ + b2Assert(m_fixtureA->GetType() == b2Shape::e_circle); + b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); +} + +void b2CircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) +{ + b2CollideCircles(manifold, + (b2CircleShape*)m_fixtureA->GetShape(), xfA, + (b2CircleShape*)m_fixtureB->GetShape(), xfB); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_circle_contact.h b/Client/ThirdParty/Box2D/src/dynamics/b2_circle_contact.h new file mode 100644 index 0000000..98e09ea --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_circle_contact.h @@ -0,0 +1,43 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_CIRCLE_CONTACT_H +#define B2_CIRCLE_CONTACT_H + +#include "box2d/b2_contact.h" + +class b2BlockAllocator; + +class b2CircleContact : public b2Contact +{ +public: + static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, + b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); + static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); + + b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB); + ~b2CircleContact() {} + + void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_contact.cpp new file mode 100644 index 0000000..1c65bc8 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_contact.cpp @@ -0,0 +1,252 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_chain_circle_contact.h" +#include "b2_chain_polygon_contact.h" +#include "b2_circle_contact.h" +#include "b2_contact_solver.h" +#include "b2_edge_circle_contact.h" +#include "b2_edge_polygon_contact.h" +#include "b2_polygon_circle_contact.h" +#include "b2_polygon_contact.h" + +#include "box2d/b2_contact.h" +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_body.h" +#include "box2d/b2_collision.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_shape.h" +#include "box2d/b2_time_of_impact.h" +#include "box2d/b2_world.h" + +b2ContactRegister b2Contact::s_registers[b2Shape::e_typeCount][b2Shape::e_typeCount]; +bool b2Contact::s_initialized = false; + +void b2Contact::InitializeRegisters() +{ + AddType(b2CircleContact::Create, b2CircleContact::Destroy, b2Shape::e_circle, b2Shape::e_circle); + AddType(b2PolygonAndCircleContact::Create, b2PolygonAndCircleContact::Destroy, b2Shape::e_polygon, b2Shape::e_circle); + AddType(b2PolygonContact::Create, b2PolygonContact::Destroy, b2Shape::e_polygon, b2Shape::e_polygon); + AddType(b2EdgeAndCircleContact::Create, b2EdgeAndCircleContact::Destroy, b2Shape::e_edge, b2Shape::e_circle); + AddType(b2EdgeAndPolygonContact::Create, b2EdgeAndPolygonContact::Destroy, b2Shape::e_edge, b2Shape::e_polygon); + AddType(b2ChainAndCircleContact::Create, b2ChainAndCircleContact::Destroy, b2Shape::e_chain, b2Shape::e_circle); + AddType(b2ChainAndPolygonContact::Create, b2ChainAndPolygonContact::Destroy, b2Shape::e_chain, b2Shape::e_polygon); +} + +void b2Contact::AddType(b2ContactCreateFcn* createFcn, b2ContactDestroyFcn* destoryFcn, + b2Shape::Type type1, b2Shape::Type type2) +{ + b2Assert(0 <= type1 && type1 < b2Shape::e_typeCount); + b2Assert(0 <= type2 && type2 < b2Shape::e_typeCount); + + s_registers[type1][type2].createFcn = createFcn; + s_registers[type1][type2].destroyFcn = destoryFcn; + s_registers[type1][type2].primary = true; + + if (type1 != type2) + { + s_registers[type2][type1].createFcn = createFcn; + s_registers[type2][type1].destroyFcn = destoryFcn; + s_registers[type2][type1].primary = false; + } +} + +b2Contact* b2Contact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) +{ + if (s_initialized == false) + { + InitializeRegisters(); + s_initialized = true; + } + + b2Shape::Type type1 = fixtureA->GetType(); + b2Shape::Type type2 = fixtureB->GetType(); + + b2Assert(0 <= type1 && type1 < b2Shape::e_typeCount); + b2Assert(0 <= type2 && type2 < b2Shape::e_typeCount); + + b2ContactCreateFcn* createFcn = s_registers[type1][type2].createFcn; + if (createFcn) + { + if (s_registers[type1][type2].primary) + { + return createFcn(fixtureA, indexA, fixtureB, indexB, allocator); + } + else + { + return createFcn(fixtureB, indexB, fixtureA, indexA, allocator); + } + } + else + { + return nullptr; + } +} + +void b2Contact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + b2Assert(s_initialized == true); + + b2Fixture* fixtureA = contact->m_fixtureA; + b2Fixture* fixtureB = contact->m_fixtureB; + + if (contact->m_manifold.pointCount > 0 && + fixtureA->IsSensor() == false && + fixtureB->IsSensor() == false) + { + fixtureA->GetBody()->SetAwake(true); + fixtureB->GetBody()->SetAwake(true); + } + + b2Shape::Type typeA = fixtureA->GetType(); + b2Shape::Type typeB = fixtureB->GetType(); + + b2Assert(0 <= typeA && typeA < b2Shape::e_typeCount); + b2Assert(0 <= typeB && typeB < b2Shape::e_typeCount); + + b2ContactDestroyFcn* destroyFcn = s_registers[typeA][typeB].destroyFcn; + destroyFcn(contact, allocator); +} + +b2Contact::b2Contact(b2Fixture* fA, int32 indexA, b2Fixture* fB, int32 indexB) +{ + m_flags = e_enabledFlag; + + m_fixtureA = fA; + m_fixtureB = fB; + + m_indexA = indexA; + m_indexB = indexB; + + m_manifold.pointCount = 0; + + m_prev = nullptr; + m_next = nullptr; + + m_nodeA.contact = nullptr; + m_nodeA.prev = nullptr; + m_nodeA.next = nullptr; + m_nodeA.other = nullptr; + + m_nodeB.contact = nullptr; + m_nodeB.prev = nullptr; + m_nodeB.next = nullptr; + m_nodeB.other = nullptr; + + m_toiCount = 0; + + m_friction = b2MixFriction(m_fixtureA->m_friction, m_fixtureB->m_friction); + m_restitution = b2MixRestitution(m_fixtureA->m_restitution, m_fixtureB->m_restitution); + m_restitutionThreshold = b2MixRestitutionThreshold(m_fixtureA->m_restitutionThreshold, m_fixtureB->m_restitutionThreshold); + + m_tangentSpeed = 0.0f; +} + +// Update the contact manifold and touching status. +// Note: do not assume the fixture AABBs are overlapping or are valid. +void b2Contact::Update(b2ContactListener* listener) +{ + b2Manifold oldManifold = m_manifold; + + // Re-enable this contact. + m_flags |= e_enabledFlag; + + bool touching = false; + bool wasTouching = (m_flags & e_touchingFlag) == e_touchingFlag; + + bool sensorA = m_fixtureA->IsSensor(); + bool sensorB = m_fixtureB->IsSensor(); + bool sensor = sensorA || sensorB; + + b2Body* bodyA = m_fixtureA->GetBody(); + b2Body* bodyB = m_fixtureB->GetBody(); + const b2Transform& xfA = bodyA->GetTransform(); + const b2Transform& xfB = bodyB->GetTransform(); + + // Is this contact a sensor? + if (sensor) + { + const b2Shape* shapeA = m_fixtureA->GetShape(); + const b2Shape* shapeB = m_fixtureB->GetShape(); + touching = b2TestOverlap(shapeA, m_indexA, shapeB, m_indexB, xfA, xfB); + + // Sensors don't generate manifolds. + m_manifold.pointCount = 0; + } + else + { + Evaluate(&m_manifold, xfA, xfB); + touching = m_manifold.pointCount > 0; + + // Match old contact ids to new contact ids and copy the + // stored impulses to warm start the solver. + for (int32 i = 0; i < m_manifold.pointCount; ++i) + { + b2ManifoldPoint* mp2 = m_manifold.points + i; + mp2->normalImpulse = 0.0f; + mp2->tangentImpulse = 0.0f; + b2ContactID id2 = mp2->id; + + for (int32 j = 0; j < oldManifold.pointCount; ++j) + { + b2ManifoldPoint* mp1 = oldManifold.points + j; + + if (mp1->id.key == id2.key) + { + mp2->normalImpulse = mp1->normalImpulse; + mp2->tangentImpulse = mp1->tangentImpulse; + break; + } + } + } + + if (touching != wasTouching) + { + bodyA->SetAwake(true); + bodyB->SetAwake(true); + } + } + + if (touching) + { + m_flags |= e_touchingFlag; + } + else + { + m_flags &= ~e_touchingFlag; + } + + if (wasTouching == false && touching == true && listener) + { + listener->BeginContact(this); + } + + if (wasTouching == true && touching == false && listener) + { + listener->EndContact(this); + } + + if (sensor == false && touching && listener) + { + listener->PreSolve(this, &oldManifold); + } +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_contact_manager.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_manager.cpp new file mode 100644 index 0000000..5666608 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_manager.cpp @@ -0,0 +1,293 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_contact.h" +#include "box2d/b2_contact_manager.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_world_callbacks.h" + +b2ContactFilter b2_defaultFilter; +b2ContactListener b2_defaultListener; + +b2ContactManager::b2ContactManager() +{ + m_contactList = nullptr; + m_contactCount = 0; + m_contactFilter = &b2_defaultFilter; + m_contactListener = &b2_defaultListener; + m_allocator = nullptr; +} + +void b2ContactManager::Destroy(b2Contact* c) +{ + b2Fixture* fixtureA = c->GetFixtureA(); + b2Fixture* fixtureB = c->GetFixtureB(); + b2Body* bodyA = fixtureA->GetBody(); + b2Body* bodyB = fixtureB->GetBody(); + + if (m_contactListener && c->IsTouching()) + { + m_contactListener->EndContact(c); + } + + // Remove from the world. + if (c->m_prev) + { + c->m_prev->m_next = c->m_next; + } + + if (c->m_next) + { + c->m_next->m_prev = c->m_prev; + } + + if (c == m_contactList) + { + m_contactList = c->m_next; + } + + // Remove from body 1 + if (c->m_nodeA.prev) + { + c->m_nodeA.prev->next = c->m_nodeA.next; + } + + if (c->m_nodeA.next) + { + c->m_nodeA.next->prev = c->m_nodeA.prev; + } + + if (&c->m_nodeA == bodyA->m_contactList) + { + bodyA->m_contactList = c->m_nodeA.next; + } + + // Remove from body 2 + if (c->m_nodeB.prev) + { + c->m_nodeB.prev->next = c->m_nodeB.next; + } + + if (c->m_nodeB.next) + { + c->m_nodeB.next->prev = c->m_nodeB.prev; + } + + if (&c->m_nodeB == bodyB->m_contactList) + { + bodyB->m_contactList = c->m_nodeB.next; + } + + // Call the factory. + b2Contact::Destroy(c, m_allocator); + --m_contactCount; +} + +// This is the top level collision call for the time step. Here +// all the narrow phase collision is processed for the world +// contact list. +void b2ContactManager::Collide() +{ + // Update awake contacts. + b2Contact* c = m_contactList; + while (c) + { + b2Fixture* fixtureA = c->GetFixtureA(); + b2Fixture* fixtureB = c->GetFixtureB(); + int32 indexA = c->GetChildIndexA(); + int32 indexB = c->GetChildIndexB(); + b2Body* bodyA = fixtureA->GetBody(); + b2Body* bodyB = fixtureB->GetBody(); + + // Is this contact flagged for filtering? + if (c->m_flags & b2Contact::e_filterFlag) + { + // Should these bodies collide? + if (bodyB->ShouldCollide(bodyA) == false) + { + b2Contact* cNuke = c; + c = cNuke->GetNext(); + Destroy(cNuke); + continue; + } + + // Check user filtering. + if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false) + { + b2Contact* cNuke = c; + c = cNuke->GetNext(); + Destroy(cNuke); + continue; + } + + // Clear the filtering flag. + c->m_flags &= ~b2Contact::e_filterFlag; + } + + bool activeA = bodyA->IsAwake() && bodyA->m_type != b2_staticBody; + bool activeB = bodyB->IsAwake() && bodyB->m_type != b2_staticBody; + + // At least one body must be awake and it must be dynamic or kinematic. + if (activeA == false && activeB == false) + { + c = c->GetNext(); + continue; + } + + int32 proxyIdA = fixtureA->m_proxies[indexA].proxyId; + int32 proxyIdB = fixtureB->m_proxies[indexB].proxyId; + bool overlap = m_broadPhase.TestOverlap(proxyIdA, proxyIdB); + + // Here we destroy contacts that cease to overlap in the broad-phase. + if (overlap == false) + { + b2Contact* cNuke = c; + c = cNuke->GetNext(); + Destroy(cNuke); + continue; + } + + // The contact persists. + c->Update(m_contactListener); + c = c->GetNext(); + } +} + +void b2ContactManager::FindNewContacts() +{ + m_broadPhase.UpdatePairs(this); +} + +void b2ContactManager::AddPair(void* proxyUserDataA, void* proxyUserDataB) +{ + b2FixtureProxy* proxyA = (b2FixtureProxy*)proxyUserDataA; + b2FixtureProxy* proxyB = (b2FixtureProxy*)proxyUserDataB; + + b2Fixture* fixtureA = proxyA->fixture; + b2Fixture* fixtureB = proxyB->fixture; + + int32 indexA = proxyA->childIndex; + int32 indexB = proxyB->childIndex; + + b2Body* bodyA = fixtureA->GetBody(); + b2Body* bodyB = fixtureB->GetBody(); + + // Are the fixtures on the same body? + if (bodyA == bodyB) + { + return; + } + + // TODO_ERIN use a hash table to remove a potential bottleneck when both + // bodies have a lot of contacts. + // Does a contact already exist? + b2ContactEdge* edge = bodyB->GetContactList(); + while (edge) + { + if (edge->other == bodyA) + { + b2Fixture* fA = edge->contact->GetFixtureA(); + b2Fixture* fB = edge->contact->GetFixtureB(); + int32 iA = edge->contact->GetChildIndexA(); + int32 iB = edge->contact->GetChildIndexB(); + + if (fA == fixtureA && fB == fixtureB && iA == indexA && iB == indexB) + { + // A contact already exists. + return; + } + + if (fA == fixtureB && fB == fixtureA && iA == indexB && iB == indexA) + { + // A contact already exists. + return; + } + } + + edge = edge->next; + } + + // Does a joint override collision? Is at least one body dynamic? + if (bodyB->ShouldCollide(bodyA) == false) + { + return; + } + + // Check user filtering. + if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false) + { + return; + } + + // Call the factory. + b2Contact* c = b2Contact::Create(fixtureA, indexA, fixtureB, indexB, m_allocator); + if (c == nullptr) + { + return; + } + + // Contact creation may swap fixtures. + fixtureA = c->GetFixtureA(); + fixtureB = c->GetFixtureB(); + indexA = c->GetChildIndexA(); + indexB = c->GetChildIndexB(); + bodyA = fixtureA->GetBody(); + bodyB = fixtureB->GetBody(); + + // Insert into the world. + c->m_prev = nullptr; + c->m_next = m_contactList; + if (m_contactList != nullptr) + { + m_contactList->m_prev = c; + } + m_contactList = c; + + // Connect to island graph. + + // Connect to body A + c->m_nodeA.contact = c; + c->m_nodeA.other = bodyB; + + c->m_nodeA.prev = nullptr; + c->m_nodeA.next = bodyA->m_contactList; + if (bodyA->m_contactList != nullptr) + { + bodyA->m_contactList->prev = &c->m_nodeA; + } + bodyA->m_contactList = &c->m_nodeA; + + // Connect to body B + c->m_nodeB.contact = c; + c->m_nodeB.other = bodyA; + + c->m_nodeB.prev = nullptr; + c->m_nodeB.next = bodyB->m_contactList; + if (bodyB->m_contactList != nullptr) + { + bodyB->m_contactList->prev = &c->m_nodeB; + } + bodyB->m_contactList = &c->m_nodeB; + + ++m_contactCount; +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp new file mode 100644 index 0000000..e6f432a --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.cpp @@ -0,0 +1,843 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_contact_solver.h" + +#include "box2d/b2_body.h" +#include "box2d/b2_contact.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_stack_allocator.h" +#include "box2d/b2_world.h" + +// Solver debugging is normally disabled because the block solver sometimes has to deal with a poorly conditioned effective mass matrix. +#define B2_DEBUG_SOLVER 0 + +B2_API bool g_blockSolve = true; + +struct b2ContactPositionConstraint +{ + b2Vec2 localPoints[b2_maxManifoldPoints]; + b2Vec2 localNormal; + b2Vec2 localPoint; + int32 indexA; + int32 indexB; + float invMassA, invMassB; + b2Vec2 localCenterA, localCenterB; + float invIA, invIB; + b2Manifold::Type type; + float radiusA, radiusB; + int32 pointCount; +}; + +b2ContactSolver::b2ContactSolver(b2ContactSolverDef* def) +{ + m_step = def->step; + m_allocator = def->allocator; + m_count = def->count; + m_positionConstraints = (b2ContactPositionConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactPositionConstraint)); + m_velocityConstraints = (b2ContactVelocityConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactVelocityConstraint)); + m_positions = def->positions; + m_velocities = def->velocities; + m_contacts = def->contacts; + + // Initialize position independent portions of the constraints. + for (int32 i = 0; i < m_count; ++i) + { + b2Contact* contact = m_contacts[i]; + + b2Fixture* fixtureA = contact->m_fixtureA; + b2Fixture* fixtureB = contact->m_fixtureB; + b2Shape* shapeA = fixtureA->GetShape(); + b2Shape* shapeB = fixtureB->GetShape(); + float radiusA = shapeA->m_radius; + float radiusB = shapeB->m_radius; + b2Body* bodyA = fixtureA->GetBody(); + b2Body* bodyB = fixtureB->GetBody(); + b2Manifold* manifold = contact->GetManifold(); + + int32 pointCount = manifold->pointCount; + b2Assert(pointCount > 0); + + b2ContactVelocityConstraint* vc = m_velocityConstraints + i; + vc->friction = contact->m_friction; + vc->restitution = contact->m_restitution; + vc->threshold = contact->m_restitutionThreshold; + vc->tangentSpeed = contact->m_tangentSpeed; + vc->indexA = bodyA->m_islandIndex; + vc->indexB = bodyB->m_islandIndex; + vc->invMassA = bodyA->m_invMass; + vc->invMassB = bodyB->m_invMass; + vc->invIA = bodyA->m_invI; + vc->invIB = bodyB->m_invI; + vc->contactIndex = i; + vc->pointCount = pointCount; + vc->K.SetZero(); + vc->normalMass.SetZero(); + + b2ContactPositionConstraint* pc = m_positionConstraints + i; + pc->indexA = bodyA->m_islandIndex; + pc->indexB = bodyB->m_islandIndex; + pc->invMassA = bodyA->m_invMass; + pc->invMassB = bodyB->m_invMass; + pc->localCenterA = bodyA->m_sweep.localCenter; + pc->localCenterB = bodyB->m_sweep.localCenter; + pc->invIA = bodyA->m_invI; + pc->invIB = bodyB->m_invI; + pc->localNormal = manifold->localNormal; + pc->localPoint = manifold->localPoint; + pc->pointCount = pointCount; + pc->radiusA = radiusA; + pc->radiusB = radiusB; + pc->type = manifold->type; + + for (int32 j = 0; j < pointCount; ++j) + { + b2ManifoldPoint* cp = manifold->points + j; + b2VelocityConstraintPoint* vcp = vc->points + j; + + if (m_step.warmStarting) + { + vcp->normalImpulse = m_step.dtRatio * cp->normalImpulse; + vcp->tangentImpulse = m_step.dtRatio * cp->tangentImpulse; + } + else + { + vcp->normalImpulse = 0.0f; + vcp->tangentImpulse = 0.0f; + } + + vcp->rA.SetZero(); + vcp->rB.SetZero(); + vcp->normalMass = 0.0f; + vcp->tangentMass = 0.0f; + vcp->velocityBias = 0.0f; + + pc->localPoints[j] = cp->localPoint; + } + } +} + +b2ContactSolver::~b2ContactSolver() +{ + m_allocator->Free(m_velocityConstraints); + m_allocator->Free(m_positionConstraints); +} + +// Initialize position dependent portions of the velocity constraints. +void b2ContactSolver::InitializeVelocityConstraints() +{ + for (int32 i = 0; i < m_count; ++i) + { + b2ContactVelocityConstraint* vc = m_velocityConstraints + i; + b2ContactPositionConstraint* pc = m_positionConstraints + i; + + float radiusA = pc->radiusA; + float radiusB = pc->radiusB; + b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); + + int32 indexA = vc->indexA; + int32 indexB = vc->indexB; + + float mA = vc->invMassA; + float mB = vc->invMassB; + float iA = vc->invIA; + float iB = vc->invIB; + b2Vec2 localCenterA = pc->localCenterA; + b2Vec2 localCenterB = pc->localCenterB; + + b2Vec2 cA = m_positions[indexA].c; + float aA = m_positions[indexA].a; + b2Vec2 vA = m_velocities[indexA].v; + float wA = m_velocities[indexA].w; + + b2Vec2 cB = m_positions[indexB].c; + float aB = m_positions[indexB].a; + b2Vec2 vB = m_velocities[indexB].v; + float wB = m_velocities[indexB].w; + + b2Assert(manifold->pointCount > 0); + + b2Transform xfA, xfB; + xfA.q.Set(aA); + xfB.q.Set(aB); + xfA.p = cA - b2Mul(xfA.q, localCenterA); + xfB.p = cB - b2Mul(xfB.q, localCenterB); + + b2WorldManifold worldManifold; + worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); + + vc->normal = worldManifold.normal; + + int32 pointCount = vc->pointCount; + for (int32 j = 0; j < pointCount; ++j) + { + b2VelocityConstraintPoint* vcp = vc->points + j; + + vcp->rA = worldManifold.points[j] - cA; + vcp->rB = worldManifold.points[j] - cB; + + float rnA = b2Cross(vcp->rA, vc->normal); + float rnB = b2Cross(vcp->rB, vc->normal); + + float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; + + vcp->normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; + + b2Vec2 tangent = b2Cross(vc->normal, 1.0f); + + float rtA = b2Cross(vcp->rA, tangent); + float rtB = b2Cross(vcp->rB, tangent); + + float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; + + vcp->tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f; + + // Setup a velocity bias for restitution. + vcp->velocityBias = 0.0f; + float vRel = b2Dot(vc->normal, vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA)); + if (vRel < -vc->threshold) + { + vcp->velocityBias = -vc->restitution * vRel; + } + } + + // If we have two points, then prepare the block solver. + if (vc->pointCount == 2 && g_blockSolve) + { + b2VelocityConstraintPoint* vcp1 = vc->points + 0; + b2VelocityConstraintPoint* vcp2 = vc->points + 1; + + float rn1A = b2Cross(vcp1->rA, vc->normal); + float rn1B = b2Cross(vcp1->rB, vc->normal); + float rn2A = b2Cross(vcp2->rA, vc->normal); + float rn2B = b2Cross(vcp2->rB, vc->normal); + + float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; + float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; + float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; + + // Ensure a reasonable condition number. + const float k_maxConditionNumber = 1000.0f; + if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) + { + // K is safe to invert. + vc->K.ex.Set(k11, k12); + vc->K.ey.Set(k12, k22); + vc->normalMass = vc->K.GetInverse(); + } + else + { + // The constraints are redundant, just use one. + // TODO_ERIN use deepest? + vc->pointCount = 1; + } + } + } +} + +void b2ContactSolver::WarmStart() +{ + // Warm start. + for (int32 i = 0; i < m_count; ++i) + { + b2ContactVelocityConstraint* vc = m_velocityConstraints + i; + + int32 indexA = vc->indexA; + int32 indexB = vc->indexB; + float mA = vc->invMassA; + float iA = vc->invIA; + float mB = vc->invMassB; + float iB = vc->invIB; + int32 pointCount = vc->pointCount; + + b2Vec2 vA = m_velocities[indexA].v; + float wA = m_velocities[indexA].w; + b2Vec2 vB = m_velocities[indexB].v; + float wB = m_velocities[indexB].w; + + b2Vec2 normal = vc->normal; + b2Vec2 tangent = b2Cross(normal, 1.0f); + + for (int32 j = 0; j < pointCount; ++j) + { + b2VelocityConstraintPoint* vcp = vc->points + j; + b2Vec2 P = vcp->normalImpulse * normal + vcp->tangentImpulse * tangent; + wA -= iA * b2Cross(vcp->rA, P); + vA -= mA * P; + wB += iB * b2Cross(vcp->rB, P); + vB += mB * P; + } + + m_velocities[indexA].v = vA; + m_velocities[indexA].w = wA; + m_velocities[indexB].v = vB; + m_velocities[indexB].w = wB; + } +} + +void b2ContactSolver::SolveVelocityConstraints() +{ + for (int32 i = 0; i < m_count; ++i) + { + b2ContactVelocityConstraint* vc = m_velocityConstraints + i; + + int32 indexA = vc->indexA; + int32 indexB = vc->indexB; + float mA = vc->invMassA; + float iA = vc->invIA; + float mB = vc->invMassB; + float iB = vc->invIB; + int32 pointCount = vc->pointCount; + + b2Vec2 vA = m_velocities[indexA].v; + float wA = m_velocities[indexA].w; + b2Vec2 vB = m_velocities[indexB].v; + float wB = m_velocities[indexB].w; + + b2Vec2 normal = vc->normal; + b2Vec2 tangent = b2Cross(normal, 1.0f); + float friction = vc->friction; + + b2Assert(pointCount == 1 || pointCount == 2); + + // Solve tangent constraints first because non-penetration is more important + // than friction. + for (int32 j = 0; j < pointCount; ++j) + { + b2VelocityConstraintPoint* vcp = vc->points + j; + + // Relative velocity at contact + b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); + + // Compute tangent force + float vt = b2Dot(dv, tangent) - vc->tangentSpeed; + float lambda = vcp->tangentMass * (-vt); + + // b2Clamp the accumulated force + float maxFriction = friction * vcp->normalImpulse; + float newImpulse = b2Clamp(vcp->tangentImpulse + lambda, -maxFriction, maxFriction); + lambda = newImpulse - vcp->tangentImpulse; + vcp->tangentImpulse = newImpulse; + + // Apply contact impulse + b2Vec2 P = lambda * tangent; + + vA -= mA * P; + wA -= iA * b2Cross(vcp->rA, P); + + vB += mB * P; + wB += iB * b2Cross(vcp->rB, P); + } + + // Solve normal constraints + if (pointCount == 1 || g_blockSolve == false) + { + for (int32 j = 0; j < pointCount; ++j) + { + b2VelocityConstraintPoint* vcp = vc->points + j; + + // Relative velocity at contact + b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); + + // Compute normal impulse + float vn = b2Dot(dv, normal); + float lambda = -vcp->normalMass * (vn - vcp->velocityBias); + + // b2Clamp the accumulated impulse + float newImpulse = b2Max(vcp->normalImpulse + lambda, 0.0f); + lambda = newImpulse - vcp->normalImpulse; + vcp->normalImpulse = newImpulse; + + // Apply contact impulse + b2Vec2 P = lambda * normal; + vA -= mA * P; + wA -= iA * b2Cross(vcp->rA, P); + + vB += mB * P; + wB += iB * b2Cross(vcp->rB, P); + } + } + else + { + // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). + // Build the mini LCP for this contact patch + // + // vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 + // + // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) + // b = vn0 - velocityBias + // + // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i + // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases + // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid + // solution that satisfies the problem is chosen. + // + // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires + // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). + // + // Substitute: + // + // x = a + d + // + // a := old total impulse + // x := new total impulse + // d := incremental impulse + // + // For the current iteration we extend the formula for the incremental impulse + // to compute the new total impulse: + // + // vn = A * d + b + // = A * (x - a) + b + // = A * x + b - A * a + // = A * x + b' + // b' = b - A * a; + + b2VelocityConstraintPoint* cp1 = vc->points + 0; + b2VelocityConstraintPoint* cp2 = vc->points + 1; + + b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse); + b2Assert(a.x >= 0.0f && a.y >= 0.0f); + + // Relative velocity at contact + b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); + b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); + + // Compute normal velocity + float vn1 = b2Dot(dv1, normal); + float vn2 = b2Dot(dv2, normal); + + b2Vec2 b; + b.x = vn1 - cp1->velocityBias; + b.y = vn2 - cp2->velocityBias; + + // Compute b' + b -= b2Mul(vc->K, a); + + const float k_errorTol = 1e-3f; + B2_NOT_USED(k_errorTol); + + for (;;) + { + // + // Case 1: vn = 0 + // + // 0 = A * x + b' + // + // Solve for x: + // + // x = - inv(A) * b' + // + b2Vec2 x = - b2Mul(vc->normalMass, b); + + if (x.x >= 0.0f && x.y >= 0.0f) + { + // Get the incremental impulse + b2Vec2 d = x - a; + + // Apply incremental impulse + b2Vec2 P1 = d.x * normal; + b2Vec2 P2 = d.y * normal; + vA -= mA * (P1 + P2); + wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + + vB += mB * (P1 + P2); + wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + + // Accumulate + cp1->normalImpulse = x.x; + cp2->normalImpulse = x.y; + +#if B2_DEBUG_SOLVER == 1 + // Postconditions + dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); + dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); + + // Compute normal velocity + vn1 = b2Dot(dv1, normal); + vn2 = b2Dot(dv2, normal); + + b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); + b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); +#endif + break; + } + + // + // Case 2: vn1 = 0 and x2 = 0 + // + // 0 = a11 * x1 + a12 * 0 + b1' + // vn2 = a21 * x1 + a22 * 0 + b2' + // + x.x = - cp1->normalMass * b.x; + x.y = 0.0f; + vn1 = 0.0f; + vn2 = vc->K.ex.y * x.x + b.y; + if (x.x >= 0.0f && vn2 >= 0.0f) + { + // Get the incremental impulse + b2Vec2 d = x - a; + + // Apply incremental impulse + b2Vec2 P1 = d.x * normal; + b2Vec2 P2 = d.y * normal; + vA -= mA * (P1 + P2); + wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + + vB += mB * (P1 + P2); + wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + + // Accumulate + cp1->normalImpulse = x.x; + cp2->normalImpulse = x.y; + +#if B2_DEBUG_SOLVER == 1 + // Postconditions + dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); + + // Compute normal velocity + vn1 = b2Dot(dv1, normal); + + b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); +#endif + break; + } + + + // + // Case 3: vn2 = 0 and x1 = 0 + // + // vn1 = a11 * 0 + a12 * x2 + b1' + // 0 = a21 * 0 + a22 * x2 + b2' + // + x.x = 0.0f; + x.y = - cp2->normalMass * b.y; + vn1 = vc->K.ey.x * x.y + b.x; + vn2 = 0.0f; + + if (x.y >= 0.0f && vn1 >= 0.0f) + { + // Resubstitute for the incremental impulse + b2Vec2 d = x - a; + + // Apply incremental impulse + b2Vec2 P1 = d.x * normal; + b2Vec2 P2 = d.y * normal; + vA -= mA * (P1 + P2); + wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + + vB += mB * (P1 + P2); + wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + + // Accumulate + cp1->normalImpulse = x.x; + cp2->normalImpulse = x.y; + +#if B2_DEBUG_SOLVER == 1 + // Postconditions + dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); + + // Compute normal velocity + vn2 = b2Dot(dv2, normal); + + b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); +#endif + break; + } + + // + // Case 4: x1 = 0 and x2 = 0 + // + // vn1 = b1 + // vn2 = b2; + x.x = 0.0f; + x.y = 0.0f; + vn1 = b.x; + vn2 = b.y; + + if (vn1 >= 0.0f && vn2 >= 0.0f ) + { + // Resubstitute for the incremental impulse + b2Vec2 d = x - a; + + // Apply incremental impulse + b2Vec2 P1 = d.x * normal; + b2Vec2 P2 = d.y * normal; + vA -= mA * (P1 + P2); + wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); + + vB += mB * (P1 + P2); + wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); + + // Accumulate + cp1->normalImpulse = x.x; + cp2->normalImpulse = x.y; + + break; + } + + // No solution, give up. This is hit sometimes, but it doesn't seem to matter. + break; + } + } + + m_velocities[indexA].v = vA; + m_velocities[indexA].w = wA; + m_velocities[indexB].v = vB; + m_velocities[indexB].w = wB; + } +} + +void b2ContactSolver::StoreImpulses() +{ + for (int32 i = 0; i < m_count; ++i) + { + b2ContactVelocityConstraint* vc = m_velocityConstraints + i; + b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); + + for (int32 j = 0; j < vc->pointCount; ++j) + { + manifold->points[j].normalImpulse = vc->points[j].normalImpulse; + manifold->points[j].tangentImpulse = vc->points[j].tangentImpulse; + } + } +} + +struct b2PositionSolverManifold +{ + void Initialize(b2ContactPositionConstraint* pc, const b2Transform& xfA, const b2Transform& xfB, int32 index) + { + b2Assert(pc->pointCount > 0); + + switch (pc->type) + { + case b2Manifold::e_circles: + { + b2Vec2 pointA = b2Mul(xfA, pc->localPoint); + b2Vec2 pointB = b2Mul(xfB, pc->localPoints[0]); + normal = pointB - pointA; + normal.Normalize(); + point = 0.5f * (pointA + pointB); + separation = b2Dot(pointB - pointA, normal) - pc->radiusA - pc->radiusB; + } + break; + + case b2Manifold::e_faceA: + { + normal = b2Mul(xfA.q, pc->localNormal); + b2Vec2 planePoint = b2Mul(xfA, pc->localPoint); + + b2Vec2 clipPoint = b2Mul(xfB, pc->localPoints[index]); + separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; + point = clipPoint; + } + break; + + case b2Manifold::e_faceB: + { + normal = b2Mul(xfB.q, pc->localNormal); + b2Vec2 planePoint = b2Mul(xfB, pc->localPoint); + + b2Vec2 clipPoint = b2Mul(xfA, pc->localPoints[index]); + separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; + point = clipPoint; + + // Ensure normal points from A to B + normal = -normal; + } + break; + } + } + + b2Vec2 normal; + b2Vec2 point; + float separation; +}; + +// Sequential solver. +bool b2ContactSolver::SolvePositionConstraints() +{ + float minSeparation = 0.0f; + + for (int32 i = 0; i < m_count; ++i) + { + b2ContactPositionConstraint* pc = m_positionConstraints + i; + + int32 indexA = pc->indexA; + int32 indexB = pc->indexB; + b2Vec2 localCenterA = pc->localCenterA; + float mA = pc->invMassA; + float iA = pc->invIA; + b2Vec2 localCenterB = pc->localCenterB; + float mB = pc->invMassB; + float iB = pc->invIB; + int32 pointCount = pc->pointCount; + + b2Vec2 cA = m_positions[indexA].c; + float aA = m_positions[indexA].a; + + b2Vec2 cB = m_positions[indexB].c; + float aB = m_positions[indexB].a; + + // Solve normal constraints + for (int32 j = 0; j < pointCount; ++j) + { + b2Transform xfA, xfB; + xfA.q.Set(aA); + xfB.q.Set(aB); + xfA.p = cA - b2Mul(xfA.q, localCenterA); + xfB.p = cB - b2Mul(xfB.q, localCenterB); + + b2PositionSolverManifold psm; + psm.Initialize(pc, xfA, xfB, j); + b2Vec2 normal = psm.normal; + + b2Vec2 point = psm.point; + float separation = psm.separation; + + b2Vec2 rA = point - cA; + b2Vec2 rB = point - cB; + + // Track max constraint error. + minSeparation = b2Min(minSeparation, separation); + + // Prevent large corrections and allow slop. + float C = b2Clamp(b2_baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); + + // Compute the effective mass. + float rnA = b2Cross(rA, normal); + float rnB = b2Cross(rB, normal); + float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; + + // Compute normal impulse + float impulse = K > 0.0f ? - C / K : 0.0f; + + b2Vec2 P = impulse * normal; + + cA -= mA * P; + aA -= iA * b2Cross(rA, P); + + cB += mB * P; + aB += iB * b2Cross(rB, P); + } + + m_positions[indexA].c = cA; + m_positions[indexA].a = aA; + + m_positions[indexB].c = cB; + m_positions[indexB].a = aB; + } + + // We can't expect minSpeparation >= -b2_linearSlop because we don't + // push the separation above -b2_linearSlop. + return minSeparation >= -3.0f * b2_linearSlop; +} + +// Sequential position solver for position constraints. +bool b2ContactSolver::SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB) +{ + float minSeparation = 0.0f; + + for (int32 i = 0; i < m_count; ++i) + { + b2ContactPositionConstraint* pc = m_positionConstraints + i; + + int32 indexA = pc->indexA; + int32 indexB = pc->indexB; + b2Vec2 localCenterA = pc->localCenterA; + b2Vec2 localCenterB = pc->localCenterB; + int32 pointCount = pc->pointCount; + + float mA = 0.0f; + float iA = 0.0f; + if (indexA == toiIndexA || indexA == toiIndexB) + { + mA = pc->invMassA; + iA = pc->invIA; + } + + float mB = 0.0f; + float iB = 0.; + if (indexB == toiIndexA || indexB == toiIndexB) + { + mB = pc->invMassB; + iB = pc->invIB; + } + + b2Vec2 cA = m_positions[indexA].c; + float aA = m_positions[indexA].a; + + b2Vec2 cB = m_positions[indexB].c; + float aB = m_positions[indexB].a; + + // Solve normal constraints + for (int32 j = 0; j < pointCount; ++j) + { + b2Transform xfA, xfB; + xfA.q.Set(aA); + xfB.q.Set(aB); + xfA.p = cA - b2Mul(xfA.q, localCenterA); + xfB.p = cB - b2Mul(xfB.q, localCenterB); + + b2PositionSolverManifold psm; + psm.Initialize(pc, xfA, xfB, j); + b2Vec2 normal = psm.normal; + + b2Vec2 point = psm.point; + float separation = psm.separation; + + b2Vec2 rA = point - cA; + b2Vec2 rB = point - cB; + + // Track max constraint error. + minSeparation = b2Min(minSeparation, separation); + + // Prevent large corrections and allow slop. + float C = b2Clamp(b2_toiBaumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); + + // Compute the effective mass. + float rnA = b2Cross(rA, normal); + float rnB = b2Cross(rB, normal); + float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; + + // Compute normal impulse + float impulse = K > 0.0f ? - C / K : 0.0f; + + b2Vec2 P = impulse * normal; + + cA -= mA * P; + aA -= iA * b2Cross(rA, P); + + cB += mB * P; + aB += iB * b2Cross(rB, P); + } + + m_positions[indexA].c = cA; + m_positions[indexA].a = aA; + + m_positions[indexB].c = cB; + m_positions[indexB].a = aB; + } + + // We can't expect minSpeparation >= -b2_linearSlop because we don't + // push the separation above -b2_linearSlop. + return minSeparation >= -1.5f * b2_linearSlop; +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.h b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.h new file mode 100644 index 0000000..1064738 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_contact_solver.h @@ -0,0 +1,100 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_CONTACT_SOLVER_H +#define B2_CONTACT_SOLVER_H + +#include "box2d/b2_collision.h" +#include "box2d/b2_math.h" +#include "box2d/b2_time_step.h" + +class b2Contact; +class b2Body; +class b2StackAllocator; +struct b2ContactPositionConstraint; + +struct b2VelocityConstraintPoint +{ + b2Vec2 rA; + b2Vec2 rB; + float normalImpulse; + float tangentImpulse; + float normalMass; + float tangentMass; + float velocityBias; +}; + +struct b2ContactVelocityConstraint +{ + b2VelocityConstraintPoint points[b2_maxManifoldPoints]; + b2Vec2 normal; + b2Mat22 normalMass; + b2Mat22 K; + int32 indexA; + int32 indexB; + float invMassA, invMassB; + float invIA, invIB; + float friction; + float restitution; + float threshold; + float tangentSpeed; + int32 pointCount; + int32 contactIndex; +}; + +struct b2ContactSolverDef +{ + b2TimeStep step; + b2Contact** contacts; + int32 count; + b2Position* positions; + b2Velocity* velocities; + b2StackAllocator* allocator; +}; + +class b2ContactSolver +{ +public: + b2ContactSolver(b2ContactSolverDef* def); + ~b2ContactSolver(); + + void InitializeVelocityConstraints(); + + void WarmStart(); + void SolveVelocityConstraints(); + void StoreImpulses(); + + bool SolvePositionConstraints(); + bool SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB); + + b2TimeStep m_step; + b2Position* m_positions; + b2Velocity* m_velocities; + b2StackAllocator* m_allocator; + b2ContactPositionConstraint* m_positionConstraints; + b2ContactVelocityConstraint* m_velocityConstraints; + b2Contact** m_contacts; + int m_count; +}; + +#endif + diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_distance_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_distance_joint.cpp new file mode 100644 index 0000000..e54dbaf --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_distance_joint.cpp @@ -0,0 +1,421 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_draw.h" +#include "box2d/b2_distance_joint.h" +#include "box2d/b2_time_step.h" + +// 1-D constrained system +// m (v2 - v1) = lambda +// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass. +// x2 = x1 + h * v2 + +// 1-D mass-damper-spring system +// m (v2 - v1) + h * d * v2 + h * k * + +// C = norm(p2 - p1) - L +// u = (p2 - p1) / norm(p2 - p1) +// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1)) +// J = [-u -cross(r1, u) u cross(r2, u)] +// K = J * invM * JT +// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2 + + +void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, + const b2Vec2& anchor1, const b2Vec2& anchor2) +{ + bodyA = b1; + bodyB = b2; + localAnchorA = bodyA->GetLocalPoint(anchor1); + localAnchorB = bodyB->GetLocalPoint(anchor2); + b2Vec2 d = anchor2 - anchor1; + length = b2Max(d.Length(), b2_linearSlop); + minLength = length; + maxLength = length; +} + +b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) +: b2Joint(def) +{ + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + m_length = b2Max(def->length, b2_linearSlop); + m_minLength = b2Max(def->minLength, b2_linearSlop); + m_maxLength = b2Max(def->maxLength, m_minLength); + m_stiffness = def->stiffness; + m_damping = def->damping; + + m_gamma = 0.0f; + m_bias = 0.0f; + m_impulse = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + m_currentLength = 0.0f; +} + +void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + m_u = cB + m_rB - cA - m_rA; + + // Handle singularity. + m_currentLength = m_u.Length(); + if (m_currentLength > b2_linearSlop) + { + m_u *= 1.0f / m_currentLength; + } + else + { + m_u.Set(0.0f, 0.0f); + m_mass = 0.0f; + m_impulse = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } + + float crAu = b2Cross(m_rA, m_u); + float crBu = b2Cross(m_rB, m_u); + float invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; + m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; + + if (m_stiffness > 0.0f && m_minLength < m_maxLength) + { + // soft + float C = m_currentLength - m_length; + + float d = m_damping; + float k = m_stiffness; + + // magic formulas + float h = data.step.dt; + + // gamma = 1 / (h * (d + h * k)) + // the extra factor of h in the denominator is since the lambda is an impulse, not a force + m_gamma = h * (d + h * k); + m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; + m_bias = C * h * k * m_gamma; + + invMass += m_gamma; + m_softMass = invMass != 0.0f ? 1.0f / invMass : 0.0f; + } + else + { + // rigid + m_gamma = 0.0f; + m_bias = 0.0f; + m_softMass = m_mass; + } + + if (data.step.warmStarting) + { + // Scale the impulse to support a variable time step. + m_impulse *= data.step.dtRatio; + m_lowerImpulse *= data.step.dtRatio; + m_upperImpulse *= data.step.dtRatio; + + b2Vec2 P = (m_impulse + m_lowerImpulse - m_upperImpulse) * m_u; + vA -= m_invMassA * P; + wA -= m_invIA * b2Cross(m_rA, P); + vB += m_invMassB * P; + wB += m_invIB * b2Cross(m_rB, P); + } + else + { + m_impulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + if (m_minLength < m_maxLength) + { + if (m_stiffness > 0.0f) + { + // Cdot = dot(u, v + cross(w, r)) + b2Vec2 vpA = vA + b2Cross(wA, m_rA); + b2Vec2 vpB = vB + b2Cross(wB, m_rB); + float Cdot = b2Dot(m_u, vpB - vpA); + + float impulse = -m_softMass * (Cdot + m_bias + m_gamma * m_impulse); + m_impulse += impulse; + + b2Vec2 P = impulse * m_u; + vA -= m_invMassA * P; + wA -= m_invIA * b2Cross(m_rA, P); + vB += m_invMassB * P; + wB += m_invIB * b2Cross(m_rB, P); + } + + // lower + { + float C = m_currentLength - m_minLength; + float bias = b2Max(0.0f, C) * data.step.inv_dt; + + b2Vec2 vpA = vA + b2Cross(wA, m_rA); + b2Vec2 vpB = vB + b2Cross(wB, m_rB); + float Cdot = b2Dot(m_u, vpB - vpA); + + float impulse = -m_mass * (Cdot + bias); + float oldImpulse = m_lowerImpulse; + m_lowerImpulse = b2Max(0.0f, m_lowerImpulse + impulse); + impulse = m_lowerImpulse - oldImpulse; + b2Vec2 P = impulse * m_u; + + vA -= m_invMassA * P; + wA -= m_invIA * b2Cross(m_rA, P); + vB += m_invMassB * P; + wB += m_invIB * b2Cross(m_rB, P); + } + + // upper + { + float C = m_maxLength - m_currentLength; + float bias = b2Max(0.0f, C) * data.step.inv_dt; + + b2Vec2 vpA = vA + b2Cross(wA, m_rA); + b2Vec2 vpB = vB + b2Cross(wB, m_rB); + float Cdot = b2Dot(m_u, vpA - vpB); + + float impulse = -m_mass * (Cdot + bias); + float oldImpulse = m_upperImpulse; + m_upperImpulse = b2Max(0.0f, m_upperImpulse + impulse); + impulse = m_upperImpulse - oldImpulse; + b2Vec2 P = -impulse * m_u; + + vA -= m_invMassA * P; + wA -= m_invIA * b2Cross(m_rA, P); + vB += m_invMassB * P; + wB += m_invIB * b2Cross(m_rB, P); + } + } + else + { + // Equal limits + + // Cdot = dot(u, v + cross(w, r)) + b2Vec2 vpA = vA + b2Cross(wA, m_rA); + b2Vec2 vpB = vB + b2Cross(wB, m_rB); + float Cdot = b2Dot(m_u, vpB - vpA); + + float impulse = -m_mass * Cdot; + m_impulse += impulse; + + b2Vec2 P = impulse * m_u; + vA -= m_invMassA * P; + wA -= m_invIA * b2Cross(m_rA, P); + vB += m_invMassB * P; + wB += m_invIB * b2Cross(m_rB, P); + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + + b2Rot qA(aA), qB(aB); + + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + b2Vec2 u = cB + rB - cA - rA; + + float length = u.Normalize(); + float C; + if (m_minLength == m_maxLength) + { + C = length - m_minLength; + } + else if (length < m_minLength) + { + C = length - m_minLength; + } + else if (m_maxLength < length) + { + C = length - m_maxLength; + } + else + { + return true; + } + + float impulse = -m_mass * C; + b2Vec2 P = impulse * u; + + cA -= m_invMassA * P; + aA -= m_invIA * b2Cross(rA, P); + cB += m_invMassB * P; + aB += m_invIB * b2Cross(rB, P); + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + + return b2Abs(C) < b2_linearSlop; +} + +b2Vec2 b2DistanceJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2DistanceJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2DistanceJoint::GetReactionForce(float inv_dt) const +{ + b2Vec2 F = inv_dt * (m_impulse + m_lowerImpulse - m_upperImpulse) * m_u; + return F; +} + +float b2DistanceJoint::GetReactionTorque(float inv_dt) const +{ + B2_NOT_USED(inv_dt); + return 0.0f; +} + +float b2DistanceJoint::SetLength(float length) +{ + m_impulse = 0.0f; + m_length = b2Max(b2_linearSlop, length); + return m_length; +} + +float b2DistanceJoint::SetMinLength(float minLength) +{ + m_lowerImpulse = 0.0f; + m_minLength = b2Clamp(minLength, b2_linearSlop, m_maxLength); + return m_minLength; +} + +float b2DistanceJoint::SetMaxLength(float maxLength) +{ + m_upperImpulse = 0.0f; + m_maxLength = b2Max(maxLength, m_minLength); + return m_maxLength; +} + +float b2DistanceJoint::GetCurrentLength() const +{ + b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA); + b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB); + b2Vec2 d = pB - pA; + float length = d.Length(); + return length; +} + +void b2DistanceJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2DistanceJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Dump(" jd.length = %.9g;\n", m_length); + b2Dump(" jd.minLength = %.9g;\n", m_minLength); + b2Dump(" jd.maxLength = %.9g;\n", m_maxLength); + b2Dump(" jd.stiffness = %.9g;\n", m_stiffness); + b2Dump(" jd.damping = %.9g;\n", m_damping); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} + +void b2DistanceJoint::Draw(b2Draw* draw) const +{ + const b2Transform& xfA = m_bodyA->GetTransform(); + const b2Transform& xfB = m_bodyB->GetTransform(); + b2Vec2 pA = b2Mul(xfA, m_localAnchorA); + b2Vec2 pB = b2Mul(xfB, m_localAnchorB); + + b2Vec2 axis = pB - pA; + float length = axis.Normalize(); + + b2Color c1(0.7f, 0.7f, 0.7f); + b2Color c2(0.3f, 0.9f, 0.3f); + b2Color c3(0.9f, 0.3f, 0.3f); + b2Color c4(0.4f, 0.4f, 0.4f); + + draw->DrawSegment(pA, pB, c4); + + b2Vec2 pRest = pA + m_length * axis; + draw->DrawPoint(pRest, 8.0f, c1); + + if (m_minLength != m_maxLength) + { + if (m_minLength > b2_linearSlop) + { + b2Vec2 pMin = pA + m_minLength * axis; + draw->DrawPoint(pMin, 4.0f, c2); + } + + if (m_maxLength < FLT_MAX) + { + b2Vec2 pMax = pA + m_maxLength * axis; + draw->DrawPoint(pMax, 4.0f, c3); + } + } +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_edge_circle_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_circle_contact.cpp new file mode 100644 index 0000000..8a126de --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_circle_contact.cpp @@ -0,0 +1,54 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_edge_circle_contact.h" + +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_fixture.h" + +#include <new> + +b2Contact* b2EdgeAndCircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) +{ + void* mem = allocator->Allocate(sizeof(b2EdgeAndCircleContact)); + return new (mem) b2EdgeAndCircleContact(fixtureA, fixtureB); +} + +void b2EdgeAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + ((b2EdgeAndCircleContact*)contact)->~b2EdgeAndCircleContact(); + allocator->Free(contact, sizeof(b2EdgeAndCircleContact)); +} + +b2EdgeAndCircleContact::b2EdgeAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB) +: b2Contact(fixtureA, 0, fixtureB, 0) +{ + b2Assert(m_fixtureA->GetType() == b2Shape::e_edge); + b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); +} + +void b2EdgeAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) +{ + b2CollideEdgeAndCircle( manifold, + (b2EdgeShape*)m_fixtureA->GetShape(), xfA, + (b2CircleShape*)m_fixtureB->GetShape(), xfB); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_edge_circle_contact.h b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_circle_contact.h new file mode 100644 index 0000000..3efc88e --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_circle_contact.h @@ -0,0 +1,43 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_EDGE_AND_CIRCLE_CONTACT_H +#define B2_EDGE_AND_CIRCLE_CONTACT_H + +#include "box2d/b2_contact.h" + +class b2BlockAllocator; + +class b2EdgeAndCircleContact : public b2Contact +{ +public: + static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, + b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); + static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); + + b2EdgeAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB); + ~b2EdgeAndCircleContact() {} + + void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_edge_polygon_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_polygon_contact.cpp new file mode 100644 index 0000000..e617e35 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_polygon_contact.cpp @@ -0,0 +1,54 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_edge_polygon_contact.h" + +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_fixture.h" + +#include <new> + +b2Contact* b2EdgeAndPolygonContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) +{ + void* mem = allocator->Allocate(sizeof(b2EdgeAndPolygonContact)); + return new (mem) b2EdgeAndPolygonContact(fixtureA, fixtureB); +} + +void b2EdgeAndPolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + ((b2EdgeAndPolygonContact*)contact)->~b2EdgeAndPolygonContact(); + allocator->Free(contact, sizeof(b2EdgeAndPolygonContact)); +} + +b2EdgeAndPolygonContact::b2EdgeAndPolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB) +: b2Contact(fixtureA, 0, fixtureB, 0) +{ + b2Assert(m_fixtureA->GetType() == b2Shape::e_edge); + b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon); +} + +void b2EdgeAndPolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) +{ + b2CollideEdgeAndPolygon( manifold, + (b2EdgeShape*)m_fixtureA->GetShape(), xfA, + (b2PolygonShape*)m_fixtureB->GetShape(), xfB); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_edge_polygon_contact.h b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_polygon_contact.h new file mode 100644 index 0000000..e6616b5 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_edge_polygon_contact.h @@ -0,0 +1,43 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_EDGE_AND_POLYGON_CONTACT_H +#define B2_EDGE_AND_POLYGON_CONTACT_H + +#include "box2d/b2_contact.h" + +class b2BlockAllocator; + +class b2EdgeAndPolygonContact : public b2Contact +{ +public: + static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, + b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); + static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); + + b2EdgeAndPolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB); + ~b2EdgeAndPolygonContact() {} + + void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_fixture.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_fixture.cpp new file mode 100644 index 0000000..9fd700a --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_fixture.cpp @@ -0,0 +1,305 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_fixture.h" +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_broad_phase.h" +#include "box2d/b2_chain_shape.h" +#include "box2d/b2_circle_shape.h" +#include "box2d/b2_collision.h" +#include "box2d/b2_contact.h" +#include "box2d/b2_edge_shape.h" +#include "box2d/b2_polygon_shape.h" +#include "box2d/b2_world.h" + +b2Fixture::b2Fixture() +{ + m_body = nullptr; + m_next = nullptr; + m_proxies = nullptr; + m_proxyCount = 0; + m_shape = nullptr; + m_density = 0.0f; +} + +void b2Fixture::Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def) +{ + m_userData = def->userData; + m_friction = def->friction; + m_restitution = def->restitution; + m_restitutionThreshold = def->restitutionThreshold; + + m_body = body; + m_next = nullptr; + + m_filter = def->filter; + + m_isSensor = def->isSensor; + + m_shape = def->shape->Clone(allocator); + + // Reserve proxy space + int32 childCount = m_shape->GetChildCount(); + m_proxies = (b2FixtureProxy*)allocator->Allocate(childCount * sizeof(b2FixtureProxy)); + for (int32 i = 0; i < childCount; ++i) + { + m_proxies[i].fixture = nullptr; + m_proxies[i].proxyId = b2BroadPhase::e_nullProxy; + } + m_proxyCount = 0; + + m_density = def->density; +} + +void b2Fixture::Destroy(b2BlockAllocator* allocator) +{ + // The proxies must be destroyed before calling this. + b2Assert(m_proxyCount == 0); + + // Free the proxy array. + int32 childCount = m_shape->GetChildCount(); + allocator->Free(m_proxies, childCount * sizeof(b2FixtureProxy)); + m_proxies = nullptr; + + // Free the child shape. + switch (m_shape->m_type) + { + case b2Shape::e_circle: + { + b2CircleShape* s = (b2CircleShape*)m_shape; + s->~b2CircleShape(); + allocator->Free(s, sizeof(b2CircleShape)); + } + break; + + case b2Shape::e_edge: + { + b2EdgeShape* s = (b2EdgeShape*)m_shape; + s->~b2EdgeShape(); + allocator->Free(s, sizeof(b2EdgeShape)); + } + break; + + case b2Shape::e_polygon: + { + b2PolygonShape* s = (b2PolygonShape*)m_shape; + s->~b2PolygonShape(); + allocator->Free(s, sizeof(b2PolygonShape)); + } + break; + + case b2Shape::e_chain: + { + b2ChainShape* s = (b2ChainShape*)m_shape; + s->~b2ChainShape(); + allocator->Free(s, sizeof(b2ChainShape)); + } + break; + + default: + b2Assert(false); + break; + } + + m_shape = nullptr; +} + +void b2Fixture::CreateProxies(b2BroadPhase* broadPhase, const b2Transform& xf) +{ + b2Assert(m_proxyCount == 0); + + // Create proxies in the broad-phase. + m_proxyCount = m_shape->GetChildCount(); + + for (int32 i = 0; i < m_proxyCount; ++i) + { + b2FixtureProxy* proxy = m_proxies + i; + m_shape->ComputeAABB(&proxy->aabb, xf, i); + proxy->proxyId = broadPhase->CreateProxy(proxy->aabb, proxy); + proxy->fixture = this; + proxy->childIndex = i; + } +} + +void b2Fixture::DestroyProxies(b2BroadPhase* broadPhase) +{ + // Destroy proxies in the broad-phase. + for (int32 i = 0; i < m_proxyCount; ++i) + { + b2FixtureProxy* proxy = m_proxies + i; + broadPhase->DestroyProxy(proxy->proxyId); + proxy->proxyId = b2BroadPhase::e_nullProxy; + } + + m_proxyCount = 0; +} + +void b2Fixture::Synchronize(b2BroadPhase* broadPhase, const b2Transform& transform1, const b2Transform& transform2) +{ + if (m_proxyCount == 0) + { + return; + } + + for (int32 i = 0; i < m_proxyCount; ++i) + { + b2FixtureProxy* proxy = m_proxies + i; + + // Compute an AABB that covers the swept shape (may miss some rotation effect). + b2AABB aabb1, aabb2; + m_shape->ComputeAABB(&aabb1, transform1, proxy->childIndex); + m_shape->ComputeAABB(&aabb2, transform2, proxy->childIndex); + + proxy->aabb.Combine(aabb1, aabb2); + + b2Vec2 displacement = aabb2.GetCenter() - aabb1.GetCenter(); + + broadPhase->MoveProxy(proxy->proxyId, proxy->aabb, displacement); + } +} + +void b2Fixture::SetFilterData(const b2Filter& filter) +{ + m_filter = filter; + + Refilter(); +} + +void b2Fixture::Refilter() +{ + if (m_body == nullptr) + { + return; + } + + // Flag associated contacts for filtering. + b2ContactEdge* edge = m_body->GetContactList(); + while (edge) + { + b2Contact* contact = edge->contact; + b2Fixture* fixtureA = contact->GetFixtureA(); + b2Fixture* fixtureB = contact->GetFixtureB(); + if (fixtureA == this || fixtureB == this) + { + contact->FlagForFiltering(); + } + + edge = edge->next; + } + + b2World* world = m_body->GetWorld(); + + if (world == nullptr) + { + return; + } + + // Touch each proxy so that new pairs may be created + b2BroadPhase* broadPhase = &world->m_contactManager.m_broadPhase; + for (int32 i = 0; i < m_proxyCount; ++i) + { + broadPhase->TouchProxy(m_proxies[i].proxyId); + } +} + +void b2Fixture::SetSensor(bool sensor) +{ + if (sensor != m_isSensor) + { + m_body->SetAwake(true); + m_isSensor = sensor; + } +} + +void b2Fixture::Dump(int32 bodyIndex) +{ + b2Dump(" b2FixtureDef fd;\n"); + b2Dump(" fd.friction = %.9g;\n", m_friction); + b2Dump(" fd.restitution = %.9g;\n", m_restitution); + b2Dump(" fd.restitutionThreshold = %.9g;\n", m_restitutionThreshold); + b2Dump(" fd.density = %.9g;\n", m_density); + b2Dump(" fd.isSensor = bool(%d);\n", m_isSensor); + b2Dump(" fd.filter.categoryBits = uint16(%d);\n", m_filter.categoryBits); + b2Dump(" fd.filter.maskBits = uint16(%d);\n", m_filter.maskBits); + b2Dump(" fd.filter.groupIndex = int16(%d);\n", m_filter.groupIndex); + + switch (m_shape->m_type) + { + case b2Shape::e_circle: + { + b2CircleShape* s = (b2CircleShape*)m_shape; + b2Dump(" b2CircleShape shape;\n"); + b2Dump(" shape.m_radius = %.9g;\n", s->m_radius); + b2Dump(" shape.m_p.Set(%.9g, %.9g);\n", s->m_p.x, s->m_p.y); + } + break; + + case b2Shape::e_edge: + { + b2EdgeShape* s = (b2EdgeShape*)m_shape; + b2Dump(" b2EdgeShape shape;\n"); + b2Dump(" shape.m_radius = %.9g;\n", s->m_radius); + b2Dump(" shape.m_vertex0.Set(%.9g, %.9g);\n", s->m_vertex0.x, s->m_vertex0.y); + b2Dump(" shape.m_vertex1.Set(%.9g, %.9g);\n", s->m_vertex1.x, s->m_vertex1.y); + b2Dump(" shape.m_vertex2.Set(%.9g, %.9g);\n", s->m_vertex2.x, s->m_vertex2.y); + b2Dump(" shape.m_vertex3.Set(%.9g, %.9g);\n", s->m_vertex3.x, s->m_vertex3.y); + b2Dump(" shape.m_oneSided = bool(%d);\n", s->m_oneSided); + } + break; + + case b2Shape::e_polygon: + { + b2PolygonShape* s = (b2PolygonShape*)m_shape; + b2Dump(" b2PolygonShape shape;\n"); + b2Dump(" b2Vec2 vs[%d];\n", b2_maxPolygonVertices); + for (int32 i = 0; i < s->m_count; ++i) + { + b2Dump(" vs[%d].Set(%.9g, %.9g);\n", i, s->m_vertices[i].x, s->m_vertices[i].y); + } + b2Dump(" shape.Set(vs, %d);\n", s->m_count); + } + break; + + case b2Shape::e_chain: + { + b2ChainShape* s = (b2ChainShape*)m_shape; + b2Dump(" b2ChainShape shape;\n"); + b2Dump(" b2Vec2 vs[%d];\n", s->m_count); + for (int32 i = 0; i < s->m_count; ++i) + { + b2Dump(" vs[%d].Set(%.9g, %.9g);\n", i, s->m_vertices[i].x, s->m_vertices[i].y); + } + b2Dump(" shape.CreateChain(vs, %d);\n", s->m_count); + b2Dump(" shape.m_prevVertex.Set(%.9g, %.9g);\n", s->m_prevVertex.x, s->m_prevVertex.y); + b2Dump(" shape.m_nextVertex.Set(%.9g, %.9g);\n", s->m_nextVertex.x, s->m_nextVertex.y); + } + break; + + default: + return; + } + + b2Dump("\n"); + b2Dump(" fd.shape = &shape;\n"); + b2Dump("\n"); + b2Dump(" bodies[%d]->CreateFixture(&fd);\n", bodyIndex); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_friction_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_friction_joint.cpp new file mode 100644 index 0000000..d9d893a --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_friction_joint.cpp @@ -0,0 +1,255 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_friction_joint.h" +#include "box2d/b2_body.h" +#include "box2d/b2_time_step.h" + +// Point-to-point constraint +// Cdot = v2 - v1 +// = v2 + cross(w2, r2) - v1 - cross(w1, r1) +// J = [-I -r1_skew I r2_skew ] +// Identity used: +// w k % (rx i + ry j) = w * (-ry i + rx j) + +// Angle constraint +// Cdot = w2 - w1 +// J = [0 0 -1 0 0 1] +// K = invI1 + invI2 + +void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) +{ + bodyA = bA; + bodyB = bB; + localAnchorA = bodyA->GetLocalPoint(anchor); + localAnchorB = bodyB->GetLocalPoint(anchor); +} + +b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def) +: b2Joint(def) +{ + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + + m_linearImpulse.SetZero(); + m_angularImpulse = 0.0f; + + m_maxForce = def->maxForce; + m_maxTorque = def->maxTorque; +} + +void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + // Compute the effective mass matrix. + m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + // J = [-I -r1_skew I r2_skew] + // [ 0 -1 0 1] + // r_skew = [-ry; rx] + + // Matlab + // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] + // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] + // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + b2Mat22 K; + K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; + K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; + K.ey.x = K.ex.y; + K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; + + m_linearMass = K.GetInverse(); + + m_angularMass = iA + iB; + if (m_angularMass > 0.0f) + { + m_angularMass = 1.0f / m_angularMass; + } + + if (data.step.warmStarting) + { + // Scale impulses to support a variable time step. + m_linearImpulse *= data.step.dtRatio; + m_angularImpulse *= data.step.dtRatio; + + b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); + vA -= mA * P; + wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); + vB += mB * P; + wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); + } + else + { + m_linearImpulse.SetZero(); + m_angularImpulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + float h = data.step.dt; + + // Solve angular friction + { + float Cdot = wB - wA; + float impulse = -m_angularMass * Cdot; + + float oldImpulse = m_angularImpulse; + float maxImpulse = h * m_maxTorque; + m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); + impulse = m_angularImpulse - oldImpulse; + + wA -= iA * impulse; + wB += iB * impulse; + } + + // Solve linear friction + { + b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); + + b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); + b2Vec2 oldImpulse = m_linearImpulse; + m_linearImpulse += impulse; + + float maxImpulse = h * m_maxForce; + + if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) + { + m_linearImpulse.Normalize(); + m_linearImpulse *= maxImpulse; + } + + impulse = m_linearImpulse - oldImpulse; + + vA -= mA * impulse; + wA -= iA * b2Cross(m_rA, impulse); + + vB += mB * impulse; + wB += iB * b2Cross(m_rB, impulse); + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data) +{ + B2_NOT_USED(data); + + return true; +} + +b2Vec2 b2FrictionJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2FrictionJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2FrictionJoint::GetReactionForce(float inv_dt) const +{ + return inv_dt * m_linearImpulse; +} + +float b2FrictionJoint::GetReactionTorque(float inv_dt) const +{ + return inv_dt * m_angularImpulse; +} + +void b2FrictionJoint::SetMaxForce(float force) +{ + b2Assert(b2IsValid(force) && force >= 0.0f); + m_maxForce = force; +} + +float b2FrictionJoint::GetMaxForce() const +{ + return m_maxForce; +} + +void b2FrictionJoint::SetMaxTorque(float torque) +{ + b2Assert(b2IsValid(torque) && torque >= 0.0f); + m_maxTorque = torque; +} + +float b2FrictionJoint::GetMaxTorque() const +{ + return m_maxTorque; +} + +void b2FrictionJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2FrictionJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Dump(" jd.maxForce = %.9g;\n", m_maxForce); + b2Dump(" jd.maxTorque = %.9g;\n", m_maxTorque); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_gear_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_gear_joint.cpp new file mode 100644 index 0000000..ff36d3e --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_gear_joint.cpp @@ -0,0 +1,429 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_gear_joint.h" +#include "box2d/b2_revolute_joint.h" +#include "box2d/b2_prismatic_joint.h" +#include "box2d/b2_body.h" +#include "box2d/b2_time_step.h" + +// Gear Joint: +// C0 = (coordinate1 + ratio * coordinate2)_initial +// C = (coordinate1 + ratio * coordinate2) - C0 = 0 +// J = [J1 ratio * J2] +// K = J * invM * JT +// = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T +// +// Revolute: +// coordinate = rotation +// Cdot = angularVelocity +// J = [0 0 1] +// K = J * invM * JT = invI +// +// Prismatic: +// coordinate = dot(p - pg, ug) +// Cdot = dot(v + cross(w, r), ug) +// J = [ug cross(r, ug)] +// K = J * invM * JT = invMass + invI * cross(r, ug)^2 + +b2GearJoint::b2GearJoint(const b2GearJointDef* def) +: b2Joint(def) +{ + m_joint1 = def->joint1; + m_joint2 = def->joint2; + + m_typeA = m_joint1->GetType(); + m_typeB = m_joint2->GetType(); + + b2Assert(m_typeA == e_revoluteJoint || m_typeA == e_prismaticJoint); + b2Assert(m_typeB == e_revoluteJoint || m_typeB == e_prismaticJoint); + + float coordinateA, coordinateB; + + // TODO_ERIN there might be some problem with the joint edges in b2Joint. + + m_bodyC = m_joint1->GetBodyA(); + m_bodyA = m_joint1->GetBodyB(); + + // Body B on joint1 must be dynamic + b2Assert(m_bodyA->m_type == b2_dynamicBody); + + // Get geometry of joint1 + b2Transform xfA = m_bodyA->m_xf; + float aA = m_bodyA->m_sweep.a; + b2Transform xfC = m_bodyC->m_xf; + float aC = m_bodyC->m_sweep.a; + + if (m_typeA == e_revoluteJoint) + { + b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint1; + m_localAnchorC = revolute->m_localAnchorA; + m_localAnchorA = revolute->m_localAnchorB; + m_referenceAngleA = revolute->m_referenceAngle; + m_localAxisC.SetZero(); + + coordinateA = aA - aC - m_referenceAngleA; + } + else + { + b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint1; + m_localAnchorC = prismatic->m_localAnchorA; + m_localAnchorA = prismatic->m_localAnchorB; + m_referenceAngleA = prismatic->m_referenceAngle; + m_localAxisC = prismatic->m_localXAxisA; + + b2Vec2 pC = m_localAnchorC; + b2Vec2 pA = b2MulT(xfC.q, b2Mul(xfA.q, m_localAnchorA) + (xfA.p - xfC.p)); + coordinateA = b2Dot(pA - pC, m_localAxisC); + } + + m_bodyD = m_joint2->GetBodyA(); + m_bodyB = m_joint2->GetBodyB(); + + // Body B on joint2 must be dynamic + b2Assert(m_bodyB->m_type == b2_dynamicBody); + + // Get geometry of joint2 + b2Transform xfB = m_bodyB->m_xf; + float aB = m_bodyB->m_sweep.a; + b2Transform xfD = m_bodyD->m_xf; + float aD = m_bodyD->m_sweep.a; + + if (m_typeB == e_revoluteJoint) + { + b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint2; + m_localAnchorD = revolute->m_localAnchorA; + m_localAnchorB = revolute->m_localAnchorB; + m_referenceAngleB = revolute->m_referenceAngle; + m_localAxisD.SetZero(); + + coordinateB = aB - aD - m_referenceAngleB; + } + else + { + b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint2; + m_localAnchorD = prismatic->m_localAnchorA; + m_localAnchorB = prismatic->m_localAnchorB; + m_referenceAngleB = prismatic->m_referenceAngle; + m_localAxisD = prismatic->m_localXAxisA; + + b2Vec2 pD = m_localAnchorD; + b2Vec2 pB = b2MulT(xfD.q, b2Mul(xfB.q, m_localAnchorB) + (xfB.p - xfD.p)); + coordinateB = b2Dot(pB - pD, m_localAxisD); + } + + m_ratio = def->ratio; + + m_constant = coordinateA + m_ratio * coordinateB; + + m_impulse = 0.0f; +} + +void b2GearJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_indexC = m_bodyC->m_islandIndex; + m_indexD = m_bodyD->m_islandIndex; + m_lcA = m_bodyA->m_sweep.localCenter; + m_lcB = m_bodyB->m_sweep.localCenter; + m_lcC = m_bodyC->m_sweep.localCenter; + m_lcD = m_bodyD->m_sweep.localCenter; + m_mA = m_bodyA->m_invMass; + m_mB = m_bodyB->m_invMass; + m_mC = m_bodyC->m_invMass; + m_mD = m_bodyD->m_invMass; + m_iA = m_bodyA->m_invI; + m_iB = m_bodyB->m_invI; + m_iC = m_bodyC->m_invI; + m_iD = m_bodyD->m_invI; + + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + float aC = data.positions[m_indexC].a; + b2Vec2 vC = data.velocities[m_indexC].v; + float wC = data.velocities[m_indexC].w; + + float aD = data.positions[m_indexD].a; + b2Vec2 vD = data.velocities[m_indexD].v; + float wD = data.velocities[m_indexD].w; + + b2Rot qA(aA), qB(aB), qC(aC), qD(aD); + + m_mass = 0.0f; + + if (m_typeA == e_revoluteJoint) + { + m_JvAC.SetZero(); + m_JwA = 1.0f; + m_JwC = 1.0f; + m_mass += m_iA + m_iC; + } + else + { + b2Vec2 u = b2Mul(qC, m_localAxisC); + b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); + m_JvAC = u; + m_JwC = b2Cross(rC, u); + m_JwA = b2Cross(rA, u); + m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA; + } + + if (m_typeB == e_revoluteJoint) + { + m_JvBD.SetZero(); + m_JwB = m_ratio; + m_JwD = m_ratio; + m_mass += m_ratio * m_ratio * (m_iB + m_iD); + } + else + { + b2Vec2 u = b2Mul(qD, m_localAxisD); + b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); + m_JvBD = m_ratio * u; + m_JwD = m_ratio * b2Cross(rD, u); + m_JwB = m_ratio * b2Cross(rB, u); + m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB; + } + + // Compute effective mass. + m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f; + + if (data.step.warmStarting) + { + vA += (m_mA * m_impulse) * m_JvAC; + wA += m_iA * m_impulse * m_JwA; + vB += (m_mB * m_impulse) * m_JvBD; + wB += m_iB * m_impulse * m_JwB; + vC -= (m_mC * m_impulse) * m_JvAC; + wC -= m_iC * m_impulse * m_JwC; + vD -= (m_mD * m_impulse) * m_JvBD; + wD -= m_iD * m_impulse * m_JwD; + } + else + { + m_impulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; + data.velocities[m_indexC].v = vC; + data.velocities[m_indexC].w = wC; + data.velocities[m_indexD].v = vD; + data.velocities[m_indexD].w = wD; +} + +void b2GearJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + b2Vec2 vC = data.velocities[m_indexC].v; + float wC = data.velocities[m_indexC].w; + b2Vec2 vD = data.velocities[m_indexD].v; + float wD = data.velocities[m_indexD].w; + + float Cdot = b2Dot(m_JvAC, vA - vC) + b2Dot(m_JvBD, vB - vD); + Cdot += (m_JwA * wA - m_JwC * wC) + (m_JwB * wB - m_JwD * wD); + + float impulse = -m_mass * Cdot; + m_impulse += impulse; + + vA += (m_mA * impulse) * m_JvAC; + wA += m_iA * impulse * m_JwA; + vB += (m_mB * impulse) * m_JvBD; + wB += m_iB * impulse * m_JwB; + vC -= (m_mC * impulse) * m_JvAC; + wC -= m_iC * impulse * m_JwC; + vD -= (m_mD * impulse) * m_JvBD; + wD -= m_iD * impulse * m_JwD; + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; + data.velocities[m_indexC].v = vC; + data.velocities[m_indexC].w = wC; + data.velocities[m_indexD].v = vD; + data.velocities[m_indexD].w = wD; +} + +bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + b2Vec2 cC = data.positions[m_indexC].c; + float aC = data.positions[m_indexC].a; + b2Vec2 cD = data.positions[m_indexD].c; + float aD = data.positions[m_indexD].a; + + b2Rot qA(aA), qB(aB), qC(aC), qD(aD); + + float linearError = 0.0f; + + float coordinateA, coordinateB; + + b2Vec2 JvAC, JvBD; + float JwA, JwB, JwC, JwD; + float mass = 0.0f; + + if (m_typeA == e_revoluteJoint) + { + JvAC.SetZero(); + JwA = 1.0f; + JwC = 1.0f; + mass += m_iA + m_iC; + + coordinateA = aA - aC - m_referenceAngleA; + } + else + { + b2Vec2 u = b2Mul(qC, m_localAxisC); + b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); + JvAC = u; + JwC = b2Cross(rC, u); + JwA = b2Cross(rA, u); + mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA; + + b2Vec2 pC = m_localAnchorC - m_lcC; + b2Vec2 pA = b2MulT(qC, rA + (cA - cC)); + coordinateA = b2Dot(pA - pC, m_localAxisC); + } + + if (m_typeB == e_revoluteJoint) + { + JvBD.SetZero(); + JwB = m_ratio; + JwD = m_ratio; + mass += m_ratio * m_ratio * (m_iB + m_iD); + + coordinateB = aB - aD - m_referenceAngleB; + } + else + { + b2Vec2 u = b2Mul(qD, m_localAxisD); + b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); + JvBD = m_ratio * u; + JwD = m_ratio * b2Cross(rD, u); + JwB = m_ratio * b2Cross(rB, u); + mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB; + + b2Vec2 pD = m_localAnchorD - m_lcD; + b2Vec2 pB = b2MulT(qD, rB + (cB - cD)); + coordinateB = b2Dot(pB - pD, m_localAxisD); + } + + float C = (coordinateA + m_ratio * coordinateB) - m_constant; + + float impulse = 0.0f; + if (mass > 0.0f) + { + impulse = -C / mass; + } + + cA += m_mA * impulse * JvAC; + aA += m_iA * impulse * JwA; + cB += m_mB * impulse * JvBD; + aB += m_iB * impulse * JwB; + cC -= m_mC * impulse * JvAC; + aC -= m_iC * impulse * JwC; + cD -= m_mD * impulse * JvBD; + aD -= m_iD * impulse * JwD; + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + data.positions[m_indexC].c = cC; + data.positions[m_indexC].a = aC; + data.positions[m_indexD].c = cD; + data.positions[m_indexD].a = aD; + + // TODO_ERIN not implemented + return linearError < b2_linearSlop; +} + +b2Vec2 b2GearJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2GearJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2GearJoint::GetReactionForce(float inv_dt) const +{ + b2Vec2 P = m_impulse * m_JvAC; + return inv_dt * P; +} + +float b2GearJoint::GetReactionTorque(float inv_dt) const +{ + float L = m_impulse * m_JwA; + return inv_dt * L; +} + +void b2GearJoint::SetRatio(float ratio) +{ + b2Assert(b2IsValid(ratio)); + m_ratio = ratio; +} + +float b2GearJoint::GetRatio() const +{ + return m_ratio; +} + +void b2GearJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + int32 index1 = m_joint1->m_index; + int32 index2 = m_joint2->m_index; + + b2Dump(" b2GearJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.joint1 = joints[%d];\n", index1); + b2Dump(" jd.joint2 = joints[%d];\n", index2); + b2Dump(" jd.ratio = %.9g;\n", m_ratio); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_island.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_island.cpp new file mode 100644 index 0000000..48d89a8 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_island.cpp @@ -0,0 +1,544 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_contact.h" +#include "box2d/b2_distance.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_joint.h" +#include "box2d/b2_stack_allocator.h" +#include "box2d/b2_timer.h" +#include "box2d/b2_world.h" + +#include "b2_island.h" +#include "dynamics/b2_contact_solver.h" + +/* +Position Correction Notes +========================= +I tried the several algorithms for position correction of the 2D revolute joint. +I looked at these systems: +- simple pendulum (1m diameter sphere on massless 5m stick) with initial angular velocity of 100 rad/s. +- suspension bridge with 30 1m long planks of length 1m. +- multi-link chain with 30 1m long links. + +Here are the algorithms: + +Baumgarte - A fraction of the position error is added to the velocity error. There is no +separate position solver. + +Pseudo Velocities - After the velocity solver and position integration, +the position error, Jacobian, and effective mass are recomputed. Then +the velocity constraints are solved with pseudo velocities and a fraction +of the position error is added to the pseudo velocity error. The pseudo +velocities are initialized to zero and there is no warm-starting. After +the position solver, the pseudo velocities are added to the positions. +This is also called the First Order World method or the Position LCP method. + +Modified Nonlinear Gauss-Seidel (NGS) - Like Pseudo Velocities except the +position error is re-computed for each constraint and the positions are updated +after the constraint is solved. The radius vectors (aka Jacobians) are +re-computed too (otherwise the algorithm has horrible instability). The pseudo +velocity states are not needed because they are effectively zero at the beginning +of each iteration. Since we have the current position error, we allow the +iterations to terminate early if the error becomes smaller than b2_linearSlop. + +Full NGS or just NGS - Like Modified NGS except the effective mass are re-computed +each time a constraint is solved. + +Here are the results: +Baumgarte - this is the cheapest algorithm but it has some stability problems, +especially with the bridge. The chain links separate easily close to the root +and they jitter as they struggle to pull together. This is one of the most common +methods in the field. The big drawback is that the position correction artificially +affects the momentum, thus leading to instabilities and false bounce. I used a +bias factor of 0.2. A larger bias factor makes the bridge less stable, a smaller +factor makes joints and contacts more spongy. + +Pseudo Velocities - the is more stable than the Baumgarte method. The bridge is +stable. However, joints still separate with large angular velocities. Drag the +simple pendulum in a circle quickly and the joint will separate. The chain separates +easily and does not recover. I used a bias factor of 0.2. A larger value lead to +the bridge collapsing when a heavy cube drops on it. + +Modified NGS - this algorithm is better in some ways than Baumgarte and Pseudo +Velocities, but in other ways it is worse. The bridge and chain are much more +stable, but the simple pendulum goes unstable at high angular velocities. + +Full NGS - stable in all tests. The joints display good stiffness. The bridge +still sags, but this is better than infinite forces. + +Recommendations +Pseudo Velocities are not really worthwhile because the bridge and chain cannot +recover from joint separation. In other cases the benefit over Baumgarte is small. + +Modified NGS is not a robust method for the revolute joint due to the violent +instability seen in the simple pendulum. Perhaps it is viable with other constraint +types, especially scalar constraints where the effective mass is a scalar. + +This leaves Baumgarte and Full NGS. Baumgarte has small, but manageable instabilities +and is very fast. I don't think we can escape Baumgarte, especially in highly +demanding cases where high constraint fidelity is not needed. + +Full NGS is robust and easy on the eyes. I recommend this as an option for +higher fidelity simulation and certainly for suspension bridges and long chains. +Full NGS might be a good choice for ragdolls, especially motorized ragdolls where +joint separation can be problematic. The number of NGS iterations can be reduced +for better performance without harming robustness much. + +Each joint in a can be handled differently in the position solver. So I recommend +a system where the user can select the algorithm on a per joint basis. I would +probably default to the slower Full NGS and let the user select the faster +Baumgarte method in performance critical scenarios. +*/ + +/* +Cache Performance + +The Box2D solvers are dominated by cache misses. Data structures are designed +to increase the number of cache hits. Much of misses are due to random access +to body data. The constraint structures are iterated over linearly, which leads +to few cache misses. + +The bodies are not accessed during iteration. Instead read only data, such as +the mass values are stored with the constraints. The mutable data are the constraint +impulses and the bodies velocities/positions. The impulses are held inside the +constraint structures. The body velocities/positions are held in compact, temporary +arrays to increase the number of cache hits. Linear and angular velocity are +stored in a single array since multiple arrays lead to multiple misses. +*/ + +/* +2D Rotation + +R = [cos(theta) -sin(theta)] + [sin(theta) cos(theta) ] + +thetaDot = omega + +Let q1 = cos(theta), q2 = sin(theta). +R = [q1 -q2] + [q2 q1] + +q1Dot = -thetaDot * q2 +q2Dot = thetaDot * q1 + +q1_new = q1_old - dt * w * q2 +q2_new = q2_old + dt * w * q1 +then normalize. + +This might be faster than computing sin+cos. +However, we can compute sin+cos of the same angle fast. +*/ + +b2Island::b2Island( + int32 bodyCapacity, + int32 contactCapacity, + int32 jointCapacity, + b2StackAllocator* allocator, + b2ContactListener* listener) +{ + m_bodyCapacity = bodyCapacity; + m_contactCapacity = contactCapacity; + m_jointCapacity = jointCapacity; + m_bodyCount = 0; + m_contactCount = 0; + m_jointCount = 0; + + m_allocator = allocator; + m_listener = listener; + + m_bodies = (b2Body**)m_allocator->Allocate(bodyCapacity * sizeof(b2Body*)); + m_contacts = (b2Contact**)m_allocator->Allocate(contactCapacity * sizeof(b2Contact*)); + m_joints = (b2Joint**)m_allocator->Allocate(jointCapacity * sizeof(b2Joint*)); + + m_velocities = (b2Velocity*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Velocity)); + m_positions = (b2Position*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Position)); +} + +b2Island::~b2Island() +{ + // Warning: the order should reverse the constructor order. + m_allocator->Free(m_positions); + m_allocator->Free(m_velocities); + m_allocator->Free(m_joints); + m_allocator->Free(m_contacts); + m_allocator->Free(m_bodies); +} + +void b2Island::Solve(b2Profile* profile, const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep) +{ + b2Timer timer; + + float h = step.dt; + + // Integrate velocities and apply damping. Initialize the body state. + for (int32 i = 0; i < m_bodyCount; ++i) + { + b2Body* b = m_bodies[i]; + + b2Vec2 c = b->m_sweep.c; + float a = b->m_sweep.a; + b2Vec2 v = b->m_linearVelocity; + float w = b->m_angularVelocity; + + // Store positions for continuous collision. + b->m_sweep.c0 = b->m_sweep.c; + b->m_sweep.a0 = b->m_sweep.a; + + if (b->m_type == b2_dynamicBody) + { + // Integrate velocities. + v += h * b->m_invMass * (b->m_gravityScale * b->m_mass * gravity + b->m_force); + w += h * b->m_invI * b->m_torque; + + // Apply damping. + // ODE: dv/dt + c * v = 0 + // Solution: v(t) = v0 * exp(-c * t) + // Time step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt) + // v2 = exp(-c * dt) * v1 + // Pade approximation: + // v2 = v1 * 1 / (1 + c * dt) + v *= 1.0f / (1.0f + h * b->m_linearDamping); + w *= 1.0f / (1.0f + h * b->m_angularDamping); + } + + m_positions[i].c = c; + m_positions[i].a = a; + m_velocities[i].v = v; + m_velocities[i].w = w; + } + + timer.Reset(); + + // Solver data + b2SolverData solverData; + solverData.step = step; + solverData.positions = m_positions; + solverData.velocities = m_velocities; + + // Initialize velocity constraints. + b2ContactSolverDef contactSolverDef; + contactSolverDef.step = step; + contactSolverDef.contacts = m_contacts; + contactSolverDef.count = m_contactCount; + contactSolverDef.positions = m_positions; + contactSolverDef.velocities = m_velocities; + contactSolverDef.allocator = m_allocator; + + b2ContactSolver contactSolver(&contactSolverDef); + contactSolver.InitializeVelocityConstraints(); + + if (step.warmStarting) + { + contactSolver.WarmStart(); + } + + for (int32 i = 0; i < m_jointCount; ++i) + { + m_joints[i]->InitVelocityConstraints(solverData); + } + + profile->solveInit = timer.GetMilliseconds(); + + // Solve velocity constraints + timer.Reset(); + for (int32 i = 0; i < step.velocityIterations; ++i) + { + for (int32 j = 0; j < m_jointCount; ++j) + { + m_joints[j]->SolveVelocityConstraints(solverData); + } + + contactSolver.SolveVelocityConstraints(); + } + + // Store impulses for warm starting + contactSolver.StoreImpulses(); + profile->solveVelocity = timer.GetMilliseconds(); + + // Integrate positions + for (int32 i = 0; i < m_bodyCount; ++i) + { + b2Vec2 c = m_positions[i].c; + float a = m_positions[i].a; + b2Vec2 v = m_velocities[i].v; + float w = m_velocities[i].w; + + // Check for large velocities + b2Vec2 translation = h * v; + if (b2Dot(translation, translation) > b2_maxTranslationSquared) + { + float ratio = b2_maxTranslation / translation.Length(); + v *= ratio; + } + + float rotation = h * w; + if (rotation * rotation > b2_maxRotationSquared) + { + float ratio = b2_maxRotation / b2Abs(rotation); + w *= ratio; + } + + // Integrate + c += h * v; + a += h * w; + + m_positions[i].c = c; + m_positions[i].a = a; + m_velocities[i].v = v; + m_velocities[i].w = w; + } + + // Solve position constraints + timer.Reset(); + bool positionSolved = false; + for (int32 i = 0; i < step.positionIterations; ++i) + { + bool contactsOkay = contactSolver.SolvePositionConstraints(); + + bool jointsOkay = true; + for (int32 j = 0; j < m_jointCount; ++j) + { + bool jointOkay = m_joints[j]->SolvePositionConstraints(solverData); + jointsOkay = jointsOkay && jointOkay; + } + + if (contactsOkay && jointsOkay) + { + // Exit early if the position errors are small. + positionSolved = true; + break; + } + } + + // Copy state buffers back to the bodies + for (int32 i = 0; i < m_bodyCount; ++i) + { + b2Body* body = m_bodies[i]; + body->m_sweep.c = m_positions[i].c; + body->m_sweep.a = m_positions[i].a; + body->m_linearVelocity = m_velocities[i].v; + body->m_angularVelocity = m_velocities[i].w; + body->SynchronizeTransform(); + } + + profile->solvePosition = timer.GetMilliseconds(); + + Report(contactSolver.m_velocityConstraints); + + if (allowSleep) + { + float minSleepTime = b2_maxFloat; + + const float linTolSqr = b2_linearSleepTolerance * b2_linearSleepTolerance; + const float angTolSqr = b2_angularSleepTolerance * b2_angularSleepTolerance; + + for (int32 i = 0; i < m_bodyCount; ++i) + { + b2Body* b = m_bodies[i]; + if (b->GetType() == b2_staticBody) + { + continue; + } + + if ((b->m_flags & b2Body::e_autoSleepFlag) == 0 || + b->m_angularVelocity * b->m_angularVelocity > angTolSqr || + b2Dot(b->m_linearVelocity, b->m_linearVelocity) > linTolSqr) + { + b->m_sleepTime = 0.0f; + minSleepTime = 0.0f; + } + else + { + b->m_sleepTime += h; + minSleepTime = b2Min(minSleepTime, b->m_sleepTime); + } + } + + if (minSleepTime >= b2_timeToSleep && positionSolved) + { + for (int32 i = 0; i < m_bodyCount; ++i) + { + b2Body* b = m_bodies[i]; + b->SetAwake(false); + } + } + } +} + +void b2Island::SolveTOI(const b2TimeStep& subStep, int32 toiIndexA, int32 toiIndexB) +{ + b2Assert(toiIndexA < m_bodyCount); + b2Assert(toiIndexB < m_bodyCount); + + // Initialize the body state. + for (int32 i = 0; i < m_bodyCount; ++i) + { + b2Body* b = m_bodies[i]; + m_positions[i].c = b->m_sweep.c; + m_positions[i].a = b->m_sweep.a; + m_velocities[i].v = b->m_linearVelocity; + m_velocities[i].w = b->m_angularVelocity; + } + + b2ContactSolverDef contactSolverDef; + contactSolverDef.contacts = m_contacts; + contactSolverDef.count = m_contactCount; + contactSolverDef.allocator = m_allocator; + contactSolverDef.step = subStep; + contactSolverDef.positions = m_positions; + contactSolverDef.velocities = m_velocities; + b2ContactSolver contactSolver(&contactSolverDef); + + // Solve position constraints. + for (int32 i = 0; i < subStep.positionIterations; ++i) + { + bool contactsOkay = contactSolver.SolveTOIPositionConstraints(toiIndexA, toiIndexB); + if (contactsOkay) + { + break; + } + } + +#if 0 + // Is the new position really safe? + for (int32 i = 0; i < m_contactCount; ++i) + { + b2Contact* c = m_contacts[i]; + b2Fixture* fA = c->GetFixtureA(); + b2Fixture* fB = c->GetFixtureB(); + + b2Body* bA = fA->GetBody(); + b2Body* bB = fB->GetBody(); + + int32 indexA = c->GetChildIndexA(); + int32 indexB = c->GetChildIndexB(); + + b2DistanceInput input; + input.proxyA.Set(fA->GetShape(), indexA); + input.proxyB.Set(fB->GetShape(), indexB); + input.transformA = bA->GetTransform(); + input.transformB = bB->GetTransform(); + input.useRadii = false; + + b2DistanceOutput output; + b2SimplexCache cache; + cache.count = 0; + b2Distance(&output, &cache, &input); + + if (output.distance == 0 || cache.count == 3) + { + cache.count += 0; + } + } +#endif + + // Leap of faith to new safe state. + m_bodies[toiIndexA]->m_sweep.c0 = m_positions[toiIndexA].c; + m_bodies[toiIndexA]->m_sweep.a0 = m_positions[toiIndexA].a; + m_bodies[toiIndexB]->m_sweep.c0 = m_positions[toiIndexB].c; + m_bodies[toiIndexB]->m_sweep.a0 = m_positions[toiIndexB].a; + + // No warm starting is needed for TOI events because warm + // starting impulses were applied in the discrete solver. + contactSolver.InitializeVelocityConstraints(); + + // Solve velocity constraints. + for (int32 i = 0; i < subStep.velocityIterations; ++i) + { + contactSolver.SolveVelocityConstraints(); + } + + // Don't store the TOI contact forces for warm starting + // because they can be quite large. + + float h = subStep.dt; + + // Integrate positions + for (int32 i = 0; i < m_bodyCount; ++i) + { + b2Vec2 c = m_positions[i].c; + float a = m_positions[i].a; + b2Vec2 v = m_velocities[i].v; + float w = m_velocities[i].w; + + // Check for large velocities + b2Vec2 translation = h * v; + if (b2Dot(translation, translation) > b2_maxTranslationSquared) + { + float ratio = b2_maxTranslation / translation.Length(); + v *= ratio; + } + + float rotation = h * w; + if (rotation * rotation > b2_maxRotationSquared) + { + float ratio = b2_maxRotation / b2Abs(rotation); + w *= ratio; + } + + // Integrate + c += h * v; + a += h * w; + + m_positions[i].c = c; + m_positions[i].a = a; + m_velocities[i].v = v; + m_velocities[i].w = w; + + // Sync bodies + b2Body* body = m_bodies[i]; + body->m_sweep.c = c; + body->m_sweep.a = a; + body->m_linearVelocity = v; + body->m_angularVelocity = w; + body->SynchronizeTransform(); + } + + Report(contactSolver.m_velocityConstraints); +} + +void b2Island::Report(const b2ContactVelocityConstraint* constraints) +{ + if (m_listener == nullptr) + { + return; + } + + for (int32 i = 0; i < m_contactCount; ++i) + { + b2Contact* c = m_contacts[i]; + + const b2ContactVelocityConstraint* vc = constraints + i; + + b2ContactImpulse impulse; + impulse.count = vc->pointCount; + for (int32 j = 0; j < vc->pointCount; ++j) + { + impulse.normalImpulses[j] = vc->points[j].normalImpulse; + impulse.tangentImpulses[j] = vc->points[j].tangentImpulse; + } + + m_listener->PostSolve(c, &impulse); + } +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_island.h b/Client/ThirdParty/Box2D/src/dynamics/b2_island.h new file mode 100644 index 0000000..2e28a35 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_island.h @@ -0,0 +1,97 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_ISLAND_H +#define B2_ISLAND_H + +#include "box2d/b2_body.h" +#include "box2d/b2_math.h" +#include "box2d/b2_time_step.h" + +class b2Contact; +class b2Joint; +class b2StackAllocator; +class b2ContactListener; +struct b2ContactVelocityConstraint; +struct b2Profile; + +/// This is an internal class. +class b2Island +{ +public: + b2Island(int32 bodyCapacity, int32 contactCapacity, int32 jointCapacity, + b2StackAllocator* allocator, b2ContactListener* listener); + ~b2Island(); + + void Clear() + { + m_bodyCount = 0; + m_contactCount = 0; + m_jointCount = 0; + } + + void Solve(b2Profile* profile, const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep); + + void SolveTOI(const b2TimeStep& subStep, int32 toiIndexA, int32 toiIndexB); + + void Add(b2Body* body) + { + b2Assert(m_bodyCount < m_bodyCapacity); + body->m_islandIndex = m_bodyCount; + m_bodies[m_bodyCount] = body; + ++m_bodyCount; + } + + void Add(b2Contact* contact) + { + b2Assert(m_contactCount < m_contactCapacity); + m_contacts[m_contactCount++] = contact; + } + + void Add(b2Joint* joint) + { + b2Assert(m_jointCount < m_jointCapacity); + m_joints[m_jointCount++] = joint; + } + + void Report(const b2ContactVelocityConstraint* constraints); + + b2StackAllocator* m_allocator; + b2ContactListener* m_listener; + + b2Body** m_bodies; + b2Contact** m_contacts; + b2Joint** m_joints; + + b2Position* m_positions; + b2Velocity* m_velocities; + + int32 m_bodyCount; + int32 m_jointCount; + int32 m_contactCount; + + int32 m_bodyCapacity; + int32 m_contactCapacity; + int32 m_jointCapacity; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_joint.cpp new file mode 100644 index 0000000..41addbb --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_joint.cpp @@ -0,0 +1,301 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_body.h" +#include "box2d/b2_distance_joint.h" +#include "box2d/b2_draw.h" +#include "box2d/b2_friction_joint.h" +#include "box2d/b2_gear_joint.h" +#include "box2d/b2_motor_joint.h" +#include "box2d/b2_mouse_joint.h" +#include "box2d/b2_prismatic_joint.h" +#include "box2d/b2_pulley_joint.h" +#include "box2d/b2_revolute_joint.h" +#include "box2d/b2_weld_joint.h" +#include "box2d/b2_wheel_joint.h" +#include "box2d/b2_world.h" + +#include <new> + +void b2LinearStiffness(float& stiffness, float& damping, + float frequencyHertz, float dampingRatio, + const b2Body* bodyA, const b2Body* bodyB) +{ + float massA = bodyA->GetMass(); + float massB = bodyB->GetMass(); + float mass; + if (massA > 0.0f && massB > 0.0f) + { + mass = massA * massB / (massA + massB); + } + else if (massA > 0.0f) + { + mass = massA; + } + else + { + mass = massB; + } + + float omega = 2.0f * b2_pi * frequencyHertz; + stiffness = mass * omega * omega; + damping = 2.0f * mass * dampingRatio * omega; +} + +void b2AngularStiffness(float& stiffness, float& damping, + float frequencyHertz, float dampingRatio, + const b2Body* bodyA, const b2Body* bodyB) +{ + float IA = bodyA->GetInertia(); + float IB = bodyB->GetInertia(); + float I; + if (IA > 0.0f && IB > 0.0f) + { + I = IA * IB / (IA + IB); + } + else if (IA > 0.0f) + { + I = IA; + } + else + { + I = IB; + } + + float omega = 2.0f * b2_pi * frequencyHertz; + stiffness = I * omega * omega; + damping = 2.0f * I * dampingRatio * omega; +} + +b2Joint* b2Joint::Create(const b2JointDef* def, b2BlockAllocator* allocator) +{ + b2Joint* joint = nullptr; + + switch (def->type) + { + case e_distanceJoint: + { + void* mem = allocator->Allocate(sizeof(b2DistanceJoint)); + joint = new (mem) b2DistanceJoint(static_cast<const b2DistanceJointDef*>(def)); + } + break; + + case e_mouseJoint: + { + void* mem = allocator->Allocate(sizeof(b2MouseJoint)); + joint = new (mem) b2MouseJoint(static_cast<const b2MouseJointDef*>(def)); + } + break; + + case e_prismaticJoint: + { + void* mem = allocator->Allocate(sizeof(b2PrismaticJoint)); + joint = new (mem) b2PrismaticJoint(static_cast<const b2PrismaticJointDef*>(def)); + } + break; + + case e_revoluteJoint: + { + void* mem = allocator->Allocate(sizeof(b2RevoluteJoint)); + joint = new (mem) b2RevoluteJoint(static_cast<const b2RevoluteJointDef*>(def)); + } + break; + + case e_pulleyJoint: + { + void* mem = allocator->Allocate(sizeof(b2PulleyJoint)); + joint = new (mem) b2PulleyJoint(static_cast<const b2PulleyJointDef*>(def)); + } + break; + + case e_gearJoint: + { + void* mem = allocator->Allocate(sizeof(b2GearJoint)); + joint = new (mem) b2GearJoint(static_cast<const b2GearJointDef*>(def)); + } + break; + + case e_wheelJoint: + { + void* mem = allocator->Allocate(sizeof(b2WheelJoint)); + joint = new (mem) b2WheelJoint(static_cast<const b2WheelJointDef*>(def)); + } + break; + + case e_weldJoint: + { + void* mem = allocator->Allocate(sizeof(b2WeldJoint)); + joint = new (mem) b2WeldJoint(static_cast<const b2WeldJointDef*>(def)); + } + break; + + case e_frictionJoint: + { + void* mem = allocator->Allocate(sizeof(b2FrictionJoint)); + joint = new (mem) b2FrictionJoint(static_cast<const b2FrictionJointDef*>(def)); + } + break; + + case e_motorJoint: + { + void* mem = allocator->Allocate(sizeof(b2MotorJoint)); + joint = new (mem) b2MotorJoint(static_cast<const b2MotorJointDef*>(def)); + } + break; + + default: + b2Assert(false); + break; + } + + return joint; +} + +void b2Joint::Destroy(b2Joint* joint, b2BlockAllocator* allocator) +{ + joint->~b2Joint(); + switch (joint->m_type) + { + case e_distanceJoint: + allocator->Free(joint, sizeof(b2DistanceJoint)); + break; + + case e_mouseJoint: + allocator->Free(joint, sizeof(b2MouseJoint)); + break; + + case e_prismaticJoint: + allocator->Free(joint, sizeof(b2PrismaticJoint)); + break; + + case e_revoluteJoint: + allocator->Free(joint, sizeof(b2RevoluteJoint)); + break; + + case e_pulleyJoint: + allocator->Free(joint, sizeof(b2PulleyJoint)); + break; + + case e_gearJoint: + allocator->Free(joint, sizeof(b2GearJoint)); + break; + + case e_wheelJoint: + allocator->Free(joint, sizeof(b2WheelJoint)); + break; + + case e_weldJoint: + allocator->Free(joint, sizeof(b2WeldJoint)); + break; + + case e_frictionJoint: + allocator->Free(joint, sizeof(b2FrictionJoint)); + break; + + case e_motorJoint: + allocator->Free(joint, sizeof(b2MotorJoint)); + break; + + default: + b2Assert(false); + break; + } +} + +b2Joint::b2Joint(const b2JointDef* def) +{ + b2Assert(def->bodyA != def->bodyB); + + m_type = def->type; + m_prev = nullptr; + m_next = nullptr; + m_bodyA = def->bodyA; + m_bodyB = def->bodyB; + m_index = 0; + m_collideConnected = def->collideConnected; + m_islandFlag = false; + m_userData = def->userData; + + m_edgeA.joint = nullptr; + m_edgeA.other = nullptr; + m_edgeA.prev = nullptr; + m_edgeA.next = nullptr; + + m_edgeB.joint = nullptr; + m_edgeB.other = nullptr; + m_edgeB.prev = nullptr; + m_edgeB.next = nullptr; +} + +bool b2Joint::IsEnabled() const +{ + return m_bodyA->IsEnabled() && m_bodyB->IsEnabled(); +} + +void b2Joint::Draw(b2Draw* draw) const +{ + const b2Transform& xf1 = m_bodyA->GetTransform(); + const b2Transform& xf2 = m_bodyB->GetTransform(); + b2Vec2 x1 = xf1.p; + b2Vec2 x2 = xf2.p; + b2Vec2 p1 = GetAnchorA(); + b2Vec2 p2 = GetAnchorB(); + + b2Color color(0.5f, 0.8f, 0.8f); + + switch (m_type) + { + case e_distanceJoint: + draw->DrawSegment(p1, p2, color); + break; + + case e_pulleyJoint: + { + b2PulleyJoint* pulley = (b2PulleyJoint*)this; + b2Vec2 s1 = pulley->GetGroundAnchorA(); + b2Vec2 s2 = pulley->GetGroundAnchorB(); + draw->DrawSegment(s1, p1, color); + draw->DrawSegment(s2, p2, color); + draw->DrawSegment(s1, s2, color); + } + break; + + case e_mouseJoint: + { + b2Color c; + c.Set(0.0f, 1.0f, 0.0f); + draw->DrawPoint(p1, 4.0f, c); + draw->DrawPoint(p2, 4.0f, c); + + c.Set(0.8f, 0.8f, 0.8f); + draw->DrawSegment(p1, p2, c); + + } + break; + + default: + draw->DrawSegment(x1, p1, color); + draw->DrawSegment(p1, p2, color); + draw->DrawSegment(x2, p2, color); + } +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_motor_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_motor_joint.cpp new file mode 100644 index 0000000..6e0b075 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_motor_joint.cpp @@ -0,0 +1,311 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_motor_joint.h" +#include "box2d/b2_time_step.h" + +// Point-to-point constraint +// Cdot = v2 - v1 +// = v2 + cross(w2, r2) - v1 - cross(w1, r1) +// J = [-I -r1_skew I r2_skew ] +// Identity used: +// w k % (rx i + ry j) = w * (-ry i + rx j) +// +// r1 = offset - c1 +// r2 = -c2 + +// Angle constraint +// Cdot = w2 - w1 +// J = [0 0 -1 0 0 1] +// K = invI1 + invI2 + +void b2MotorJointDef::Initialize(b2Body* bA, b2Body* bB) +{ + bodyA = bA; + bodyB = bB; + b2Vec2 xB = bodyB->GetPosition(); + linearOffset = bodyA->GetLocalPoint(xB); + + float angleA = bodyA->GetAngle(); + float angleB = bodyB->GetAngle(); + angularOffset = angleB - angleA; +} + +b2MotorJoint::b2MotorJoint(const b2MotorJointDef* def) +: b2Joint(def) +{ + m_linearOffset = def->linearOffset; + m_angularOffset = def->angularOffset; + + m_linearImpulse.SetZero(); + m_angularImpulse = 0.0f; + + m_maxForce = def->maxForce; + m_maxTorque = def->maxTorque; + m_correctionFactor = def->correctionFactor; +} + +void b2MotorJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + // Compute the effective mass matrix. + m_rA = b2Mul(qA, m_linearOffset - m_localCenterA); + m_rB = b2Mul(qB, -m_localCenterB); + + // J = [-I -r1_skew I r2_skew] + // r_skew = [-ry; rx] + + // Matlab + // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] + // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] + // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + // Upper 2 by 2 of K for point to point + b2Mat22 K; + K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; + K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; + K.ey.x = K.ex.y; + K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; + + m_linearMass = K.GetInverse(); + + m_angularMass = iA + iB; + if (m_angularMass > 0.0f) + { + m_angularMass = 1.0f / m_angularMass; + } + + m_linearError = cB + m_rB - cA - m_rA; + m_angularError = aB - aA - m_angularOffset; + + if (data.step.warmStarting) + { + // Scale impulses to support a variable time step. + m_linearImpulse *= data.step.dtRatio; + m_angularImpulse *= data.step.dtRatio; + + b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); + vA -= mA * P; + wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); + vB += mB * P; + wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); + } + else + { + m_linearImpulse.SetZero(); + m_angularImpulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2MotorJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + float h = data.step.dt; + float inv_h = data.step.inv_dt; + + // Solve angular friction + { + float Cdot = wB - wA + inv_h * m_correctionFactor * m_angularError; + float impulse = -m_angularMass * Cdot; + + float oldImpulse = m_angularImpulse; + float maxImpulse = h * m_maxTorque; + m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); + impulse = m_angularImpulse - oldImpulse; + + wA -= iA * impulse; + wB += iB * impulse; + } + + // Solve linear friction + { + b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA) + inv_h * m_correctionFactor * m_linearError; + + b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); + b2Vec2 oldImpulse = m_linearImpulse; + m_linearImpulse += impulse; + + float maxImpulse = h * m_maxForce; + + if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) + { + m_linearImpulse.Normalize(); + m_linearImpulse *= maxImpulse; + } + + impulse = m_linearImpulse - oldImpulse; + + vA -= mA * impulse; + wA -= iA * b2Cross(m_rA, impulse); + + vB += mB * impulse; + wB += iB * b2Cross(m_rB, impulse); + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2MotorJoint::SolvePositionConstraints(const b2SolverData& data) +{ + B2_NOT_USED(data); + + return true; +} + +b2Vec2 b2MotorJoint::GetAnchorA() const +{ + return m_bodyA->GetPosition(); +} + +b2Vec2 b2MotorJoint::GetAnchorB() const +{ + return m_bodyB->GetPosition(); +} + +b2Vec2 b2MotorJoint::GetReactionForce(float inv_dt) const +{ + return inv_dt * m_linearImpulse; +} + +float b2MotorJoint::GetReactionTorque(float inv_dt) const +{ + return inv_dt * m_angularImpulse; +} + +void b2MotorJoint::SetMaxForce(float force) +{ + b2Assert(b2IsValid(force) && force >= 0.0f); + m_maxForce = force; +} + +float b2MotorJoint::GetMaxForce() const +{ + return m_maxForce; +} + +void b2MotorJoint::SetMaxTorque(float torque) +{ + b2Assert(b2IsValid(torque) && torque >= 0.0f); + m_maxTorque = torque; +} + +float b2MotorJoint::GetMaxTorque() const +{ + return m_maxTorque; +} + +void b2MotorJoint::SetCorrectionFactor(float factor) +{ + b2Assert(b2IsValid(factor) && 0.0f <= factor && factor <= 1.0f); + m_correctionFactor = factor; +} + +float b2MotorJoint::GetCorrectionFactor() const +{ + return m_correctionFactor; +} + +void b2MotorJoint::SetLinearOffset(const b2Vec2& linearOffset) +{ + if (linearOffset.x != m_linearOffset.x || linearOffset.y != m_linearOffset.y) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_linearOffset = linearOffset; + } +} + +const b2Vec2& b2MotorJoint::GetLinearOffset() const +{ + return m_linearOffset; +} + +void b2MotorJoint::SetAngularOffset(float angularOffset) +{ + if (angularOffset != m_angularOffset) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_angularOffset = angularOffset; + } +} + +float b2MotorJoint::GetAngularOffset() const +{ + return m_angularOffset; +} + +void b2MotorJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2MotorJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.linearOffset.Set(%.9g, %.9g);\n", m_linearOffset.x, m_linearOffset.y); + b2Dump(" jd.angularOffset = %.9g;\n", m_angularOffset); + b2Dump(" jd.maxForce = %.9g;\n", m_maxForce); + b2Dump(" jd.maxTorque = %.9g;\n", m_maxTorque); + b2Dump(" jd.correctionFactor = %.9g;\n", m_correctionFactor); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_mouse_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_mouse_joint.cpp new file mode 100644 index 0000000..1ea6dd4 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_mouse_joint.cpp @@ -0,0 +1,192 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_mouse_joint.h" +#include "box2d/b2_time_step.h" + +// p = attached point, m = mouse point +// C = p - m +// Cdot = v +// = v + cross(w, r) +// J = [I r_skew] +// Identity used: +// w k % (rx i + ry j) = w * (-ry i + rx j) + +b2MouseJoint::b2MouseJoint(const b2MouseJointDef* def) +: b2Joint(def) +{ + m_targetA = def->target; + m_localAnchorB = b2MulT(m_bodyB->GetTransform(), m_targetA); + m_maxForce = def->maxForce; + m_stiffness = def->stiffness; + m_damping = def->damping; + + m_impulse.SetZero(); + m_beta = 0.0f; + m_gamma = 0.0f; +} + +void b2MouseJoint::SetTarget(const b2Vec2& target) +{ + if (target != m_targetA) + { + m_bodyB->SetAwake(true); + m_targetA = target; + } +} + +const b2Vec2& b2MouseJoint::GetTarget() const +{ + return m_targetA; +} + +void b2MouseJoint::SetMaxForce(float force) +{ + m_maxForce = force; +} + +float b2MouseJoint::GetMaxForce() const +{ + return m_maxForce; +} + +void b2MouseJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexB = m_bodyB->m_islandIndex; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassB = m_bodyB->m_invMass; + m_invIB = m_bodyB->m_invI; + + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qB(aB); + + float mass = m_bodyB->GetMass(); + + float d = m_damping; + float k = m_stiffness; + + // magic formulas + // gamma has units of inverse mass. + // beta has units of inverse time. + float h = data.step.dt; + m_gamma = h * (d + h * k); + if (m_gamma != 0.0f) + { + m_gamma = 1.0f / m_gamma; + } + m_beta = h * k * m_gamma; + + // Compute the effective mass matrix. + m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + // K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)] + // = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y] + // [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x] + b2Mat22 K; + K.ex.x = m_invMassB + m_invIB * m_rB.y * m_rB.y + m_gamma; + K.ex.y = -m_invIB * m_rB.x * m_rB.y; + K.ey.x = K.ex.y; + K.ey.y = m_invMassB + m_invIB * m_rB.x * m_rB.x + m_gamma; + + m_mass = K.GetInverse(); + + m_C = cB + m_rB - m_targetA; + m_C *= m_beta; + + // Cheat with some damping + wB *= 0.98f; + + if (data.step.warmStarting) + { + m_impulse *= data.step.dtRatio; + vB += m_invMassB * m_impulse; + wB += m_invIB * b2Cross(m_rB, m_impulse); + } + else + { + m_impulse.SetZero(); + } + + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2MouseJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + // Cdot = v + cross(w, r) + b2Vec2 Cdot = vB + b2Cross(wB, m_rB); + b2Vec2 impulse = b2Mul(m_mass, -(Cdot + m_C + m_gamma * m_impulse)); + + b2Vec2 oldImpulse = m_impulse; + m_impulse += impulse; + float maxImpulse = data.step.dt * m_maxForce; + if (m_impulse.LengthSquared() > maxImpulse * maxImpulse) + { + m_impulse *= maxImpulse / m_impulse.Length(); + } + impulse = m_impulse - oldImpulse; + + vB += m_invMassB * impulse; + wB += m_invIB * b2Cross(m_rB, impulse); + + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2MouseJoint::SolvePositionConstraints(const b2SolverData& data) +{ + B2_NOT_USED(data); + return true; +} + +b2Vec2 b2MouseJoint::GetAnchorA() const +{ + return m_targetA; +} + +b2Vec2 b2MouseJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2MouseJoint::GetReactionForce(float inv_dt) const +{ + return inv_dt * m_impulse; +} + +float b2MouseJoint::GetReactionTorque(float inv_dt) const +{ + return inv_dt * 0.0f; +} + +void b2MouseJoint::ShiftOrigin(const b2Vec2& newOrigin) +{ + m_targetA -= newOrigin; +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_circle_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_circle_contact.cpp new file mode 100644 index 0000000..e4f34f5 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_circle_contact.cpp @@ -0,0 +1,54 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_polygon_circle_contact.h" + +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_fixture.h" + +#include <new> + +b2Contact* b2PolygonAndCircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) +{ + void* mem = allocator->Allocate(sizeof(b2PolygonAndCircleContact)); + return new (mem) b2PolygonAndCircleContact(fixtureA, fixtureB); +} + +void b2PolygonAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + ((b2PolygonAndCircleContact*)contact)->~b2PolygonAndCircleContact(); + allocator->Free(contact, sizeof(b2PolygonAndCircleContact)); +} + +b2PolygonAndCircleContact::b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB) +: b2Contact(fixtureA, 0, fixtureB, 0) +{ + b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon); + b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); +} + +void b2PolygonAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) +{ + b2CollidePolygonAndCircle( manifold, + (b2PolygonShape*)m_fixtureA->GetShape(), xfA, + (b2CircleShape*)m_fixtureB->GetShape(), xfB); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_circle_contact.h b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_circle_contact.h new file mode 100644 index 0000000..6ae5425 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_circle_contact.h @@ -0,0 +1,42 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_POLYGON_AND_CIRCLE_CONTACT_H +#define B2_POLYGON_AND_CIRCLE_CONTACT_H + +#include "box2d/b2_contact.h" + +class b2BlockAllocator; + +class b2PolygonAndCircleContact : public b2Contact +{ +public: + static b2Contact* Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); + static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); + + b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB); + ~b2PolygonAndCircleContact() {} + + void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_contact.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_contact.cpp new file mode 100644 index 0000000..e92a9e8 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_contact.cpp @@ -0,0 +1,57 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_polygon_contact.h" + +#include "box2d/b2_block_allocator.h" +#include "box2d/b2_body.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_time_of_impact.h" +#include "box2d/b2_world_callbacks.h" + +#include <new> + +b2Contact* b2PolygonContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) +{ + void* mem = allocator->Allocate(sizeof(b2PolygonContact)); + return new (mem) b2PolygonContact(fixtureA, fixtureB); +} + +void b2PolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) +{ + ((b2PolygonContact*)contact)->~b2PolygonContact(); + allocator->Free(contact, sizeof(b2PolygonContact)); +} + +b2PolygonContact::b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB) + : b2Contact(fixtureA, 0, fixtureB, 0) +{ + b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon); + b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon); +} + +void b2PolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) +{ + b2CollidePolygons( manifold, + (b2PolygonShape*)m_fixtureA->GetShape(), xfA, + (b2PolygonShape*)m_fixtureB->GetShape(), xfB); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_contact.h b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_contact.h new file mode 100644 index 0000000..0516cb0 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_polygon_contact.h @@ -0,0 +1,43 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#ifndef B2_POLYGON_CONTACT_H +#define B2_POLYGON_CONTACT_H + +#include "box2d/b2_contact.h" + +class b2BlockAllocator; + +class b2PolygonContact : public b2Contact +{ +public: + static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, + b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); + static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); + + b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB); + ~b2PolygonContact() {} + + void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override; +}; + +#endif diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp new file mode 100644 index 0000000..00e7769 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_prismatic_joint.cpp @@ -0,0 +1,643 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_draw.h" +#include "box2d/b2_prismatic_joint.h" +#include "box2d/b2_time_step.h" + +// Linear constraint (point-to-line) +// d = p2 - p1 = x2 + r2 - x1 - r1 +// C = dot(perp, d) +// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1)) +// = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2) +// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)] +// +// Angular constraint +// C = a2 - a1 + a_initial +// Cdot = w2 - w1 +// J = [0 0 -1 0 0 1] +// +// K = J * invM * JT +// +// J = [-a -s1 a s2] +// [0 -1 0 1] +// a = perp +// s1 = cross(d + r1, a) = cross(p2 - x1, a) +// s2 = cross(r2, a) = cross(p2 - x2, a) + +// Motor/Limit linear constraint +// C = dot(ax1, d) +// Cdot = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2) +// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)] + +// Predictive limit is applied even when the limit is not active. +// Prevents a constraint speed that can lead to a constraint error in one time step. +// Want C2 = C1 + h * Cdot >= 0 +// Or: +// Cdot + C1/h >= 0 +// I do not apply a negative constraint error because that is handled in position correction. +// So: +// Cdot + max(C1, 0)/h >= 0 + +// Block Solver +// We develop a block solver that includes the angular and linear constraints. This makes the limit stiffer. +// +// The Jacobian has 2 rows: +// J = [-uT -s1 uT s2] // linear +// [0 -1 0 1] // angular +// +// u = perp +// s1 = cross(d + r1, u), s2 = cross(r2, u) +// a1 = cross(d + r1, v), a2 = cross(r2, v) + +void b2PrismaticJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) +{ + bodyA = bA; + bodyB = bB; + localAnchorA = bodyA->GetLocalPoint(anchor); + localAnchorB = bodyB->GetLocalPoint(anchor); + localAxisA = bodyA->GetLocalVector(axis); + referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); +} + +b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def) +: b2Joint(def) +{ + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + m_localXAxisA = def->localAxisA; + m_localXAxisA.Normalize(); + m_localYAxisA = b2Cross(1.0f, m_localXAxisA); + m_referenceAngle = def->referenceAngle; + + m_impulse.SetZero(); + m_axialMass = 0.0f; + m_motorImpulse = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + + m_lowerTranslation = def->lowerTranslation; + m_upperTranslation = def->upperTranslation; + + b2Assert(m_lowerTranslation <= m_upperTranslation); + + m_maxMotorForce = def->maxMotorForce; + m_motorSpeed = def->motorSpeed; + m_enableLimit = def->enableLimit; + m_enableMotor = def->enableMotor; + + m_translation = 0.0f; + m_axis.SetZero(); + m_perp.SetZero(); +} + +void b2PrismaticJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + // Compute the effective masses. + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + b2Vec2 d = (cB - cA) + rB - rA; + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + // Compute motor Jacobian and effective mass. + { + m_axis = b2Mul(qA, m_localXAxisA); + m_a1 = b2Cross(d + rA, m_axis); + m_a2 = b2Cross(rB, m_axis); + + m_axialMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; + if (m_axialMass > 0.0f) + { + m_axialMass = 1.0f / m_axialMass; + } + } + + // Prismatic constraint. + { + m_perp = b2Mul(qA, m_localYAxisA); + + m_s1 = b2Cross(d + rA, m_perp); + m_s2 = b2Cross(rB, m_perp); + + float k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2; + float k12 = iA * m_s1 + iB * m_s2; + float k22 = iA + iB; + if (k22 == 0.0f) + { + // For bodies with fixed rotation. + k22 = 1.0f; + } + + m_K.ex.Set(k11, k12); + m_K.ey.Set(k12, k22); + } + + if (m_enableLimit) + { + m_translation = b2Dot(m_axis, d); + } + else + { + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } + + if (m_enableMotor == false) + { + m_motorImpulse = 0.0f; + } + + if (data.step.warmStarting) + { + // Account for variable time step. + m_impulse *= data.step.dtRatio; + m_motorImpulse *= data.step.dtRatio; + m_lowerImpulse *= data.step.dtRatio; + m_upperImpulse *= data.step.dtRatio; + + float axialImpulse = m_motorImpulse + m_lowerImpulse - m_upperImpulse; + b2Vec2 P = m_impulse.x * m_perp + axialImpulse * m_axis; + float LA = m_impulse.x * m_s1 + m_impulse.y + axialImpulse * m_a1; + float LB = m_impulse.x * m_s2 + m_impulse.y + axialImpulse * m_a2; + + vA -= mA * P; + wA -= iA * LA; + + vB += mB * P; + wB += iB * LB; + } + else + { + m_impulse.SetZero(); + m_motorImpulse = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2PrismaticJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + // Solve linear motor constraint + if (m_enableMotor) + { + float Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; + float impulse = m_axialMass * (m_motorSpeed - Cdot); + float oldImpulse = m_motorImpulse; + float maxImpulse = data.step.dt * m_maxMotorForce; + m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); + impulse = m_motorImpulse - oldImpulse; + + b2Vec2 P = impulse * m_axis; + float LA = impulse * m_a1; + float LB = impulse * m_a2; + + vA -= mA * P; + wA -= iA * LA; + vB += mB * P; + wB += iB * LB; + } + + if (m_enableLimit) + { + // Lower limit + { + float C = m_translation - m_lowerTranslation; + float Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; + float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); + float oldImpulse = m_lowerImpulse; + m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f); + impulse = m_lowerImpulse - oldImpulse; + + b2Vec2 P = impulse * m_axis; + float LA = impulse * m_a1; + float LB = impulse * m_a2; + + vA -= mA * P; + wA -= iA * LA; + vB += mB * P; + wB += iB * LB; + } + + // Upper limit + // Note: signs are flipped to keep C positive when the constraint is satisfied. + // This also keeps the impulse positive when the limit is active. + { + float C = m_upperTranslation - m_translation; + float Cdot = b2Dot(m_axis, vA - vB) + m_a1 * wA - m_a2 * wB; + float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); + float oldImpulse = m_upperImpulse; + m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f); + impulse = m_upperImpulse - oldImpulse; + + b2Vec2 P = impulse * m_axis; + float LA = impulse * m_a1; + float LB = impulse * m_a2; + + vA += mA * P; + wA += iA * LA; + vB -= mB * P; + wB -= iB * LB; + } + } + + // Solve the prismatic constraint in block form. + { + b2Vec2 Cdot; + Cdot.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA; + Cdot.y = wB - wA; + + b2Vec2 df = m_K.Solve(-Cdot); + m_impulse += df; + + b2Vec2 P = df.x * m_perp; + float LA = df.x * m_s1 + df.y; + float LB = df.x * m_s2 + df.y; + + vA -= mA * P; + wA -= iA * LA; + + vB += mB * P; + wB += iB * LB; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +// A velocity based solver computes reaction forces(impulses) using the velocity constraint solver.Under this context, +// the position solver is not there to resolve forces.It is only there to cope with integration error. +// +// Therefore, the pseudo impulses in the position solver do not have any physical meaning.Thus it is okay if they suck. +// +// We could take the active state from the velocity solver.However, the joint might push past the limit when the velocity +// solver indicates the limit is inactive. +bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + + b2Rot qA(aA), qB(aB); + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + // Compute fresh Jacobians + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + b2Vec2 d = cB + rB - cA - rA; + + b2Vec2 axis = b2Mul(qA, m_localXAxisA); + float a1 = b2Cross(d + rA, axis); + float a2 = b2Cross(rB, axis); + b2Vec2 perp = b2Mul(qA, m_localYAxisA); + + float s1 = b2Cross(d + rA, perp); + float s2 = b2Cross(rB, perp); + + b2Vec3 impulse; + b2Vec2 C1; + C1.x = b2Dot(perp, d); + C1.y = aB - aA - m_referenceAngle; + + float linearError = b2Abs(C1.x); + float angularError = b2Abs(C1.y); + + bool active = false; + float C2 = 0.0f; + if (m_enableLimit) + { + float translation = b2Dot(axis, d); + if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) + { + C2 = translation; + linearError = b2Max(linearError, b2Abs(translation)); + active = true; + } + else if (translation <= m_lowerTranslation) + { + C2 = b2Min(translation - m_lowerTranslation, 0.0f); + linearError = b2Max(linearError, m_lowerTranslation - translation); + active = true; + } + else if (translation >= m_upperTranslation) + { + C2 = b2Max(translation - m_upperTranslation, 0.0f); + linearError = b2Max(linearError, translation - m_upperTranslation); + active = true; + } + } + + if (active) + { + float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; + float k12 = iA * s1 + iB * s2; + float k13 = iA * s1 * a1 + iB * s2 * a2; + float k22 = iA + iB; + if (k22 == 0.0f) + { + // For fixed rotation + k22 = 1.0f; + } + float k23 = iA * a1 + iB * a2; + float k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2; + + b2Mat33 K; + K.ex.Set(k11, k12, k13); + K.ey.Set(k12, k22, k23); + K.ez.Set(k13, k23, k33); + + b2Vec3 C; + C.x = C1.x; + C.y = C1.y; + C.z = C2; + + impulse = K.Solve33(-C); + } + else + { + float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; + float k12 = iA * s1 + iB * s2; + float k22 = iA + iB; + if (k22 == 0.0f) + { + k22 = 1.0f; + } + + b2Mat22 K; + K.ex.Set(k11, k12); + K.ey.Set(k12, k22); + + b2Vec2 impulse1 = K.Solve(-C1); + impulse.x = impulse1.x; + impulse.y = impulse1.y; + impulse.z = 0.0f; + } + + b2Vec2 P = impulse.x * perp + impulse.z * axis; + float LA = impulse.x * s1 + impulse.y + impulse.z * a1; + float LB = impulse.x * s2 + impulse.y + impulse.z * a2; + + cA -= mA * P; + aA -= iA * LA; + cB += mB * P; + aB += iB * LB; + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + + return linearError <= b2_linearSlop && angularError <= b2_angularSlop; +} + +b2Vec2 b2PrismaticJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2PrismaticJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2PrismaticJoint::GetReactionForce(float inv_dt) const +{ + return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_lowerImpulse - m_upperImpulse) * m_axis); +} + +float b2PrismaticJoint::GetReactionTorque(float inv_dt) const +{ + return inv_dt * m_impulse.y; +} + +float b2PrismaticJoint::GetJointTranslation() const +{ + b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA); + b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB); + b2Vec2 d = pB - pA; + b2Vec2 axis = m_bodyA->GetWorldVector(m_localXAxisA); + + float translation = b2Dot(d, axis); + return translation; +} + +float b2PrismaticJoint::GetJointSpeed() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + + b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter); + b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter); + b2Vec2 p1 = bA->m_sweep.c + rA; + b2Vec2 p2 = bB->m_sweep.c + rB; + b2Vec2 d = p2 - p1; + b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA); + + b2Vec2 vA = bA->m_linearVelocity; + b2Vec2 vB = bB->m_linearVelocity; + float wA = bA->m_angularVelocity; + float wB = bB->m_angularVelocity; + + float speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA)); + return speed; +} + +bool b2PrismaticJoint::IsLimitEnabled() const +{ + return m_enableLimit; +} + +void b2PrismaticJoint::EnableLimit(bool flag) +{ + if (flag != m_enableLimit) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableLimit = flag; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } +} + +float b2PrismaticJoint::GetLowerLimit() const +{ + return m_lowerTranslation; +} + +float b2PrismaticJoint::GetUpperLimit() const +{ + return m_upperTranslation; +} + +void b2PrismaticJoint::SetLimits(float lower, float upper) +{ + b2Assert(lower <= upper); + if (lower != m_lowerTranslation || upper != m_upperTranslation) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_lowerTranslation = lower; + m_upperTranslation = upper; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } +} + +bool b2PrismaticJoint::IsMotorEnabled() const +{ + return m_enableMotor; +} + +void b2PrismaticJoint::EnableMotor(bool flag) +{ + if (flag != m_enableMotor) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableMotor = flag; + } +} + +void b2PrismaticJoint::SetMotorSpeed(float speed) +{ + if (speed != m_motorSpeed) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_motorSpeed = speed; + } +} + +void b2PrismaticJoint::SetMaxMotorForce(float force) +{ + if (force != m_maxMotorForce) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_maxMotorForce = force; + } +} + +float b2PrismaticJoint::GetMotorForce(float inv_dt) const +{ + return inv_dt * m_motorImpulse; +} + +void b2PrismaticJoint::Dump() +{ + // FLT_DECIMAL_DIG == 9 + + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2PrismaticJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Dump(" jd.localAxisA.Set(%.9g, %.9g);\n", m_localXAxisA.x, m_localXAxisA.y); + b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle); + b2Dump(" jd.enableLimit = bool(%d);\n", m_enableLimit); + b2Dump(" jd.lowerTranslation = %.9g;\n", m_lowerTranslation); + b2Dump(" jd.upperTranslation = %.9g;\n", m_upperTranslation); + b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor); + b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed); + b2Dump(" jd.maxMotorForce = %.9g;\n", m_maxMotorForce); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} + +void b2PrismaticJoint::Draw(b2Draw* draw) const +{ + const b2Transform& xfA = m_bodyA->GetTransform(); + const b2Transform& xfB = m_bodyB->GetTransform(); + b2Vec2 pA = b2Mul(xfA, m_localAnchorA); + b2Vec2 pB = b2Mul(xfB, m_localAnchorB); + + b2Vec2 axis = b2Mul(xfA.q, m_localXAxisA); + + b2Color c1(0.7f, 0.7f, 0.7f); + b2Color c2(0.3f, 0.9f, 0.3f); + b2Color c3(0.9f, 0.3f, 0.3f); + b2Color c4(0.3f, 0.3f, 0.9f); + b2Color c5(0.4f, 0.4f, 0.4f); + + draw->DrawSegment(pA, pB, c5); + + if (m_enableLimit) + { + b2Vec2 lower = pA + m_lowerTranslation * axis; + b2Vec2 upper = pA + m_upperTranslation * axis; + b2Vec2 perp = b2Mul(xfA.q, m_localYAxisA); + draw->DrawSegment(lower, upper, c1); + draw->DrawSegment(lower - 0.5f * perp, lower + 0.5f * perp, c2); + draw->DrawSegment(upper - 0.5f * perp, upper + 0.5f * perp, c3); + } + else + { + draw->DrawSegment(pA - 1.0f * axis, pA + 1.0f * axis, c1); + } + + draw->DrawPoint(pA, 5.0f, c1); + draw->DrawPoint(pB, 5.0f, c4); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_pulley_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_pulley_joint.cpp new file mode 100644 index 0000000..099e57e --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_pulley_joint.cpp @@ -0,0 +1,352 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_pulley_joint.h" +#include "box2d/b2_time_step.h" + +// Pulley: +// length1 = norm(p1 - s1) +// length2 = norm(p2 - s2) +// C0 = (length1 + ratio * length2)_initial +// C = C0 - (length1 + ratio * length2) +// u1 = (p1 - s1) / norm(p1 - s1) +// u2 = (p2 - s2) / norm(p2 - s2) +// Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2)) +// J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)] +// K = J * invM * JT +// = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2) + +void b2PulleyJointDef::Initialize(b2Body* bA, b2Body* bB, + const b2Vec2& groundA, const b2Vec2& groundB, + const b2Vec2& anchorA, const b2Vec2& anchorB, + float r) +{ + bodyA = bA; + bodyB = bB; + groundAnchorA = groundA; + groundAnchorB = groundB; + localAnchorA = bodyA->GetLocalPoint(anchorA); + localAnchorB = bodyB->GetLocalPoint(anchorB); + b2Vec2 dA = anchorA - groundA; + lengthA = dA.Length(); + b2Vec2 dB = anchorB - groundB; + lengthB = dB.Length(); + ratio = r; + b2Assert(ratio > b2_epsilon); +} + +b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def) +: b2Joint(def) +{ + m_groundAnchorA = def->groundAnchorA; + m_groundAnchorB = def->groundAnchorB; + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + + m_lengthA = def->lengthA; + m_lengthB = def->lengthB; + + b2Assert(def->ratio != 0.0f); + m_ratio = def->ratio; + + m_constant = def->lengthA + m_ratio * def->lengthB; + + m_impulse = 0.0f; +} + +void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + // Get the pulley axes. + m_uA = cA + m_rA - m_groundAnchorA; + m_uB = cB + m_rB - m_groundAnchorB; + + float lengthA = m_uA.Length(); + float lengthB = m_uB.Length(); + + if (lengthA > 10.0f * b2_linearSlop) + { + m_uA *= 1.0f / lengthA; + } + else + { + m_uA.SetZero(); + } + + if (lengthB > 10.0f * b2_linearSlop) + { + m_uB *= 1.0f / lengthB; + } + else + { + m_uB.SetZero(); + } + + // Compute effective mass. + float ruA = b2Cross(m_rA, m_uA); + float ruB = b2Cross(m_rB, m_uB); + + float mA = m_invMassA + m_invIA * ruA * ruA; + float mB = m_invMassB + m_invIB * ruB * ruB; + + m_mass = mA + m_ratio * m_ratio * mB; + + if (m_mass > 0.0f) + { + m_mass = 1.0f / m_mass; + } + + if (data.step.warmStarting) + { + // Scale impulses to support variable time steps. + m_impulse *= data.step.dtRatio; + + // Warm starting. + b2Vec2 PA = -(m_impulse) * m_uA; + b2Vec2 PB = (-m_ratio * m_impulse) * m_uB; + + vA += m_invMassA * PA; + wA += m_invIA * b2Cross(m_rA, PA); + vB += m_invMassB * PB; + wB += m_invIB * b2Cross(m_rB, PB); + } + else + { + m_impulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2PulleyJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Vec2 vpA = vA + b2Cross(wA, m_rA); + b2Vec2 vpB = vB + b2Cross(wB, m_rB); + + float Cdot = -b2Dot(m_uA, vpA) - m_ratio * b2Dot(m_uB, vpB); + float impulse = -m_mass * Cdot; + m_impulse += impulse; + + b2Vec2 PA = -impulse * m_uA; + b2Vec2 PB = -m_ratio * impulse * m_uB; + vA += m_invMassA * PA; + wA += m_invIA * b2Cross(m_rA, PA); + vB += m_invMassB * PB; + wB += m_invIB * b2Cross(m_rB, PB); + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2PulleyJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + + b2Rot qA(aA), qB(aB); + + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + // Get the pulley axes. + b2Vec2 uA = cA + rA - m_groundAnchorA; + b2Vec2 uB = cB + rB - m_groundAnchorB; + + float lengthA = uA.Length(); + float lengthB = uB.Length(); + + if (lengthA > 10.0f * b2_linearSlop) + { + uA *= 1.0f / lengthA; + } + else + { + uA.SetZero(); + } + + if (lengthB > 10.0f * b2_linearSlop) + { + uB *= 1.0f / lengthB; + } + else + { + uB.SetZero(); + } + + // Compute effective mass. + float ruA = b2Cross(rA, uA); + float ruB = b2Cross(rB, uB); + + float mA = m_invMassA + m_invIA * ruA * ruA; + float mB = m_invMassB + m_invIB * ruB * ruB; + + float mass = mA + m_ratio * m_ratio * mB; + + if (mass > 0.0f) + { + mass = 1.0f / mass; + } + + float C = m_constant - lengthA - m_ratio * lengthB; + float linearError = b2Abs(C); + + float impulse = -mass * C; + + b2Vec2 PA = -impulse * uA; + b2Vec2 PB = -m_ratio * impulse * uB; + + cA += m_invMassA * PA; + aA += m_invIA * b2Cross(rA, PA); + cB += m_invMassB * PB; + aB += m_invIB * b2Cross(rB, PB); + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + + return linearError < b2_linearSlop; +} + +b2Vec2 b2PulleyJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2PulleyJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2PulleyJoint::GetReactionForce(float inv_dt) const +{ + b2Vec2 P = m_impulse * m_uB; + return inv_dt * P; +} + +float b2PulleyJoint::GetReactionTorque(float inv_dt) const +{ + B2_NOT_USED(inv_dt); + return 0.0f; +} + +b2Vec2 b2PulleyJoint::GetGroundAnchorA() const +{ + return m_groundAnchorA; +} + +b2Vec2 b2PulleyJoint::GetGroundAnchorB() const +{ + return m_groundAnchorB; +} + +float b2PulleyJoint::GetLengthA() const +{ + return m_lengthA; +} + +float b2PulleyJoint::GetLengthB() const +{ + return m_lengthB; +} + +float b2PulleyJoint::GetRatio() const +{ + return m_ratio; +} + +float b2PulleyJoint::GetCurrentLengthA() const +{ + b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchorA); + b2Vec2 s = m_groundAnchorA; + b2Vec2 d = p - s; + return d.Length(); +} + +float b2PulleyJoint::GetCurrentLengthB() const +{ + b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchorB); + b2Vec2 s = m_groundAnchorB; + b2Vec2 d = p - s; + return d.Length(); +} + +void b2PulleyJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2PulleyJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.groundAnchorA.Set(%.9g, %.9g);\n", m_groundAnchorA.x, m_groundAnchorA.y); + b2Dump(" jd.groundAnchorB.Set(%.9g, %.9g);\n", m_groundAnchorB.x, m_groundAnchorB.y); + b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Dump(" jd.lengthA = %.9g;\n", m_lengthA); + b2Dump(" jd.lengthB = %.9g;\n", m_lengthB); + b2Dump(" jd.ratio = %.9g;\n", m_ratio); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} + +void b2PulleyJoint::ShiftOrigin(const b2Vec2& newOrigin) +{ + m_groundAnchorA -= newOrigin; + m_groundAnchorB -= newOrigin; +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_revolute_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_revolute_joint.cpp new file mode 100644 index 0000000..f7cc4cc --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_revolute_joint.cpp @@ -0,0 +1,501 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_draw.h" +#include "box2d/b2_revolute_joint.h" +#include "box2d/b2_time_step.h" + +// Point-to-point constraint +// C = p2 - p1 +// Cdot = v2 - v1 +// = v2 + cross(w2, r2) - v1 - cross(w1, r1) +// J = [-I -r1_skew I r2_skew ] +// Identity used: +// w k % (rx i + ry j) = w * (-ry i + rx j) + +// Motor constraint +// Cdot = w2 - w1 +// J = [0 0 -1 0 0 1] +// K = invI1 + invI2 + +void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) +{ + bodyA = bA; + bodyB = bB; + localAnchorA = bodyA->GetLocalPoint(anchor); + localAnchorB = bodyB->GetLocalPoint(anchor); + referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); +} + +b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) +: b2Joint(def) +{ + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + m_referenceAngle = def->referenceAngle; + + m_impulse.SetZero(); + m_axialMass = 0.0f; + m_motorImpulse = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + + m_lowerAngle = def->lowerAngle; + m_upperAngle = def->upperAngle; + m_maxMotorTorque = def->maxMotorTorque; + m_motorSpeed = def->motorSpeed; + m_enableLimit = def->enableLimit; + m_enableMotor = def->enableMotor; + + m_angle = 0.0f; +} + +void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + // J = [-I -r1_skew I r2_skew] + // r_skew = [-ry; rx] + + // Matlab + // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x] + // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB] + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + m_K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; + m_K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; + m_K.ex.y = m_K.ey.x; + m_K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; + + m_axialMass = iA + iB; + bool fixedRotation; + if (m_axialMass > 0.0f) + { + m_axialMass = 1.0f / m_axialMass; + fixedRotation = false; + } + else + { + fixedRotation = true; + } + + m_angle = aB - aA - m_referenceAngle; + if (m_enableLimit == false || fixedRotation) + { + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } + + if (m_enableMotor == false || fixedRotation) + { + m_motorImpulse = 0.0f; + } + + if (data.step.warmStarting) + { + // Scale impulses to support a variable time step. + m_impulse *= data.step.dtRatio; + m_motorImpulse *= data.step.dtRatio; + m_lowerImpulse *= data.step.dtRatio; + m_upperImpulse *= data.step.dtRatio; + + float axialImpulse = m_motorImpulse + m_lowerImpulse - m_upperImpulse; + b2Vec2 P(m_impulse.x, m_impulse.y); + + vA -= mA * P; + wA -= iA * (b2Cross(m_rA, P) + axialImpulse); + + vB += mB * P; + wB += iB * (b2Cross(m_rB, P) + axialImpulse); + } + else + { + m_impulse.SetZero(); + m_motorImpulse = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + bool fixedRotation = (iA + iB == 0.0f); + + // Solve motor constraint. + if (m_enableMotor && fixedRotation == false) + { + float Cdot = wB - wA - m_motorSpeed; + float impulse = -m_axialMass * Cdot; + float oldImpulse = m_motorImpulse; + float maxImpulse = data.step.dt * m_maxMotorTorque; + m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); + impulse = m_motorImpulse - oldImpulse; + + wA -= iA * impulse; + wB += iB * impulse; + } + + if (m_enableLimit && fixedRotation == false) + { + // Lower limit + { + float C = m_angle - m_lowerAngle; + float Cdot = wB - wA; + float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); + float oldImpulse = m_lowerImpulse; + m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f); + impulse = m_lowerImpulse - oldImpulse; + + wA -= iA * impulse; + wB += iB * impulse; + } + + // Upper limit + // Note: signs are flipped to keep C positive when the constraint is satisfied. + // This also keeps the impulse positive when the limit is active. + { + float C = m_upperAngle - m_angle; + float Cdot = wA - wB; + float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); + float oldImpulse = m_upperImpulse; + m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f); + impulse = m_upperImpulse - oldImpulse; + + wA += iA * impulse; + wB -= iB * impulse; + } + } + + // Solve point-to-point constraint + { + b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); + b2Vec2 impulse = m_K.Solve(-Cdot); + + m_impulse.x += impulse.x; + m_impulse.y += impulse.y; + + vA -= mA * impulse; + wA -= iA * b2Cross(m_rA, impulse); + + vB += mB * impulse; + wB += iB * b2Cross(m_rB, impulse); + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + + b2Rot qA(aA), qB(aB); + + float angularError = 0.0f; + float positionError = 0.0f; + + bool fixedRotation = (m_invIA + m_invIB == 0.0f); + + // Solve angular limit constraint + if (m_enableLimit && fixedRotation == false) + { + float angle = aB - aA - m_referenceAngle; + float C = 0.0f; + + if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) + { + // Prevent large angular corrections + C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); + } + else if (angle <= m_lowerAngle) + { + // Prevent large angular corrections and allow some slop. + C = b2Clamp(angle - m_lowerAngle + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); + } + else if (angle >= m_upperAngle) + { + // Prevent large angular corrections and allow some slop. + C = b2Clamp(angle - m_upperAngle - b2_angularSlop, 0.0f, b2_maxAngularCorrection); + } + + float limitImpulse = -m_axialMass * C; + aA -= m_invIA * limitImpulse; + aB += m_invIB * limitImpulse; + angularError = b2Abs(C); + } + + // Solve point-to-point constraint. + { + qA.Set(aA); + qB.Set(aB); + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + b2Vec2 C = cB + rB - cA - rA; + positionError = C.Length(); + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + b2Mat22 K; + K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; + K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; + K.ey.x = K.ex.y; + K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; + + b2Vec2 impulse = -K.Solve(C); + + cA -= mA * impulse; + aA -= iA * b2Cross(rA, impulse); + + cB += mB * impulse; + aB += iB * b2Cross(rB, impulse); + } + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + + return positionError <= b2_linearSlop && angularError <= b2_angularSlop; +} + +b2Vec2 b2RevoluteJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2RevoluteJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2RevoluteJoint::GetReactionForce(float inv_dt) const +{ + b2Vec2 P(m_impulse.x, m_impulse.y); + return inv_dt * P; +} + +float b2RevoluteJoint::GetReactionTorque(float inv_dt) const +{ + return inv_dt * (m_motorImpulse + m_lowerImpulse - m_upperImpulse); +} + +float b2RevoluteJoint::GetJointAngle() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; +} + +float b2RevoluteJoint::GetJointSpeed() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + return bB->m_angularVelocity - bA->m_angularVelocity; +} + +bool b2RevoluteJoint::IsMotorEnabled() const +{ + return m_enableMotor; +} + +void b2RevoluteJoint::EnableMotor(bool flag) +{ + if (flag != m_enableMotor) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableMotor = flag; + } +} + +float b2RevoluteJoint::GetMotorTorque(float inv_dt) const +{ + return inv_dt * m_motorImpulse; +} + +void b2RevoluteJoint::SetMotorSpeed(float speed) +{ + if (speed != m_motorSpeed) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_motorSpeed = speed; + } +} + +void b2RevoluteJoint::SetMaxMotorTorque(float torque) +{ + if (torque != m_maxMotorTorque) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_maxMotorTorque = torque; + } +} + +bool b2RevoluteJoint::IsLimitEnabled() const +{ + return m_enableLimit; +} + +void b2RevoluteJoint::EnableLimit(bool flag) +{ + if (flag != m_enableLimit) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableLimit = flag; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } +} + +float b2RevoluteJoint::GetLowerLimit() const +{ + return m_lowerAngle; +} + +float b2RevoluteJoint::GetUpperLimit() const +{ + return m_upperAngle; +} + +void b2RevoluteJoint::SetLimits(float lower, float upper) +{ + b2Assert(lower <= upper); + + if (lower != m_lowerAngle || upper != m_upperAngle) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + m_lowerAngle = lower; + m_upperAngle = upper; + } +} + +void b2RevoluteJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2RevoluteJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle); + b2Dump(" jd.enableLimit = bool(%d);\n", m_enableLimit); + b2Dump(" jd.lowerAngle = %.9g;\n", m_lowerAngle); + b2Dump(" jd.upperAngle = %.9g;\n", m_upperAngle); + b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor); + b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed); + b2Dump(" jd.maxMotorTorque = %.9g;\n", m_maxMotorTorque); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} + +/// +void b2RevoluteJoint::Draw(b2Draw* draw) const +{ + const b2Transform& xfA = m_bodyA->GetTransform(); + const b2Transform& xfB = m_bodyB->GetTransform(); + b2Vec2 pA = b2Mul(xfA, m_localAnchorA); + b2Vec2 pB = b2Mul(xfB, m_localAnchorB); + + b2Color c1(0.7f, 0.7f, 0.7f); + b2Color c2(0.3f, 0.9f, 0.3f); + b2Color c3(0.9f, 0.3f, 0.3f); + b2Color c4(0.3f, 0.3f, 0.9f); + b2Color c5(0.4f, 0.4f, 0.4f); + + draw->DrawPoint(pA, 5.0f, c4); + draw->DrawPoint(pB, 5.0f, c5); + + float aA = m_bodyA->GetAngle(); + float aB = m_bodyB->GetAngle(); + float angle = aB - aA - m_referenceAngle; + + const float L = 0.5f; + + b2Vec2 r = L * b2Vec2(cosf(angle), sinf(angle)); + draw->DrawSegment(pB, pB + r, c1); + draw->DrawCircle(pB, L, c1); + + if (m_enableLimit) + { + b2Vec2 rlo = L * b2Vec2(cosf(m_lowerAngle), sinf(m_lowerAngle)); + b2Vec2 rhi = L * b2Vec2(cosf(m_upperAngle), sinf(m_upperAngle)); + + draw->DrawSegment(pB, pB + rlo, c2); + draw->DrawSegment(pB, pB + rhi, c3); + } + + b2Color color(0.5f, 0.8f, 0.8f); + draw->DrawSegment(xfA.p, pA, color); + draw->DrawSegment(pA, pB, color); + draw->DrawSegment(xfB.p, pB, color); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp new file mode 100644 index 0000000..df3ee0a --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp @@ -0,0 +1,344 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_time_step.h" +#include "box2d/b2_weld_joint.h" + +// Point-to-point constraint +// C = p2 - p1 +// Cdot = v2 - v1 +// = v2 + cross(w2, r2) - v1 - cross(w1, r1) +// J = [-I -r1_skew I r2_skew ] +// Identity used: +// w k % (rx i + ry j) = w * (-ry i + rx j) + +// Angle constraint +// C = angle2 - angle1 - referenceAngle +// Cdot = w2 - w1 +// J = [0 0 -1 0 0 1] +// K = invI1 + invI2 + +void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) +{ + bodyA = bA; + bodyB = bB; + localAnchorA = bodyA->GetLocalPoint(anchor); + localAnchorB = bodyB->GetLocalPoint(anchor); + referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); +} + +b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def) +: b2Joint(def) +{ + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + m_referenceAngle = def->referenceAngle; + m_stiffness = def->stiffness; + m_damping = def->damping; + + m_impulse.SetZero(); +} + +void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + // J = [-I -r1_skew I r2_skew] + // [ 0 -1 0 1] + // r_skew = [-ry; rx] + + // Matlab + // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] + // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] + // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + b2Mat33 K; + K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; + K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; + K.ez.x = -m_rA.y * iA - m_rB.y * iB; + K.ex.y = K.ey.x; + K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; + K.ez.y = m_rA.x * iA + m_rB.x * iB; + K.ex.z = K.ez.x; + K.ey.z = K.ez.y; + K.ez.z = iA + iB; + + if (m_stiffness > 0.0f) + { + K.GetInverse22(&m_mass); + + float invM = iA + iB; + + float C = aB - aA - m_referenceAngle; + + // Damping coefficient + float d = m_damping; + + // Spring stiffness + float k = m_stiffness; + + // magic formulas + float h = data.step.dt; + m_gamma = h * (d + h * k); + m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; + m_bias = C * h * k * m_gamma; + + invM += m_gamma; + m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f; + } + else if (K.ez.z == 0.0f) + { + K.GetInverse22(&m_mass); + m_gamma = 0.0f; + m_bias = 0.0f; + } + else + { + K.GetSymInverse33(&m_mass); + m_gamma = 0.0f; + m_bias = 0.0f; + } + + if (data.step.warmStarting) + { + // Scale impulses to support a variable time step. + m_impulse *= data.step.dtRatio; + + b2Vec2 P(m_impulse.x, m_impulse.y); + + vA -= mA * P; + wA -= iA * (b2Cross(m_rA, P) + m_impulse.z); + + vB += mB * P; + wB += iB * (b2Cross(m_rB, P) + m_impulse.z); + } + else + { + m_impulse.SetZero(); + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + if (m_stiffness > 0.0f) + { + float Cdot2 = wB - wA; + + float impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z); + m_impulse.z += impulse2; + + wA -= iA * impulse2; + wB += iB * impulse2; + + b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); + + b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1); + m_impulse.x += impulse1.x; + m_impulse.y += impulse1.y; + + b2Vec2 P = impulse1; + + vA -= mA * P; + wA -= iA * b2Cross(m_rA, P); + + vB += mB * P; + wB += iB * b2Cross(m_rB, P); + } + else + { + b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); + float Cdot2 = wB - wA; + b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); + + b2Vec3 impulse = -b2Mul(m_mass, Cdot); + m_impulse += impulse; + + b2Vec2 P(impulse.x, impulse.y); + + vA -= mA * P; + wA -= iA * (b2Cross(m_rA, P) + impulse.z); + + vB += mB * P; + wB += iB * (b2Cross(m_rB, P) + impulse.z); + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + + b2Rot qA(aA), qB(aB); + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + + float positionError, angularError; + + b2Mat33 K; + K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB; + K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB; + K.ez.x = -rA.y * iA - rB.y * iB; + K.ex.y = K.ey.x; + K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB; + K.ez.y = rA.x * iA + rB.x * iB; + K.ex.z = K.ez.x; + K.ey.z = K.ez.y; + K.ez.z = iA + iB; + + if (m_stiffness > 0.0f) + { + b2Vec2 C1 = cB + rB - cA - rA; + + positionError = C1.Length(); + angularError = 0.0f; + + b2Vec2 P = -K.Solve22(C1); + + cA -= mA * P; + aA -= iA * b2Cross(rA, P); + + cB += mB * P; + aB += iB * b2Cross(rB, P); + } + else + { + b2Vec2 C1 = cB + rB - cA - rA; + float C2 = aB - aA - m_referenceAngle; + + positionError = C1.Length(); + angularError = b2Abs(C2); + + b2Vec3 C(C1.x, C1.y, C2); + + b2Vec3 impulse; + if (K.ez.z > 0.0f) + { + impulse = -K.Solve33(C); + } + else + { + b2Vec2 impulse2 = -K.Solve22(C1); + impulse.Set(impulse2.x, impulse2.y, 0.0f); + } + + b2Vec2 P(impulse.x, impulse.y); + + cA -= mA * P; + aA -= iA * (b2Cross(rA, P) + impulse.z); + + cB += mB * P; + aB += iB * (b2Cross(rB, P) + impulse.z); + } + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + + return positionError <= b2_linearSlop && angularError <= b2_angularSlop; +} + +b2Vec2 b2WeldJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2WeldJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2WeldJoint::GetReactionForce(float inv_dt) const +{ + b2Vec2 P(m_impulse.x, m_impulse.y); + return inv_dt * P; +} + +float b2WeldJoint::GetReactionTorque(float inv_dt) const +{ + return inv_dt * m_impulse.z; +} + +void b2WeldJoint::Dump() +{ + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2WeldJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle); + b2Dump(" jd.stiffness = %.9g;\n", m_stiffness); + b2Dump(" jd.damping = %.9g;\n", m_damping); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_wheel_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_wheel_joint.cpp new file mode 100644 index 0000000..c23b984 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_wheel_joint.cpp @@ -0,0 +1,672 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_body.h" +#include "box2d/b2_draw.h" +#include "box2d/b2_wheel_joint.h" +#include "box2d/b2_time_step.h" + +// Linear constraint (point-to-line) +// d = pB - pA = xB + rB - xA - rA +// C = dot(ay, d) +// Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA)) +// = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB) +// J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)] + +// Spring linear constraint +// C = dot(ax, d) +// Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB) +// J = [-ax -cross(d+rA, ax) ax cross(rB, ax)] + +// Motor rotational constraint +// Cdot = wB - wA +// J = [0 0 -1 0 0 1] + +void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) +{ + bodyA = bA; + bodyB = bB; + localAnchorA = bodyA->GetLocalPoint(anchor); + localAnchorB = bodyB->GetLocalPoint(anchor); + localAxisA = bodyA->GetLocalVector(axis); +} + +b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def) +: b2Joint(def) +{ + m_localAnchorA = def->localAnchorA; + m_localAnchorB = def->localAnchorB; + m_localXAxisA = def->localAxisA; + m_localYAxisA = b2Cross(1.0f, m_localXAxisA); + + m_mass = 0.0f; + m_impulse = 0.0f; + m_motorMass = 0.0f; + m_motorImpulse = 0.0f; + m_springMass = 0.0f; + m_springImpulse = 0.0f; + + m_axialMass = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + m_lowerTranslation = def->lowerTranslation; + m_upperTranslation = def->upperTranslation; + m_enableLimit = def->enableLimit; + + m_maxMotorTorque = def->maxMotorTorque; + m_motorSpeed = def->motorSpeed; + m_enableMotor = def->enableMotor; + + m_bias = 0.0f; + m_gamma = 0.0f; + + m_ax.SetZero(); + m_ay.SetZero(); + + m_stiffness = def->stiffness; + m_damping = def->damping; +} + +void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) +{ + m_indexA = m_bodyA->m_islandIndex; + m_indexB = m_bodyB->m_islandIndex; + m_localCenterA = m_bodyA->m_sweep.localCenter; + m_localCenterB = m_bodyB->m_sweep.localCenter; + m_invMassA = m_bodyA->m_invMass; + m_invMassB = m_bodyB->m_invMass; + m_invIA = m_bodyA->m_invI; + m_invIB = m_bodyB->m_invI; + + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + b2Rot qA(aA), qB(aB); + + // Compute the effective masses. + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + b2Vec2 d = cB + rB - cA - rA; + + // Point to line constraint + { + m_ay = b2Mul(qA, m_localYAxisA); + m_sAy = b2Cross(d + rA, m_ay); + m_sBy = b2Cross(rB, m_ay); + + m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy; + + if (m_mass > 0.0f) + { + m_mass = 1.0f / m_mass; + } + } + + // Spring constraint + m_ax = b2Mul(qA, m_localXAxisA); + m_sAx = b2Cross(d + rA, m_ax); + m_sBx = b2Cross(rB, m_ax); + + const float invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx; + if (invMass > 0.0f) + { + m_axialMass = 1.0f / invMass; + } + else + { + m_axialMass = 0.0f; + } + + m_springMass = 0.0f; + m_bias = 0.0f; + m_gamma = 0.0f; + + if (m_stiffness > 0.0f && invMass > 0.0f) + { + m_springMass = 1.0f / invMass; + + float C = b2Dot(d, m_ax); + + // magic formulas + float h = data.step.dt; + m_gamma = h * (m_damping + h * m_stiffness); + if (m_gamma > 0.0f) + { + m_gamma = 1.0f / m_gamma; + } + + m_bias = C * h * m_stiffness * m_gamma; + + m_springMass = invMass + m_gamma; + if (m_springMass > 0.0f) + { + m_springMass = 1.0f / m_springMass; + } + } + else + { + m_springImpulse = 0.0f; + } + + if (m_enableLimit) + { + m_translation = b2Dot(m_ax, d); + } + else + { + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } + + if (m_enableMotor) + { + m_motorMass = iA + iB; + if (m_motorMass > 0.0f) + { + m_motorMass = 1.0f / m_motorMass; + } + } + else + { + m_motorMass = 0.0f; + m_motorImpulse = 0.0f; + } + + if (data.step.warmStarting) + { + // Account for variable time step. + m_impulse *= data.step.dtRatio; + m_springImpulse *= data.step.dtRatio; + m_motorImpulse *= data.step.dtRatio; + + float axialImpulse = m_springImpulse + m_lowerImpulse - m_upperImpulse; + b2Vec2 P = m_impulse * m_ay + axialImpulse * m_ax; + float LA = m_impulse * m_sAy + axialImpulse * m_sAx + m_motorImpulse; + float LB = m_impulse * m_sBy + axialImpulse * m_sBx + m_motorImpulse; + + vA -= m_invMassA * P; + wA -= m_invIA * LA; + + vB += m_invMassB * P; + wB += m_invIB * LB; + } + else + { + m_impulse = 0.0f; + m_springImpulse = 0.0f; + m_motorImpulse = 0.0f; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data) +{ + float mA = m_invMassA, mB = m_invMassB; + float iA = m_invIA, iB = m_invIB; + + b2Vec2 vA = data.velocities[m_indexA].v; + float wA = data.velocities[m_indexA].w; + b2Vec2 vB = data.velocities[m_indexB].v; + float wB = data.velocities[m_indexB].w; + + // Solve spring constraint + { + float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; + float impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse); + m_springImpulse += impulse; + + b2Vec2 P = impulse * m_ax; + float LA = impulse * m_sAx; + float LB = impulse * m_sBx; + + vA -= mA * P; + wA -= iA * LA; + + vB += mB * P; + wB += iB * LB; + } + + // Solve rotational motor constraint + { + float Cdot = wB - wA - m_motorSpeed; + float impulse = -m_motorMass * Cdot; + + float oldImpulse = m_motorImpulse; + float maxImpulse = data.step.dt * m_maxMotorTorque; + m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); + impulse = m_motorImpulse - oldImpulse; + + wA -= iA * impulse; + wB += iB * impulse; + } + + if (m_enableLimit) + { + // Lower limit + { + float C = m_translation - m_lowerTranslation; + float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; + float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); + float oldImpulse = m_lowerImpulse; + m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f); + impulse = m_lowerImpulse - oldImpulse; + + b2Vec2 P = impulse * m_ax; + float LA = impulse * m_sAx; + float LB = impulse * m_sBx; + + vA -= mA * P; + wA -= iA * LA; + vB += mB * P; + wB += iB * LB; + } + + // Upper limit + // Note: signs are flipped to keep C positive when the constraint is satisfied. + // This also keeps the impulse positive when the limit is active. + { + float C = m_upperTranslation - m_translation; + float Cdot = b2Dot(m_ax, vA - vB) + m_sAx * wA - m_sBx * wB; + float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); + float oldImpulse = m_upperImpulse; + m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f); + impulse = m_upperImpulse - oldImpulse; + + b2Vec2 P = impulse * m_ax; + float LA = impulse * m_sAx; + float LB = impulse * m_sBx; + + vA += mA * P; + wA += iA * LA; + vB -= mB * P; + wB -= iB * LB; + } + } + + // Solve point to line constraint + { + float Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA; + float impulse = -m_mass * Cdot; + m_impulse += impulse; + + b2Vec2 P = impulse * m_ay; + float LA = impulse * m_sAy; + float LB = impulse * m_sBy; + + vA -= mA * P; + wA -= iA * LA; + + vB += mB * P; + wB += iB * LB; + } + + data.velocities[m_indexA].v = vA; + data.velocities[m_indexA].w = wA; + data.velocities[m_indexB].v = vB; + data.velocities[m_indexB].w = wB; +} + +bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data) +{ + b2Vec2 cA = data.positions[m_indexA].c; + float aA = data.positions[m_indexA].a; + b2Vec2 cB = data.positions[m_indexB].c; + float aB = data.positions[m_indexB].a; + + float linearError = 0.0f; + + if (m_enableLimit) + { + b2Rot qA(aA), qB(aB); + + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + b2Vec2 d = (cB - cA) + rB - rA; + + b2Vec2 ax = b2Mul(qA, m_localXAxisA); + float sAx = b2Cross(d + rA, m_ax); + float sBx = b2Cross(rB, m_ax); + + float C = 0.0f; + float translation = b2Dot(ax, d); + if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) + { + C = translation; + } + else if (translation <= m_lowerTranslation) + { + C = b2Min(translation - m_lowerTranslation, 0.0f); + } + else if (translation >= m_upperTranslation) + { + C = b2Max(translation - m_upperTranslation, 0.0f); + } + + if (C != 0.0f) + { + + float invMass = m_invMassA + m_invMassB + m_invIA * sAx * sAx + m_invIB * sBx * sBx; + float impulse = 0.0f; + if (invMass != 0.0f) + { + impulse = -C / invMass; + } + + b2Vec2 P = impulse * ax; + float LA = impulse * sAx; + float LB = impulse * sBx; + + cA -= m_invMassA * P; + aA -= m_invIA * LA; + cB += m_invMassB * P; + aB += m_invIB * LB; + + linearError = b2Abs(C); + } + } + + // Solve perpendicular constraint + { + b2Rot qA(aA), qB(aB); + + b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); + b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); + b2Vec2 d = (cB - cA) + rB - rA; + + b2Vec2 ay = b2Mul(qA, m_localYAxisA); + + float sAy = b2Cross(d + rA, ay); + float sBy = b2Cross(rB, ay); + + float C = b2Dot(d, ay); + + float invMass = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy; + + float impulse = 0.0f; + if (invMass != 0.0f) + { + impulse = - C / invMass; + } + + b2Vec2 P = impulse * ay; + float LA = impulse * sAy; + float LB = impulse * sBy; + + cA -= m_invMassA * P; + aA -= m_invIA * LA; + cB += m_invMassB * P; + aB += m_invIB * LB; + + linearError = b2Max(linearError, b2Abs(C)); + } + + data.positions[m_indexA].c = cA; + data.positions[m_indexA].a = aA; + data.positions[m_indexB].c = cB; + data.positions[m_indexB].a = aB; + + return linearError <= b2_linearSlop; +} + +b2Vec2 b2WheelJoint::GetAnchorA() const +{ + return m_bodyA->GetWorldPoint(m_localAnchorA); +} + +b2Vec2 b2WheelJoint::GetAnchorB() const +{ + return m_bodyB->GetWorldPoint(m_localAnchorB); +} + +b2Vec2 b2WheelJoint::GetReactionForce(float inv_dt) const +{ + return inv_dt * (m_impulse * m_ay + (m_springImpulse + m_lowerImpulse - m_upperImpulse) * m_ax); +} + +float b2WheelJoint::GetReactionTorque(float inv_dt) const +{ + return inv_dt * m_motorImpulse; +} + +float b2WheelJoint::GetJointTranslation() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + + b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA); + b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB); + b2Vec2 d = pB - pA; + b2Vec2 axis = bA->GetWorldVector(m_localXAxisA); + + float translation = b2Dot(d, axis); + return translation; +} + +float b2WheelJoint::GetJointLinearSpeed() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + + b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter); + b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter); + b2Vec2 p1 = bA->m_sweep.c + rA; + b2Vec2 p2 = bB->m_sweep.c + rB; + b2Vec2 d = p2 - p1; + b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA); + + b2Vec2 vA = bA->m_linearVelocity; + b2Vec2 vB = bB->m_linearVelocity; + float wA = bA->m_angularVelocity; + float wB = bB->m_angularVelocity; + + float speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA)); + return speed; +} + +float b2WheelJoint::GetJointAngle() const +{ + b2Body* bA = m_bodyA; + b2Body* bB = m_bodyB; + return bB->m_sweep.a - bA->m_sweep.a; +} + +float b2WheelJoint::GetJointAngularSpeed() const +{ + float wA = m_bodyA->m_angularVelocity; + float wB = m_bodyB->m_angularVelocity; + return wB - wA; +} + +bool b2WheelJoint::IsLimitEnabled() const +{ + return m_enableLimit; +} + +void b2WheelJoint::EnableLimit(bool flag) +{ + if (flag != m_enableLimit) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableLimit = flag; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } +} + +float b2WheelJoint::GetLowerLimit() const +{ + return m_lowerTranslation; +} + +float b2WheelJoint::GetUpperLimit() const +{ + return m_upperTranslation; +} + +void b2WheelJoint::SetLimits(float lower, float upper) +{ + b2Assert(lower <= upper); + if (lower != m_lowerTranslation || upper != m_upperTranslation) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_lowerTranslation = lower; + m_upperTranslation = upper; + m_lowerImpulse = 0.0f; + m_upperImpulse = 0.0f; + } +} + +bool b2WheelJoint::IsMotorEnabled() const +{ + return m_enableMotor; +} + +void b2WheelJoint::EnableMotor(bool flag) +{ + if (flag != m_enableMotor) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_enableMotor = flag; + } +} + +void b2WheelJoint::SetMotorSpeed(float speed) +{ + if (speed != m_motorSpeed) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_motorSpeed = speed; + } +} + +void b2WheelJoint::SetMaxMotorTorque(float torque) +{ + if (torque != m_maxMotorTorque) + { + m_bodyA->SetAwake(true); + m_bodyB->SetAwake(true); + m_maxMotorTorque = torque; + } +} + +float b2WheelJoint::GetMotorTorque(float inv_dt) const +{ + return inv_dt * m_motorImpulse; +} + +void b2WheelJoint::SetStiffness(float stiffness) +{ + m_stiffness = stiffness; +} + +float b2WheelJoint::GetStiffness() const +{ + return m_stiffness; +} + +void b2WheelJoint::SetDamping(float damping) +{ + m_damping = damping; +} + +float b2WheelJoint::GetDamping() const +{ + return m_damping; +} + +void b2WheelJoint::Dump() +{ + // FLT_DECIMAL_DIG == 9 + + int32 indexA = m_bodyA->m_islandIndex; + int32 indexB = m_bodyB->m_islandIndex; + + b2Dump(" b2WheelJointDef jd;\n"); + b2Dump(" jd.bodyA = bodies[%d];\n", indexA); + b2Dump(" jd.bodyB = bodies[%d];\n", indexB); + b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); + b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); + b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); + b2Dump(" jd.localAxisA.Set(%.9g, %.9g);\n", m_localXAxisA.x, m_localXAxisA.y); + b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor); + b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed); + b2Dump(" jd.maxMotorTorque = %.9g;\n", m_maxMotorTorque); + b2Dump(" jd.stiffness = %.9g;\n", m_stiffness); + b2Dump(" jd.damping = %.9g;\n", m_damping); + b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); +} + +/// +void b2WheelJoint::Draw(b2Draw* draw) const +{ + const b2Transform& xfA = m_bodyA->GetTransform(); + const b2Transform& xfB = m_bodyB->GetTransform(); + b2Vec2 pA = b2Mul(xfA, m_localAnchorA); + b2Vec2 pB = b2Mul(xfB, m_localAnchorB); + + b2Vec2 axis = b2Mul(xfA.q, m_localXAxisA); + + b2Color c1(0.7f, 0.7f, 0.7f); + b2Color c2(0.3f, 0.9f, 0.3f); + b2Color c3(0.9f, 0.3f, 0.3f); + b2Color c4(0.3f, 0.3f, 0.9f); + b2Color c5(0.4f, 0.4f, 0.4f); + + draw->DrawSegment(pA, pB, c5); + + if (m_enableLimit) + { + b2Vec2 lower = pA + m_lowerTranslation * axis; + b2Vec2 upper = pA + m_upperTranslation * axis; + b2Vec2 perp = b2Mul(xfA.q, m_localYAxisA); + draw->DrawSegment(lower, upper, c1); + draw->DrawSegment(lower - 0.5f * perp, lower + 0.5f * perp, c2); + draw->DrawSegment(upper - 0.5f * perp, upper + 0.5f * perp, c3); + } + else + { + draw->DrawSegment(pA - 1.0f * axis, pA + 1.0f * axis, c1); + } + + draw->DrawPoint(pA, 5.0f, c1); + draw->DrawPoint(pB, 5.0f, c4); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_world.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_world.cpp new file mode 100644 index 0000000..78ec084 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_world.cpp @@ -0,0 +1,1322 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "b2_contact_solver.h" +#include "b2_island.h" + +#include "box2d/b2_body.h" +#include "box2d/b2_broad_phase.h" +#include "box2d/b2_chain_shape.h" +#include "box2d/b2_circle_shape.h" +#include "box2d/b2_collision.h" +#include "box2d/b2_contact.h" +#include "box2d/b2_draw.h" +#include "box2d/b2_edge_shape.h" +#include "box2d/b2_fixture.h" +#include "box2d/b2_polygon_shape.h" +#include "box2d/b2_pulley_joint.h" +#include "box2d/b2_time_of_impact.h" +#include "box2d/b2_timer.h" +#include "box2d/b2_world.h" + +#include <new> + +b2World::b2World(const b2Vec2& gravity) +{ + m_destructionListener = nullptr; + m_debugDraw = nullptr; + + m_bodyList = nullptr; + m_jointList = nullptr; + + m_bodyCount = 0; + m_jointCount = 0; + + m_warmStarting = true; + m_continuousPhysics = true; + m_subStepping = false; + + m_stepComplete = true; + + m_allowSleep = true; + m_gravity = gravity; + + m_newContacts = false; + m_locked = false; + m_clearForces = true; + + m_inv_dt0 = 0.0f; + + m_contactManager.m_allocator = &m_blockAllocator; + + memset(&m_profile, 0, sizeof(b2Profile)); +} + +b2World::~b2World() +{ + // Some shapes allocate using b2Alloc. + b2Body* b = m_bodyList; + while (b) + { + b2Body* bNext = b->m_next; + + b2Fixture* f = b->m_fixtureList; + while (f) + { + b2Fixture* fNext = f->m_next; + f->m_proxyCount = 0; + f->Destroy(&m_blockAllocator); + f = fNext; + } + + b = bNext; + } +} + +void b2World::SetDestructionListener(b2DestructionListener* listener) +{ + m_destructionListener = listener; +} + +void b2World::SetContactFilter(b2ContactFilter* filter) +{ + m_contactManager.m_contactFilter = filter; +} + +void b2World::SetContactListener(b2ContactListener* listener) +{ + m_contactManager.m_contactListener = listener; +} + +void b2World::SetDebugDraw(b2Draw* debugDraw) +{ + m_debugDraw = debugDraw; +} + +b2Body* b2World::CreateBody(const b2BodyDef* def) +{ + b2Assert(IsLocked() == false); + if (IsLocked()) + { + return nullptr; + } + + void* mem = m_blockAllocator.Allocate(sizeof(b2Body)); + b2Body* b = new (mem) b2Body(def, this); + + // Add to world doubly linked list. + b->m_prev = nullptr; + b->m_next = m_bodyList; + if (m_bodyList) + { + m_bodyList->m_prev = b; + } + m_bodyList = b; + ++m_bodyCount; + + return b; +} + +void b2World::DestroyBody(b2Body* b) +{ + b2Assert(m_bodyCount > 0); + b2Assert(IsLocked() == false); + if (IsLocked()) + { + return; + } + + // Delete the attached joints. + b2JointEdge* je = b->m_jointList; + while (je) + { + b2JointEdge* je0 = je; + je = je->next; + + if (m_destructionListener) + { + m_destructionListener->SayGoodbye(je0->joint); + } + + DestroyJoint(je0->joint); + + b->m_jointList = je; + } + b->m_jointList = nullptr; + + // Delete the attached contacts. + b2ContactEdge* ce = b->m_contactList; + while (ce) + { + b2ContactEdge* ce0 = ce; + ce = ce->next; + m_contactManager.Destroy(ce0->contact); + } + b->m_contactList = nullptr; + + // Delete the attached fixtures. This destroys broad-phase proxies. + b2Fixture* f = b->m_fixtureList; + while (f) + { + b2Fixture* f0 = f; + f = f->m_next; + + if (m_destructionListener) + { + m_destructionListener->SayGoodbye(f0); + } + + f0->DestroyProxies(&m_contactManager.m_broadPhase); + f0->Destroy(&m_blockAllocator); + f0->~b2Fixture(); + m_blockAllocator.Free(f0, sizeof(b2Fixture)); + + b->m_fixtureList = f; + b->m_fixtureCount -= 1; + } + b->m_fixtureList = nullptr; + b->m_fixtureCount = 0; + + // Remove world body list. + if (b->m_prev) + { + b->m_prev->m_next = b->m_next; + } + + if (b->m_next) + { + b->m_next->m_prev = b->m_prev; + } + + if (b == m_bodyList) + { + m_bodyList = b->m_next; + } + + --m_bodyCount; + b->~b2Body(); + m_blockAllocator.Free(b, sizeof(b2Body)); +} + +b2Joint* b2World::CreateJoint(const b2JointDef* def) +{ + b2Assert(IsLocked() == false); + if (IsLocked()) + { + return nullptr; + } + + b2Joint* j = b2Joint::Create(def, &m_blockAllocator); + + // Connect to the world list. + j->m_prev = nullptr; + j->m_next = m_jointList; + if (m_jointList) + { + m_jointList->m_prev = j; + } + m_jointList = j; + ++m_jointCount; + + // Connect to the bodies' doubly linked lists. + j->m_edgeA.joint = j; + j->m_edgeA.other = j->m_bodyB; + j->m_edgeA.prev = nullptr; + j->m_edgeA.next = j->m_bodyA->m_jointList; + if (j->m_bodyA->m_jointList) j->m_bodyA->m_jointList->prev = &j->m_edgeA; + j->m_bodyA->m_jointList = &j->m_edgeA; + + j->m_edgeB.joint = j; + j->m_edgeB.other = j->m_bodyA; + j->m_edgeB.prev = nullptr; + j->m_edgeB.next = j->m_bodyB->m_jointList; + if (j->m_bodyB->m_jointList) j->m_bodyB->m_jointList->prev = &j->m_edgeB; + j->m_bodyB->m_jointList = &j->m_edgeB; + + b2Body* bodyA = def->bodyA; + b2Body* bodyB = def->bodyB; + + // If the joint prevents collisions, then flag any contacts for filtering. + if (def->collideConnected == false) + { + b2ContactEdge* edge = bodyB->GetContactList(); + while (edge) + { + if (edge->other == bodyA) + { + // Flag the contact for filtering at the next time step (where either + // body is awake). + edge->contact->FlagForFiltering(); + } + + edge = edge->next; + } + } + + // Note: creating a joint doesn't wake the bodies. + + return j; +} + +void b2World::DestroyJoint(b2Joint* j) +{ + b2Assert(IsLocked() == false); + if (IsLocked()) + { + return; + } + + bool collideConnected = j->m_collideConnected; + + // Remove from the doubly linked list. + if (j->m_prev) + { + j->m_prev->m_next = j->m_next; + } + + if (j->m_next) + { + j->m_next->m_prev = j->m_prev; + } + + if (j == m_jointList) + { + m_jointList = j->m_next; + } + + // Disconnect from island graph. + b2Body* bodyA = j->m_bodyA; + b2Body* bodyB = j->m_bodyB; + + // Wake up connected bodies. + bodyA->SetAwake(true); + bodyB->SetAwake(true); + + // Remove from body 1. + if (j->m_edgeA.prev) + { + j->m_edgeA.prev->next = j->m_edgeA.next; + } + + if (j->m_edgeA.next) + { + j->m_edgeA.next->prev = j->m_edgeA.prev; + } + + if (&j->m_edgeA == bodyA->m_jointList) + { + bodyA->m_jointList = j->m_edgeA.next; + } + + j->m_edgeA.prev = nullptr; + j->m_edgeA.next = nullptr; + + // Remove from body 2 + if (j->m_edgeB.prev) + { + j->m_edgeB.prev->next = j->m_edgeB.next; + } + + if (j->m_edgeB.next) + { + j->m_edgeB.next->prev = j->m_edgeB.prev; + } + + if (&j->m_edgeB == bodyB->m_jointList) + { + bodyB->m_jointList = j->m_edgeB.next; + } + + j->m_edgeB.prev = nullptr; + j->m_edgeB.next = nullptr; + + b2Joint::Destroy(j, &m_blockAllocator); + + b2Assert(m_jointCount > 0); + --m_jointCount; + + // If the joint prevents collisions, then flag any contacts for filtering. + if (collideConnected == false) + { + b2ContactEdge* edge = bodyB->GetContactList(); + while (edge) + { + if (edge->other == bodyA) + { + // Flag the contact for filtering at the next time step (where either + // body is awake). + edge->contact->FlagForFiltering(); + } + + edge = edge->next; + } + } +} + +// +void b2World::SetAllowSleeping(bool flag) +{ + if (flag == m_allowSleep) + { + return; + } + + m_allowSleep = flag; + if (m_allowSleep == false) + { + for (b2Body* b = m_bodyList; b; b = b->m_next) + { + b->SetAwake(true); + } + } +} + +// Find islands, integrate and solve constraints, solve position constraints +void b2World::Solve(const b2TimeStep& step) +{ + m_profile.solveInit = 0.0f; + m_profile.solveVelocity = 0.0f; + m_profile.solvePosition = 0.0f; + + // Size the island for the worst case. + b2Island island(m_bodyCount, + m_contactManager.m_contactCount, + m_jointCount, + &m_stackAllocator, + m_contactManager.m_contactListener); + + // Clear all the island flags. + for (b2Body* b = m_bodyList; b; b = b->m_next) + { + b->m_flags &= ~b2Body::e_islandFlag; + } + for (b2Contact* c = m_contactManager.m_contactList; c; c = c->m_next) + { + c->m_flags &= ~b2Contact::e_islandFlag; + } + for (b2Joint* j = m_jointList; j; j = j->m_next) + { + j->m_islandFlag = false; + } + + // Build and simulate all awake islands. + int32 stackSize = m_bodyCount; + b2Body** stack = (b2Body**)m_stackAllocator.Allocate(stackSize * sizeof(b2Body*)); + for (b2Body* seed = m_bodyList; seed; seed = seed->m_next) + { + if (seed->m_flags & b2Body::e_islandFlag) + { + continue; + } + + if (seed->IsAwake() == false || seed->IsEnabled() == false) + { + continue; + } + + // The seed can be dynamic or kinematic. + if (seed->GetType() == b2_staticBody) + { + continue; + } + + // Reset island and stack. + island.Clear(); + int32 stackCount = 0; + stack[stackCount++] = seed; + seed->m_flags |= b2Body::e_islandFlag; + + // Perform a depth first search (DFS) on the constraint graph. + while (stackCount > 0) + { + // Grab the next body off the stack and add it to the island. + b2Body* b = stack[--stackCount]; + b2Assert(b->IsEnabled() == true); + island.Add(b); + + // To keep islands as small as possible, we don't + // propagate islands across static bodies. + if (b->GetType() == b2_staticBody) + { + continue; + } + + // Make sure the body is awake (without resetting sleep timer). + b->m_flags |= b2Body::e_awakeFlag; + + // Search all contacts connected to this body. + for (b2ContactEdge* ce = b->m_contactList; ce; ce = ce->next) + { + b2Contact* contact = ce->contact; + + // Has this contact already been added to an island? + if (contact->m_flags & b2Contact::e_islandFlag) + { + continue; + } + + // Is this contact solid and touching? + if (contact->IsEnabled() == false || + contact->IsTouching() == false) + { + continue; + } + + // Skip sensors. + bool sensorA = contact->m_fixtureA->m_isSensor; + bool sensorB = contact->m_fixtureB->m_isSensor; + if (sensorA || sensorB) + { + continue; + } + + island.Add(contact); + contact->m_flags |= b2Contact::e_islandFlag; + + b2Body* other = ce->other; + + // Was the other body already added to this island? + if (other->m_flags & b2Body::e_islandFlag) + { + continue; + } + + b2Assert(stackCount < stackSize); + stack[stackCount++] = other; + other->m_flags |= b2Body::e_islandFlag; + } + + // Search all joints connect to this body. + for (b2JointEdge* je = b->m_jointList; je; je = je->next) + { + if (je->joint->m_islandFlag == true) + { + continue; + } + + b2Body* other = je->other; + + // Don't simulate joints connected to disabled bodies. + if (other->IsEnabled() == false) + { + continue; + } + + island.Add(je->joint); + je->joint->m_islandFlag = true; + + if (other->m_flags & b2Body::e_islandFlag) + { + continue; + } + + b2Assert(stackCount < stackSize); + stack[stackCount++] = other; + other->m_flags |= b2Body::e_islandFlag; + } + } + + b2Profile profile; + island.Solve(&profile, step, m_gravity, m_allowSleep); + m_profile.solveInit += profile.solveInit; + m_profile.solveVelocity += profile.solveVelocity; + m_profile.solvePosition += profile.solvePosition; + + // Post solve cleanup. + for (int32 i = 0; i < island.m_bodyCount; ++i) + { + // Allow static bodies to participate in other islands. + b2Body* b = island.m_bodies[i]; + if (b->GetType() == b2_staticBody) + { + b->m_flags &= ~b2Body::e_islandFlag; + } + } + } + + m_stackAllocator.Free(stack); + + { + b2Timer timer; + // Synchronize fixtures, check for out of range bodies. + for (b2Body* b = m_bodyList; b; b = b->GetNext()) + { + // If a body was not in an island then it did not move. + if ((b->m_flags & b2Body::e_islandFlag) == 0) + { + continue; + } + + if (b->GetType() == b2_staticBody) + { + continue; + } + + // Update fixtures (for broad-phase). + b->SynchronizeFixtures(); + } + + // Look for new contacts. + m_contactManager.FindNewContacts(); + m_profile.broadphase = timer.GetMilliseconds(); + } +} + +// Find TOI contacts and solve them. +void b2World::SolveTOI(const b2TimeStep& step) +{ + b2Island island(2 * b2_maxTOIContacts, b2_maxTOIContacts, 0, &m_stackAllocator, m_contactManager.m_contactListener); + + if (m_stepComplete) + { + for (b2Body* b = m_bodyList; b; b = b->m_next) + { + b->m_flags &= ~b2Body::e_islandFlag; + b->m_sweep.alpha0 = 0.0f; + } + + for (b2Contact* c = m_contactManager.m_contactList; c; c = c->m_next) + { + // Invalidate TOI + c->m_flags &= ~(b2Contact::e_toiFlag | b2Contact::e_islandFlag); + c->m_toiCount = 0; + c->m_toi = 1.0f; + } + } + + // Find TOI events and solve them. + for (;;) + { + // Find the first TOI. + b2Contact* minContact = nullptr; + float minAlpha = 1.0f; + + for (b2Contact* c = m_contactManager.m_contactList; c; c = c->m_next) + { + // Is this contact disabled? + if (c->IsEnabled() == false) + { + continue; + } + + // Prevent excessive sub-stepping. + if (c->m_toiCount > b2_maxSubSteps) + { + continue; + } + + float alpha = 1.0f; + if (c->m_flags & b2Contact::e_toiFlag) + { + // This contact has a valid cached TOI. + alpha = c->m_toi; + } + else + { + b2Fixture* fA = c->GetFixtureA(); + b2Fixture* fB = c->GetFixtureB(); + + // Is there a sensor? + if (fA->IsSensor() || fB->IsSensor()) + { + continue; + } + + b2Body* bA = fA->GetBody(); + b2Body* bB = fB->GetBody(); + + b2BodyType typeA = bA->m_type; + b2BodyType typeB = bB->m_type; + b2Assert(typeA == b2_dynamicBody || typeB == b2_dynamicBody); + + bool activeA = bA->IsAwake() && typeA != b2_staticBody; + bool activeB = bB->IsAwake() && typeB != b2_staticBody; + + // Is at least one body active (awake and dynamic or kinematic)? + if (activeA == false && activeB == false) + { + continue; + } + + bool collideA = bA->IsBullet() || typeA != b2_dynamicBody; + bool collideB = bB->IsBullet() || typeB != b2_dynamicBody; + + // Are these two non-bullet dynamic bodies? + if (collideA == false && collideB == false) + { + continue; + } + + // Compute the TOI for this contact. + // Put the sweeps onto the same time interval. + float alpha0 = bA->m_sweep.alpha0; + + if (bA->m_sweep.alpha0 < bB->m_sweep.alpha0) + { + alpha0 = bB->m_sweep.alpha0; + bA->m_sweep.Advance(alpha0); + } + else if (bB->m_sweep.alpha0 < bA->m_sweep.alpha0) + { + alpha0 = bA->m_sweep.alpha0; + bB->m_sweep.Advance(alpha0); + } + + b2Assert(alpha0 < 1.0f); + + int32 indexA = c->GetChildIndexA(); + int32 indexB = c->GetChildIndexB(); + + // Compute the time of impact in interval [0, minTOI] + b2TOIInput input; + input.proxyA.Set(fA->GetShape(), indexA); + input.proxyB.Set(fB->GetShape(), indexB); + input.sweepA = bA->m_sweep; + input.sweepB = bB->m_sweep; + input.tMax = 1.0f; + + b2TOIOutput output; + b2TimeOfImpact(&output, &input); + + // Beta is the fraction of the remaining portion of the . + float beta = output.t; + if (output.state == b2TOIOutput::e_touching) + { + alpha = b2Min(alpha0 + (1.0f - alpha0) * beta, 1.0f); + } + else + { + alpha = 1.0f; + } + + c->m_toi = alpha; + c->m_flags |= b2Contact::e_toiFlag; + } + + if (alpha < minAlpha) + { + // This is the minimum TOI found so far. + minContact = c; + minAlpha = alpha; + } + } + + if (minContact == nullptr || 1.0f - 10.0f * b2_epsilon < minAlpha) + { + // No more TOI events. Done! + m_stepComplete = true; + break; + } + + // Advance the bodies to the TOI. + b2Fixture* fA = minContact->GetFixtureA(); + b2Fixture* fB = minContact->GetFixtureB(); + b2Body* bA = fA->GetBody(); + b2Body* bB = fB->GetBody(); + + b2Sweep backup1 = bA->m_sweep; + b2Sweep backup2 = bB->m_sweep; + + bA->Advance(minAlpha); + bB->Advance(minAlpha); + + // The TOI contact likely has some new contact points. + minContact->Update(m_contactManager.m_contactListener); + minContact->m_flags &= ~b2Contact::e_toiFlag; + ++minContact->m_toiCount; + + // Is the contact solid? + if (minContact->IsEnabled() == false || minContact->IsTouching() == false) + { + // Restore the sweeps. + minContact->SetEnabled(false); + bA->m_sweep = backup1; + bB->m_sweep = backup2; + bA->SynchronizeTransform(); + bB->SynchronizeTransform(); + continue; + } + + bA->SetAwake(true); + bB->SetAwake(true); + + // Build the island + island.Clear(); + island.Add(bA); + island.Add(bB); + island.Add(minContact); + + bA->m_flags |= b2Body::e_islandFlag; + bB->m_flags |= b2Body::e_islandFlag; + minContact->m_flags |= b2Contact::e_islandFlag; + + // Get contacts on bodyA and bodyB. + b2Body* bodies[2] = {bA, bB}; + for (int32 i = 0; i < 2; ++i) + { + b2Body* body = bodies[i]; + if (body->m_type == b2_dynamicBody) + { + for (b2ContactEdge* ce = body->m_contactList; ce; ce = ce->next) + { + if (island.m_bodyCount == island.m_bodyCapacity) + { + break; + } + + if (island.m_contactCount == island.m_contactCapacity) + { + break; + } + + b2Contact* contact = ce->contact; + + // Has this contact already been added to the island? + if (contact->m_flags & b2Contact::e_islandFlag) + { + continue; + } + + // Only add static, kinematic, or bullet bodies. + b2Body* other = ce->other; + if (other->m_type == b2_dynamicBody && + body->IsBullet() == false && other->IsBullet() == false) + { + continue; + } + + // Skip sensors. + bool sensorA = contact->m_fixtureA->m_isSensor; + bool sensorB = contact->m_fixtureB->m_isSensor; + if (sensorA || sensorB) + { + continue; + } + + // Tentatively advance the body to the TOI. + b2Sweep backup = other->m_sweep; + if ((other->m_flags & b2Body::e_islandFlag) == 0) + { + other->Advance(minAlpha); + } + + // Update the contact points + contact->Update(m_contactManager.m_contactListener); + + // Was the contact disabled by the user? + if (contact->IsEnabled() == false) + { + other->m_sweep = backup; + other->SynchronizeTransform(); + continue; + } + + // Are there contact points? + if (contact->IsTouching() == false) + { + other->m_sweep = backup; + other->SynchronizeTransform(); + continue; + } + + // Add the contact to the island + contact->m_flags |= b2Contact::e_islandFlag; + island.Add(contact); + + // Has the other body already been added to the island? + if (other->m_flags & b2Body::e_islandFlag) + { + continue; + } + + // Add the other body to the island. + other->m_flags |= b2Body::e_islandFlag; + + if (other->m_type != b2_staticBody) + { + other->SetAwake(true); + } + + island.Add(other); + } + } + } + + b2TimeStep subStep; + subStep.dt = (1.0f - minAlpha) * step.dt; + subStep.inv_dt = 1.0f / subStep.dt; + subStep.dtRatio = 1.0f; + subStep.positionIterations = 20; + subStep.velocityIterations = step.velocityIterations; + subStep.warmStarting = false; + island.SolveTOI(subStep, bA->m_islandIndex, bB->m_islandIndex); + + // Reset island flags and synchronize broad-phase proxies. + for (int32 i = 0; i < island.m_bodyCount; ++i) + { + b2Body* body = island.m_bodies[i]; + body->m_flags &= ~b2Body::e_islandFlag; + + if (body->m_type != b2_dynamicBody) + { + continue; + } + + body->SynchronizeFixtures(); + + // Invalidate all contact TOIs on this displaced body. + for (b2ContactEdge* ce = body->m_contactList; ce; ce = ce->next) + { + ce->contact->m_flags &= ~(b2Contact::e_toiFlag | b2Contact::e_islandFlag); + } + } + + // Commit fixture proxy movements to the broad-phase so that new contacts are created. + // Also, some contacts can be destroyed. + m_contactManager.FindNewContacts(); + + if (m_subStepping) + { + m_stepComplete = false; + break; + } + } +} + +void b2World::Step(float dt, int32 velocityIterations, int32 positionIterations) +{ + b2Timer stepTimer; + + // If new fixtures were added, we need to find the new contacts. + if (m_newContacts) + { + m_contactManager.FindNewContacts(); + m_newContacts = false; + } + + m_locked = true; + + b2TimeStep step; + step.dt = dt; + step.velocityIterations = velocityIterations; + step.positionIterations = positionIterations; + if (dt > 0.0f) + { + step.inv_dt = 1.0f / dt; + } + else + { + step.inv_dt = 0.0f; + } + + step.dtRatio = m_inv_dt0 * dt; + + step.warmStarting = m_warmStarting; + + // Update contacts. This is where some contacts are destroyed. + { + b2Timer timer; + m_contactManager.Collide(); + m_profile.collide = timer.GetMilliseconds(); + } + + // Integrate velocities, solve velocity constraints, and integrate positions. + if (m_stepComplete && step.dt > 0.0f) + { + b2Timer timer; + Solve(step); + m_profile.solve = timer.GetMilliseconds(); + } + + // Handle TOI events. + if (m_continuousPhysics && step.dt > 0.0f) + { + b2Timer timer; + SolveTOI(step); + m_profile.solveTOI = timer.GetMilliseconds(); + } + + if (step.dt > 0.0f) + { + m_inv_dt0 = step.inv_dt; + } + + if (m_clearForces) + { + ClearForces(); + } + + m_locked = false; + + m_profile.step = stepTimer.GetMilliseconds(); +} + +void b2World::ClearForces() +{ + for (b2Body* body = m_bodyList; body; body = body->GetNext()) + { + body->m_force.SetZero(); + body->m_torque = 0.0f; + } +} + +struct b2WorldQueryWrapper +{ + bool QueryCallback(int32 proxyId) + { + b2FixtureProxy* proxy = (b2FixtureProxy*)broadPhase->GetUserData(proxyId); + return callback->ReportFixture(proxy->fixture); + } + + const b2BroadPhase* broadPhase; + b2QueryCallback* callback; +}; + +void b2World::QueryAABB(b2QueryCallback* callback, const b2AABB& aabb) const +{ + b2WorldQueryWrapper wrapper; + wrapper.broadPhase = &m_contactManager.m_broadPhase; + wrapper.callback = callback; + m_contactManager.m_broadPhase.Query(&wrapper, aabb); +} + +struct b2WorldRayCastWrapper +{ + float RayCastCallback(const b2RayCastInput& input, int32 proxyId) + { + void* userData = broadPhase->GetUserData(proxyId); + b2FixtureProxy* proxy = (b2FixtureProxy*)userData; + b2Fixture* fixture = proxy->fixture; + int32 index = proxy->childIndex; + b2RayCastOutput output; + bool hit = fixture->RayCast(&output, input, index); + + if (hit) + { + float fraction = output.fraction; + b2Vec2 point = (1.0f - fraction) * input.p1 + fraction * input.p2; + return callback->ReportFixture(fixture, point, output.normal, fraction); + } + + return input.maxFraction; + } + + const b2BroadPhase* broadPhase; + b2RayCastCallback* callback; +}; + +void b2World::RayCast(b2RayCastCallback* callback, const b2Vec2& point1, const b2Vec2& point2) const +{ + b2WorldRayCastWrapper wrapper; + wrapper.broadPhase = &m_contactManager.m_broadPhase; + wrapper.callback = callback; + b2RayCastInput input; + input.maxFraction = 1.0f; + input.p1 = point1; + input.p2 = point2; + m_contactManager.m_broadPhase.RayCast(&wrapper, input); +} + +void b2World::DrawShape(b2Fixture* fixture, const b2Transform& xf, const b2Color& color) +{ + switch (fixture->GetType()) + { + case b2Shape::e_circle: + { + b2CircleShape* circle = (b2CircleShape*)fixture->GetShape(); + + b2Vec2 center = b2Mul(xf, circle->m_p); + float radius = circle->m_radius; + b2Vec2 axis = b2Mul(xf.q, b2Vec2(1.0f, 0.0f)); + + m_debugDraw->DrawSolidCircle(center, radius, axis, color); + } + break; + + case b2Shape::e_edge: + { + b2EdgeShape* edge = (b2EdgeShape*)fixture->GetShape(); + b2Vec2 v1 = b2Mul(xf, edge->m_vertex1); + b2Vec2 v2 = b2Mul(xf, edge->m_vertex2); + m_debugDraw->DrawSegment(v1, v2, color); + + if (edge->m_oneSided == false) + { + m_debugDraw->DrawPoint(v1, 4.0f, color); + m_debugDraw->DrawPoint(v2, 4.0f, color); + } + } + break; + + case b2Shape::e_chain: + { + b2ChainShape* chain = (b2ChainShape*)fixture->GetShape(); + int32 count = chain->m_count; + const b2Vec2* vertices = chain->m_vertices; + + b2Vec2 v1 = b2Mul(xf, vertices[0]); + for (int32 i = 1; i < count; ++i) + { + b2Vec2 v2 = b2Mul(xf, vertices[i]); + m_debugDraw->DrawSegment(v1, v2, color); + v1 = v2; + } + } + break; + + case b2Shape::e_polygon: + { + b2PolygonShape* poly = (b2PolygonShape*)fixture->GetShape(); + int32 vertexCount = poly->m_count; + b2Assert(vertexCount <= b2_maxPolygonVertices); + b2Vec2 vertices[b2_maxPolygonVertices]; + + for (int32 i = 0; i < vertexCount; ++i) + { + vertices[i] = b2Mul(xf, poly->m_vertices[i]); + } + + m_debugDraw->DrawSolidPolygon(vertices, vertexCount, color); + } + break; + + default: + break; + } +} + +void b2World::DebugDraw() +{ + if (m_debugDraw == nullptr) + { + return; + } + + uint32 flags = m_debugDraw->GetFlags(); + + if (flags & b2Draw::e_shapeBit) + { + for (b2Body* b = m_bodyList; b; b = b->GetNext()) + { + const b2Transform& xf = b->GetTransform(); + for (b2Fixture* f = b->GetFixtureList(); f; f = f->GetNext()) + { + if (b->GetType() == b2_dynamicBody && b->m_mass == 0.0f) + { + // Bad body + DrawShape(f, xf, b2Color(1.0f, 0.0f, 0.0f)); + } + else if (b->IsEnabled() == false) + { + DrawShape(f, xf, b2Color(0.5f, 0.5f, 0.3f)); + } + else if (b->GetType() == b2_staticBody) + { + DrawShape(f, xf, b2Color(0.5f, 0.9f, 0.5f)); + } + else if (b->GetType() == b2_kinematicBody) + { + DrawShape(f, xf, b2Color(0.5f, 0.5f, 0.9f)); + } + else if (b->IsAwake() == false) + { + DrawShape(f, xf, b2Color(0.6f, 0.6f, 0.6f)); + } + else + { + DrawShape(f, xf, b2Color(0.9f, 0.7f, 0.7f)); + } + } + } + } + + if (flags & b2Draw::e_jointBit) + { + for (b2Joint* j = m_jointList; j; j = j->GetNext()) + { + j->Draw(m_debugDraw); + } + } + + if (flags & b2Draw::e_pairBit) + { + b2Color color(0.3f, 0.9f, 0.9f); + for (b2Contact* c = m_contactManager.m_contactList; c; c = c->GetNext()) + { + b2Fixture* fixtureA = c->GetFixtureA(); + b2Fixture* fixtureB = c->GetFixtureB(); + int32 indexA = c->GetChildIndexA(); + int32 indexB = c->GetChildIndexB(); + b2Vec2 cA = fixtureA->GetAABB(indexA).GetCenter(); + b2Vec2 cB = fixtureB->GetAABB(indexB).GetCenter(); + + m_debugDraw->DrawSegment(cA, cB, color); + } + } + + if (flags & b2Draw::e_aabbBit) + { + b2Color color(0.9f, 0.3f, 0.9f); + b2BroadPhase* bp = &m_contactManager.m_broadPhase; + + for (b2Body* b = m_bodyList; b; b = b->GetNext()) + { + if (b->IsEnabled() == false) + { + continue; + } + + for (b2Fixture* f = b->GetFixtureList(); f; f = f->GetNext()) + { + for (int32 i = 0; i < f->m_proxyCount; ++i) + { + b2FixtureProxy* proxy = f->m_proxies + i; + b2AABB aabb = bp->GetFatAABB(proxy->proxyId); + b2Vec2 vs[4]; + vs[0].Set(aabb.lowerBound.x, aabb.lowerBound.y); + vs[1].Set(aabb.upperBound.x, aabb.lowerBound.y); + vs[2].Set(aabb.upperBound.x, aabb.upperBound.y); + vs[3].Set(aabb.lowerBound.x, aabb.upperBound.y); + + m_debugDraw->DrawPolygon(vs, 4, color); + } + } + } + } + + if (flags & b2Draw::e_centerOfMassBit) + { + for (b2Body* b = m_bodyList; b; b = b->GetNext()) + { + b2Transform xf = b->GetTransform(); + xf.p = b->GetWorldCenter(); + m_debugDraw->DrawTransform(xf); + } + } +} + +int32 b2World::GetProxyCount() const +{ + return m_contactManager.m_broadPhase.GetProxyCount(); +} + +int32 b2World::GetTreeHeight() const +{ + return m_contactManager.m_broadPhase.GetTreeHeight(); +} + +int32 b2World::GetTreeBalance() const +{ + return m_contactManager.m_broadPhase.GetTreeBalance(); +} + +float b2World::GetTreeQuality() const +{ + return m_contactManager.m_broadPhase.GetTreeQuality(); +} + +void b2World::ShiftOrigin(const b2Vec2& newOrigin) +{ + b2Assert(m_locked == false); + if (m_locked) + { + return; + } + + for (b2Body* b = m_bodyList; b; b = b->m_next) + { + b->m_xf.p -= newOrigin; + b->m_sweep.c0 -= newOrigin; + b->m_sweep.c -= newOrigin; + } + + for (b2Joint* j = m_jointList; j; j = j->m_next) + { + j->ShiftOrigin(newOrigin); + } + + m_contactManager.m_broadPhase.ShiftOrigin(newOrigin); +} + +void b2World::Dump() +{ + if (m_locked) + { + return; + } + + b2OpenDump("box2d_dump.inl"); + + b2Dump("b2Vec2 g(%.9g, %.9g);\n", m_gravity.x, m_gravity.y); + b2Dump("m_world->SetGravity(g);\n"); + + b2Dump("b2Body** bodies = (b2Body**)b2Alloc(%d * sizeof(b2Body*));\n", m_bodyCount); + b2Dump("b2Joint** joints = (b2Joint**)b2Alloc(%d * sizeof(b2Joint*));\n", m_jointCount); + + int32 i = 0; + for (b2Body* b = m_bodyList; b; b = b->m_next) + { + b->m_islandIndex = i; + b->Dump(); + ++i; + } + + i = 0; + for (b2Joint* j = m_jointList; j; j = j->m_next) + { + j->m_index = i; + ++i; + } + + // First pass on joints, skip gear joints. + for (b2Joint* j = m_jointList; j; j = j->m_next) + { + if (j->m_type == e_gearJoint) + { + continue; + } + + b2Dump("{\n"); + j->Dump(); + b2Dump("}\n"); + } + + // Second pass on joints, only gear joints. + for (b2Joint* j = m_jointList; j; j = j->m_next) + { + if (j->m_type != e_gearJoint) + { + continue; + } + + b2Dump("{\n"); + j->Dump(); + b2Dump("}\n"); + } + + b2Dump("b2Free(joints);\n"); + b2Dump("b2Free(bodies);\n"); + b2Dump("joints = nullptr;\n"); + b2Dump("bodies = nullptr;\n"); + + b2CloseDump(); +} diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_world_callbacks.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_world_callbacks.cpp new file mode 100644 index 0000000..e1583e2 --- /dev/null +++ b/Client/ThirdParty/Box2D/src/dynamics/b2_world_callbacks.cpp @@ -0,0 +1,40 @@ +// MIT License + +// Copyright (c) 2019 Erin Catto + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +#include "box2d/b2_fixture.h" +#include "box2d/b2_world_callbacks.h" + +// Return true if contact calculations should be performed between these two shapes. +// If you implement your own collision filter you may want to build from this implementation. +bool b2ContactFilter::ShouldCollide(b2Fixture* fixtureA, b2Fixture* fixtureB) +{ + const b2Filter& filterA = fixtureA->GetFilterData(); + const b2Filter& filterB = fixtureB->GetFilterData(); + + if (filterA.groupIndex == filterB.groupIndex && filterA.groupIndex != 0) + { + return filterA.groupIndex > 0; + } + + bool collide = (filterA.maskBits & filterB.categoryBits) != 0 && (filterA.categoryBits & filterB.maskBits) != 0; + return collide; +} |