summaryrefslogtreecommitdiff
path: root/Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp')
-rw-r--r--Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp344
1 files changed, 344 insertions, 0 deletions
diff --git a/Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp b/Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp
new file mode 100644
index 0000000..df3ee0a
--- /dev/null
+++ b/Client/ThirdParty/Box2D/src/dynamics/b2_weld_joint.cpp
@@ -0,0 +1,344 @@
+// MIT License
+
+// Copyright (c) 2019 Erin Catto
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#include "box2d/b2_body.h"
+#include "box2d/b2_time_step.h"
+#include "box2d/b2_weld_joint.h"
+
+// Point-to-point constraint
+// C = p2 - p1
+// Cdot = v2 - v1
+// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
+// J = [-I -r1_skew I r2_skew ]
+// Identity used:
+// w k % (rx i + ry j) = w * (-ry i + rx j)
+
+// Angle constraint
+// C = angle2 - angle1 - referenceAngle
+// Cdot = w2 - w1
+// J = [0 0 -1 0 0 1]
+// K = invI1 + invI2
+
+void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
+{
+ bodyA = bA;
+ bodyB = bB;
+ localAnchorA = bodyA->GetLocalPoint(anchor);
+ localAnchorB = bodyB->GetLocalPoint(anchor);
+ referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
+}
+
+b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def)
+: b2Joint(def)
+{
+ m_localAnchorA = def->localAnchorA;
+ m_localAnchorB = def->localAnchorB;
+ m_referenceAngle = def->referenceAngle;
+ m_stiffness = def->stiffness;
+ m_damping = def->damping;
+
+ m_impulse.SetZero();
+}
+
+void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data)
+{
+ m_indexA = m_bodyA->m_islandIndex;
+ m_indexB = m_bodyB->m_islandIndex;
+ m_localCenterA = m_bodyA->m_sweep.localCenter;
+ m_localCenterB = m_bodyB->m_sweep.localCenter;
+ m_invMassA = m_bodyA->m_invMass;
+ m_invMassB = m_bodyB->m_invMass;
+ m_invIA = m_bodyA->m_invI;
+ m_invIB = m_bodyB->m_invI;
+
+ float aA = data.positions[m_indexA].a;
+ b2Vec2 vA = data.velocities[m_indexA].v;
+ float wA = data.velocities[m_indexA].w;
+
+ float aB = data.positions[m_indexB].a;
+ b2Vec2 vB = data.velocities[m_indexB].v;
+ float wB = data.velocities[m_indexB].w;
+
+ b2Rot qA(aA), qB(aB);
+
+ m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
+ m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
+
+ // J = [-I -r1_skew I r2_skew]
+ // [ 0 -1 0 1]
+ // r_skew = [-ry; rx]
+
+ // Matlab
+ // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
+ // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
+ // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
+
+ float mA = m_invMassA, mB = m_invMassB;
+ float iA = m_invIA, iB = m_invIB;
+
+ b2Mat33 K;
+ K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
+ K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
+ K.ez.x = -m_rA.y * iA - m_rB.y * iB;
+ K.ex.y = K.ey.x;
+ K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
+ K.ez.y = m_rA.x * iA + m_rB.x * iB;
+ K.ex.z = K.ez.x;
+ K.ey.z = K.ez.y;
+ K.ez.z = iA + iB;
+
+ if (m_stiffness > 0.0f)
+ {
+ K.GetInverse22(&m_mass);
+
+ float invM = iA + iB;
+
+ float C = aB - aA - m_referenceAngle;
+
+ // Damping coefficient
+ float d = m_damping;
+
+ // Spring stiffness
+ float k = m_stiffness;
+
+ // magic formulas
+ float h = data.step.dt;
+ m_gamma = h * (d + h * k);
+ m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
+ m_bias = C * h * k * m_gamma;
+
+ invM += m_gamma;
+ m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f;
+ }
+ else if (K.ez.z == 0.0f)
+ {
+ K.GetInverse22(&m_mass);
+ m_gamma = 0.0f;
+ m_bias = 0.0f;
+ }
+ else
+ {
+ K.GetSymInverse33(&m_mass);
+ m_gamma = 0.0f;
+ m_bias = 0.0f;
+ }
+
+ if (data.step.warmStarting)
+ {
+ // Scale impulses to support a variable time step.
+ m_impulse *= data.step.dtRatio;
+
+ b2Vec2 P(m_impulse.x, m_impulse.y);
+
+ vA -= mA * P;
+ wA -= iA * (b2Cross(m_rA, P) + m_impulse.z);
+
+ vB += mB * P;
+ wB += iB * (b2Cross(m_rB, P) + m_impulse.z);
+ }
+ else
+ {
+ m_impulse.SetZero();
+ }
+
+ data.velocities[m_indexA].v = vA;
+ data.velocities[m_indexA].w = wA;
+ data.velocities[m_indexB].v = vB;
+ data.velocities[m_indexB].w = wB;
+}
+
+void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data)
+{
+ b2Vec2 vA = data.velocities[m_indexA].v;
+ float wA = data.velocities[m_indexA].w;
+ b2Vec2 vB = data.velocities[m_indexB].v;
+ float wB = data.velocities[m_indexB].w;
+
+ float mA = m_invMassA, mB = m_invMassB;
+ float iA = m_invIA, iB = m_invIB;
+
+ if (m_stiffness > 0.0f)
+ {
+ float Cdot2 = wB - wA;
+
+ float impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z);
+ m_impulse.z += impulse2;
+
+ wA -= iA * impulse2;
+ wB += iB * impulse2;
+
+ b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
+
+ b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1);
+ m_impulse.x += impulse1.x;
+ m_impulse.y += impulse1.y;
+
+ b2Vec2 P = impulse1;
+
+ vA -= mA * P;
+ wA -= iA * b2Cross(m_rA, P);
+
+ vB += mB * P;
+ wB += iB * b2Cross(m_rB, P);
+ }
+ else
+ {
+ b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
+ float Cdot2 = wB - wA;
+ b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
+
+ b2Vec3 impulse = -b2Mul(m_mass, Cdot);
+ m_impulse += impulse;
+
+ b2Vec2 P(impulse.x, impulse.y);
+
+ vA -= mA * P;
+ wA -= iA * (b2Cross(m_rA, P) + impulse.z);
+
+ vB += mB * P;
+ wB += iB * (b2Cross(m_rB, P) + impulse.z);
+ }
+
+ data.velocities[m_indexA].v = vA;
+ data.velocities[m_indexA].w = wA;
+ data.velocities[m_indexB].v = vB;
+ data.velocities[m_indexB].w = wB;
+}
+
+bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data)
+{
+ b2Vec2 cA = data.positions[m_indexA].c;
+ float aA = data.positions[m_indexA].a;
+ b2Vec2 cB = data.positions[m_indexB].c;
+ float aB = data.positions[m_indexB].a;
+
+ b2Rot qA(aA), qB(aB);
+
+ float mA = m_invMassA, mB = m_invMassB;
+ float iA = m_invIA, iB = m_invIB;
+
+ b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
+ b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
+
+ float positionError, angularError;
+
+ b2Mat33 K;
+ K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
+ K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
+ K.ez.x = -rA.y * iA - rB.y * iB;
+ K.ex.y = K.ey.x;
+ K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
+ K.ez.y = rA.x * iA + rB.x * iB;
+ K.ex.z = K.ez.x;
+ K.ey.z = K.ez.y;
+ K.ez.z = iA + iB;
+
+ if (m_stiffness > 0.0f)
+ {
+ b2Vec2 C1 = cB + rB - cA - rA;
+
+ positionError = C1.Length();
+ angularError = 0.0f;
+
+ b2Vec2 P = -K.Solve22(C1);
+
+ cA -= mA * P;
+ aA -= iA * b2Cross(rA, P);
+
+ cB += mB * P;
+ aB += iB * b2Cross(rB, P);
+ }
+ else
+ {
+ b2Vec2 C1 = cB + rB - cA - rA;
+ float C2 = aB - aA - m_referenceAngle;
+
+ positionError = C1.Length();
+ angularError = b2Abs(C2);
+
+ b2Vec3 C(C1.x, C1.y, C2);
+
+ b2Vec3 impulse;
+ if (K.ez.z > 0.0f)
+ {
+ impulse = -K.Solve33(C);
+ }
+ else
+ {
+ b2Vec2 impulse2 = -K.Solve22(C1);
+ impulse.Set(impulse2.x, impulse2.y, 0.0f);
+ }
+
+ b2Vec2 P(impulse.x, impulse.y);
+
+ cA -= mA * P;
+ aA -= iA * (b2Cross(rA, P) + impulse.z);
+
+ cB += mB * P;
+ aB += iB * (b2Cross(rB, P) + impulse.z);
+ }
+
+ data.positions[m_indexA].c = cA;
+ data.positions[m_indexA].a = aA;
+ data.positions[m_indexB].c = cB;
+ data.positions[m_indexB].a = aB;
+
+ return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
+}
+
+b2Vec2 b2WeldJoint::GetAnchorA() const
+{
+ return m_bodyA->GetWorldPoint(m_localAnchorA);
+}
+
+b2Vec2 b2WeldJoint::GetAnchorB() const
+{
+ return m_bodyB->GetWorldPoint(m_localAnchorB);
+}
+
+b2Vec2 b2WeldJoint::GetReactionForce(float inv_dt) const
+{
+ b2Vec2 P(m_impulse.x, m_impulse.y);
+ return inv_dt * P;
+}
+
+float b2WeldJoint::GetReactionTorque(float inv_dt) const
+{
+ return inv_dt * m_impulse.z;
+}
+
+void b2WeldJoint::Dump()
+{
+ int32 indexA = m_bodyA->m_islandIndex;
+ int32 indexB = m_bodyB->m_islandIndex;
+
+ b2Dump(" b2WeldJointDef jd;\n");
+ b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
+ b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
+ b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
+ b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
+ b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
+ b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle);
+ b2Dump(" jd.stiffness = %.9g;\n", m_stiffness);
+ b2Dump(" jd.damping = %.9g;\n", m_damping);
+ b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
+}