summaryrefslogtreecommitdiff
path: root/Runtime/Geometry/TriTriIntersect.cpp
diff options
context:
space:
mode:
authorchai <chaifix@163.com>2019-08-14 22:50:43 +0800
committerchai <chaifix@163.com>2019-08-14 22:50:43 +0800
commit15740faf9fe9fe4be08965098bbf2947e096aeeb (patch)
treea730ec236656cc8cab5b13f088adfaed6bb218fb /Runtime/Geometry/TriTriIntersect.cpp
+Unity Runtime codeHEADmaster
Diffstat (limited to 'Runtime/Geometry/TriTriIntersect.cpp')
-rw-r--r--Runtime/Geometry/TriTriIntersect.cpp719
1 files changed, 719 insertions, 0 deletions
diff --git a/Runtime/Geometry/TriTriIntersect.cpp b/Runtime/Geometry/TriTriIntersect.cpp
new file mode 100644
index 0000000..03dfdc4
--- /dev/null
+++ b/Runtime/Geometry/TriTriIntersect.cpp
@@ -0,0 +1,719 @@
+#include "UnityPrefix.h"
+/* Triangle/triangle intersection test routine,
+ * by Tomas Moller, 1997.
+ * See article "A Fast Triangle-Triangle Intersection Test",
+ * Journal of Graphics Tools, 2(2), 1997
+ * updated: 2001-06-20 (added line of intersection)
+ *
+ * int tri_tri_intersect(float V0[3],float V1[3],float V2[3],
+ * float U0[3],float U1[3],float U2[3])
+ *
+ * parameters: vertices of triangle 1: V0,V1,V2
+ * vertices of triangle 2: U0,U1,U2
+ * result : returns 1 if the triangles intersect, otherwise 0
+ *
+ * Here is a version withouts divisions (a little faster)
+ * int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3],
+ * float U0[3],float U1[3],float U2[3]);
+ *
+ * This version computes the line of intersection as well (if they are not coplanar):
+ * int tri_tri_intersect_with_isectline(float V0[3],float V1[3],float V2[3],
+ * float U0[3],float U1[3],float U2[3],int *coplanar,
+ * float isectpt1[3],float isectpt2[3]);
+ * coplanar returns whether the tris are coplanar
+ * isectpt1, isectpt2 are the endpoints of the line of intersection
+ */
+
+#include <math.h>
+static int coplanar_tri_tri(float N[3],float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3]);
+static int tri_tri_intersect(float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3]);
+static int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3]);
+int tri_tri_intersect_with_isectline(float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3],int *coplanar,
+ float isectpt1[3],float isectpt2[3]);
+
+#define FABS(x) ((float)fabs(x)) /* implement as is fastest on your machine */
+
+/* if USE_EPSILON_TEST is true then we do a check:
+ if |dv|<EPSILON then dv=0.0;
+ else no check is done (which is less robust)
+*/
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+#define USE_EPSILON_TEST TRUE
+#define EPSILON 0.000001
+
+
+/* some macros */
+#define CROSS(dest,v1,v2) \
+ dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \
+ dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \
+ dest[2]=v1[0]*v2[1]-v1[1]*v2[0];
+
+#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
+
+#define SUB(dest,v1,v2) dest[0]=v1[0]-v2[0]; dest[1]=v1[1]-v2[1]; dest[2]=v1[2]-v2[2];
+
+#define ADD(dest,v1,v2) dest[0]=v1[0]+v2[0]; dest[1]=v1[1]+v2[1]; dest[2]=v1[2]+v2[2];
+
+#define MULT(dest,v,factor) dest[0]=factor*v[0]; dest[1]=factor*v[1]; dest[2]=factor*v[2];
+
+#define SET(dest,src) dest[0]=src[0]; dest[1]=src[1]; dest[2]=src[2];
+
+/* sort so that a<=b */
+#define SORT(a,b) \
+ if(a>b) \
+ { \
+ float c; \
+ c=a; \
+ a=b; \
+ b=c; \
+ }
+
+#define ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1) \
+ isect0=VV0+(VV1-VV0)*D0/(D0-D1); \
+ isect1=VV0+(VV2-VV0)*D0/(D0-D2);
+
+
+#define COMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1) \
+ if(D0D1>0.0f) \
+ { \
+ /* here we know that D0D2<=0.0 */ \
+ /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
+ ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1); \
+ } \
+ else if(D0D2>0.0f) \
+ { \
+ /* here we know that d0d1<=0.0 */ \
+ ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1); \
+ } \
+ else if(D1*D2>0.0f || D0!=0.0f) \
+ { \
+ /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
+ ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1); \
+ } \
+ else if(D1!=0.0f) \
+ { \
+ ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1); \
+ } \
+ else if(D2!=0.0f) \
+ { \
+ ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1); \
+ } \
+ else \
+ { \
+ /* triangles are coplanar */ \
+ return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
+ }
+
+
+
+/* this edge to edge test is based on Franlin Antonio's gem:
+ "Faster Line Segment Intersection", in Graphics Gems III,
+ pp. 199-202 */
+#define EDGE_EDGE_TEST(V0,U0,U1) \
+ Bx=U0[i0]-U1[i0]; \
+ By=U0[i1]-U1[i1]; \
+ Cx=V0[i0]-U0[i0]; \
+ Cy=V0[i1]-U0[i1]; \
+ f=Ay*Bx-Ax*By; \
+ d=By*Cx-Bx*Cy; \
+ if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \
+ { \
+ e=Ax*Cy-Ay*Cx; \
+ if(f>0) \
+ { \
+ if(e>=0 && e<=f) return 1; \
+ } \
+ else \
+ { \
+ if(e<=0 && e>=f) return 1; \
+ } \
+ }
+
+#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
+{ \
+ float Ax,Ay,Bx,By,Cx,Cy,e,d,f; \
+ Ax=V1[i0]-V0[i0]; \
+ Ay=V1[i1]-V0[i1]; \
+ /* test edge U0,U1 against V0,V1 */ \
+ EDGE_EDGE_TEST(V0,U0,U1); \
+ /* test edge U1,U2 against V0,V1 */ \
+ EDGE_EDGE_TEST(V0,U1,U2); \
+ /* test edge U2,U1 against V0,V1 */ \
+ EDGE_EDGE_TEST(V0,U2,U0); \
+}
+
+#define POINT_IN_TRI(V0,U0,U1,U2) \
+{ \
+ float a,b,c,d0,d1,d2; \
+ /* is T1 completly inside T2? */ \
+ /* check if V0 is inside tri(U0,U1,U2) */ \
+ a=U1[i1]-U0[i1]; \
+ b=-(U1[i0]-U0[i0]); \
+ c=-a*U0[i0]-b*U0[i1]; \
+ d0=a*V0[i0]+b*V0[i1]+c; \
+ \
+ a=U2[i1]-U1[i1]; \
+ b=-(U2[i0]-U1[i0]); \
+ c=-a*U1[i0]-b*U1[i1]; \
+ d1=a*V0[i0]+b*V0[i1]+c; \
+ \
+ a=U0[i1]-U2[i1]; \
+ b=-(U0[i0]-U2[i0]); \
+ c=-a*U2[i0]-b*U2[i1]; \
+ d2=a*V0[i0]+b*V0[i1]+c; \
+ if(d0*d1>0.0) \
+ { \
+ if(d0*d2>0.0) return 1; \
+ } \
+}
+
+static int coplanar_tri_tri(float N[3],float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3])
+{
+ float A[3];
+ short i0,i1;
+ /* first project onto an axis-aligned plane, that maximizes the area */
+ /* of the triangles, compute indices: i0,i1. */
+ A[0]=fabs(N[0]);
+ A[1]=fabs(N[1]);
+ A[2]=fabs(N[2]);
+ if(A[0]>A[1])
+ {
+ if(A[0]>A[2])
+ {
+ i0=1; /* A[0] is greatest */
+ i1=2;
+ }
+ else
+ {
+ i0=0; /* A[2] is greatest */
+ i1=1;
+ }
+ }
+ else /* A[0]<=A[1] */
+ {
+ if(A[2]>A[1])
+ {
+ i0=0; /* A[2] is greatest */
+ i1=1;
+ }
+ else
+ {
+ i0=0; /* A[1] is greatest */
+ i1=2;
+ }
+ }
+
+ /* test all edges of triangle 1 against the edges of triangle 2 */
+ EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2);
+ EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2);
+ EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2);
+
+ /* finally, test if tri1 is totally contained in tri2 or vice versa */
+ POINT_IN_TRI(V0,U0,U1,U2);
+ POINT_IN_TRI(U0,V0,V1,V2);
+
+ return 0;
+}
+
+
+static int tri_tri_intersect(float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3])
+{
+ float E1[3],E2[3];
+ float N1[3],N2[3],d1,d2;
+ float du0,du1,du2,dv0,dv1,dv2;
+ float D[3];
+ float isect1[2], isect2[2];
+ float du0du1,du0du2,dv0dv1,dv0dv2;
+ short index;
+ float vp0,vp1,vp2;
+ float up0,up1,up2;
+ float b,c,max;
+
+ /* compute plane equation of triangle(V0,V1,V2) */
+ SUB(E1,V1,V0);
+ SUB(E2,V2,V0);
+ CROSS(N1,E1,E2);
+ d1=-DOT(N1,V0);
+ /* plane equation 1: N1.X+d1=0 */
+
+ /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
+ du0=DOT(N1,U0)+d1;
+ du1=DOT(N1,U1)+d1;
+ du2=DOT(N1,U2)+d1;
+
+ /* coplanarity robustness check */
+#if USE_EPSILON_TEST==TRUE
+ if(fabs(du0)<EPSILON) du0=0.0;
+ if(fabs(du1)<EPSILON) du1=0.0;
+ if(fabs(du2)<EPSILON) du2=0.0;
+#endif
+ du0du1=du0*du1;
+ du0du2=du0*du2;
+
+ if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
+ return 0; /* no intersection occurs */
+
+ /* compute plane of triangle (U0,U1,U2) */
+ SUB(E1,U1,U0);
+ SUB(E2,U2,U0);
+ CROSS(N2,E1,E2);
+ d2=-DOT(N2,U0);
+ /* plane equation 2: N2.X+d2=0 */
+
+ /* put V0,V1,V2 into plane equation 2 */
+ dv0=DOT(N2,V0)+d2;
+ dv1=DOT(N2,V1)+d2;
+ dv2=DOT(N2,V2)+d2;
+
+#if USE_EPSILON_TEST==TRUE
+ if(fabs(dv0)<EPSILON) dv0=0.0;
+ if(fabs(dv1)<EPSILON) dv1=0.0;
+ if(fabs(dv2)<EPSILON) dv2=0.0;
+#endif
+
+ dv0dv1=dv0*dv1;
+ dv0dv2=dv0*dv2;
+
+ if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
+ return 0; /* no intersection occurs */
+
+ /* compute direction of intersection line */
+ CROSS(D,N1,N2);
+
+ /* compute and index to the largest component of D */
+ max=fabs(D[0]);
+ index=0;
+ b=fabs(D[1]);
+ c=fabs(D[2]);
+ if(b>max) max=b,index=1;
+ if(c>max) max=c,index=2;
+
+ /* this is the simplified projection onto L*/
+ vp0=V0[index];
+ vp1=V1[index];
+ vp2=V2[index];
+
+ up0=U0[index];
+ up1=U1[index];
+ up2=U2[index];
+
+ /* compute interval for triangle 1 */
+ COMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,isect1[0],isect1[1]);
+
+ /* compute interval for triangle 2 */
+ COMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,isect2[0],isect2[1]);
+
+ SORT(isect1[0],isect1[1]);
+ SORT(isect2[0],isect2[1]);
+
+ if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
+ return 1;
+}
+
+
+#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \
+{ \
+ if(D0D1>0.0f) \
+ { \
+ /* here we know that D0D2<=0.0 */ \
+ /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
+ A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
+ } \
+ else if(D0D2>0.0f)\
+ { \
+ /* here we know that d0d1<=0.0 */ \
+ A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
+ } \
+ else if(D1*D2>0.0f || D0!=0.0f) \
+ { \
+ /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
+ A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \
+ } \
+ else if(D1!=0.0f) \
+ { \
+ A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
+ } \
+ else if(D2!=0.0f) \
+ { \
+ A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
+ } \
+ else \
+ { \
+ /* triangles are coplanar */ \
+ return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
+ } \
+}
+
+
+
+static int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3])
+{
+ float E1[3],E2[3];
+ float N1[3],N2[3],d1,d2;
+ float du0,du1,du2,dv0,dv1,dv2;
+ float D[3];
+ float isect1[2], isect2[2];
+ float du0du1,du0du2,dv0dv1,dv0dv2;
+ short index;
+ float vp0,vp1,vp2;
+ float up0,up1,up2;
+ float bb,cc,max;
+ float a,b,c,x0,x1;
+ float d,e,f,y0,y1;
+ float xx,yy,xxyy,tmp;
+
+ /* compute plane equation of triangle(V0,V1,V2) */
+ SUB(E1,V1,V0);
+ SUB(E2,V2,V0);
+ CROSS(N1,E1,E2);
+ d1=-DOT(N1,V0);
+ /* plane equation 1: N1.X+d1=0 */
+
+ /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
+ du0=DOT(N1,U0)+d1;
+ du1=DOT(N1,U1)+d1;
+ du2=DOT(N1,U2)+d1;
+
+ /* coplanarity robustness check */
+#if USE_EPSILON_TEST==TRUE
+ if(FABS(du0)<EPSILON) du0=0.0;
+ if(FABS(du1)<EPSILON) du1=0.0;
+ if(FABS(du2)<EPSILON) du2=0.0;
+#endif
+ du0du1=du0*du1;
+ du0du2=du0*du2;
+
+ if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
+ return 0; /* no intersection occurs */
+
+ /* compute plane of triangle (U0,U1,U2) */
+ SUB(E1,U1,U0);
+ SUB(E2,U2,U0);
+ CROSS(N2,E1,E2);
+ d2=-DOT(N2,U0);
+ /* plane equation 2: N2.X+d2=0 */
+
+ /* put V0,V1,V2 into plane equation 2 */
+ dv0=DOT(N2,V0)+d2;
+ dv1=DOT(N2,V1)+d2;
+ dv2=DOT(N2,V2)+d2;
+
+#if USE_EPSILON_TEST==TRUE
+ if(FABS(dv0)<EPSILON) dv0=0.0;
+ if(FABS(dv1)<EPSILON) dv1=0.0;
+ if(FABS(dv2)<EPSILON) dv2=0.0;
+#endif
+
+ dv0dv1=dv0*dv1;
+ dv0dv2=dv0*dv2;
+
+ if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
+ return 0; /* no intersection occurs */
+
+ /* compute direction of intersection line */
+ CROSS(D,N1,N2);
+
+ /* compute and index to the largest component of D */
+ max=(float)FABS(D[0]);
+ index=0;
+ bb=(float)FABS(D[1]);
+ cc=(float)FABS(D[2]);
+ if(bb>max) max=bb,index=1;
+ if(cc>max) max=cc,index=2;
+
+ /* this is the simplified projection onto L*/
+ vp0=V0[index];
+ vp1=V1[index];
+ vp2=V2[index];
+
+ up0=U0[index];
+ up1=U1[index];
+ up2=U2[index];
+
+ /* compute interval for triangle 1 */
+ NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
+
+ /* compute interval for triangle 2 */
+ NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
+
+ xx=x0*x1;
+ yy=y0*y1;
+ xxyy=xx*yy;
+
+ tmp=a*xxyy;
+ isect1[0]=tmp+b*x1*yy;
+ isect1[1]=tmp+c*x0*yy;
+
+ tmp=d*xxyy;
+ isect2[0]=tmp+e*xx*y1;
+ isect2[1]=tmp+f*xx*y0;
+
+ SORT(isect1[0],isect1[1]);
+ SORT(isect2[0],isect2[1]);
+
+ if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
+ return 1;
+}
+
+/* sort so that a<=b */
+#define SORT2(a,b,smallest) \
+ if(a>b) \
+ { \
+ float c; \
+ c=a; \
+ a=b; \
+ b=c; \
+ smallest=1; \
+ } \
+ else smallest=0;
+
+
+inline void isect2(float VTX0[3],float VTX1[3],float VTX2[3],float VV0,float VV1,float VV2,
+ float D0,float D1,float D2,float *isect0,float *isect1,float isectpoint0[3],float isectpoint1[3])
+{
+ float tmp=D0/(D0-D1);
+ float diff[3];
+ *isect0=VV0+(VV1-VV0)*tmp;
+ SUB(diff,VTX1,VTX0);
+ MULT(diff,diff,tmp);
+ ADD(isectpoint0,diff,VTX0);
+ tmp=D0/(D0-D2);
+ *isect1=VV0+(VV2-VV0)*tmp;
+ SUB(diff,VTX2,VTX0);
+ MULT(diff,diff,tmp);
+ ADD(isectpoint1,VTX0,diff);
+}
+
+
+#if 0
+#define ISECT2(VTX0,VTX1,VTX2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1) \
+ tmp=D0/(D0-D1); \
+ isect0=VV0+(VV1-VV0)*tmp; \
+ SUB(diff,VTX1,VTX0); \
+ MULT(diff,diff,tmp); \
+ ADD(isectpoint0,diff,VTX0); \
+ tmp=D0/(D0-D2);
+/* isect1=VV0+(VV2-VV0)*tmp; \ */
+/* SUB(diff,VTX2,VTX0); \ */
+/* MULT(diff,diff,tmp); \ */
+/* ADD(isectpoint1,VTX0,diff); */
+#endif
+
+inline int compute_intervals_isectline(float VERT0[3],float VERT1[3],float VERT2[3],
+ float VV0,float VV1,float VV2,float D0,float D1,float D2,
+ float D0D1,float D0D2,float *isect0,float *isect1,
+ float isectpoint0[3],float isectpoint1[3])
+{
+ if(D0D1>0.0f)
+ {
+ /* here we know that D0D2<=0.0 */
+ /* that is D0, D1 are on the same side, D2 on the other or on the plane */
+ isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1);
+ }
+ else if(D0D2>0.0f)
+ {
+ /* here we know that d0d1<=0.0 */
+ isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1);
+ }
+ else if(D1*D2>0.0f || D0!=0.0f)
+ {
+ /* here we know that d0d1<=0.0 or that D0!=0.0 */
+ isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1);
+ }
+ else if(D1!=0.0f)
+ {
+ isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1);
+ }
+ else if(D2!=0.0f)
+ {
+ isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1);
+ }
+ else
+ {
+ /* triangles are coplanar */
+ return 1;
+ }
+ return 0;
+}
+
+#define COMPUTE_INTERVALS_ISECTLINE(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1,isectpoint0,isectpoint1) \
+ if(D0D1>0.0f) \
+ { \
+ /* here we know that D0D2<=0.0 */ \
+ /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
+ isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \
+ }
+#if 0
+ else if(D0D2>0.0f) \
+ { \
+ /* here we know that d0d1<=0.0 */ \
+ isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \
+ } \
+ else if(D1*D2>0.0f || D0!=0.0f) \
+ { \
+ /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
+ isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,&isect0,&isect1,isectpoint0,isectpoint1); \
+ } \
+ else if(D1!=0.0f) \
+ { \
+ isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \
+ } \
+ else if(D2!=0.0f) \
+ { \
+ isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \
+ } \
+ else \
+ { \
+ /* triangles are coplanar */ \
+ coplanar=1; \
+ return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
+ }
+#endif
+
+int tri_tri_intersect_with_isectline(float V0[3],float V1[3],float V2[3],
+ float U0[3],float U1[3],float U2[3],int *coplanar,
+ float isectpt1[3],float isectpt2[3])
+{
+ float E1[3],E2[3];
+ float N1[3],N2[3],d1,d2;
+ float du0,du1,du2,dv0,dv1,dv2;
+ float D[3];
+ float isect1[2], isect2[2] = {.0f, .0f};
+ float isectpointA1[3],isectpointA2[3];
+ float isectpointB1[3] = {.0f, .0f, .0f},isectpointB2[3] = {.0f, .0f, .0f};
+ float du0du1,du0du2,dv0dv1,dv0dv2;
+ short index;
+ float vp0,vp1,vp2;
+ float up0,up1,up2;
+ float b,c,max;
+ int smallest1,smallest2;
+
+ /* compute plane equation of triangle(V0,V1,V2) */
+ SUB(E1,V1,V0);
+ SUB(E2,V2,V0);
+ CROSS(N1,E1,E2);
+ d1=-DOT(N1,V0);
+ /* plane equation 1: N1.X+d1=0 */
+
+ /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
+ du0=DOT(N1,U0)+d1;
+ du1=DOT(N1,U1)+d1;
+ du2=DOT(N1,U2)+d1;
+
+ /* coplanarity robustness check */
+#if USE_EPSILON_TEST==TRUE
+ if(fabs(du0)<EPSILON) du0=0.0;
+ if(fabs(du1)<EPSILON) du1=0.0;
+ if(fabs(du2)<EPSILON) du2=0.0;
+#endif
+ du0du1=du0*du1;
+ du0du2=du0*du2;
+
+ if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
+ return 0; /* no intersection occurs */
+
+ /* compute plane of triangle (U0,U1,U2) */
+ SUB(E1,U1,U0);
+ SUB(E2,U2,U0);
+ CROSS(N2,E1,E2);
+ d2=-DOT(N2,U0);
+ /* plane equation 2: N2.X+d2=0 */
+
+ /* put V0,V1,V2 into plane equation 2 */
+ dv0=DOT(N2,V0)+d2;
+ dv1=DOT(N2,V1)+d2;
+ dv2=DOT(N2,V2)+d2;
+
+#if USE_EPSILON_TEST==TRUE
+ if(fabs(dv0)<EPSILON) dv0=0.0;
+ if(fabs(dv1)<EPSILON) dv1=0.0;
+ if(fabs(dv2)<EPSILON) dv2=0.0;
+#endif
+
+ dv0dv1=dv0*dv1;
+ dv0dv2=dv0*dv2;
+
+ if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
+ return 0; /* no intersection occurs */
+
+ /* compute direction of intersection line */
+ CROSS(D,N1,N2);
+
+ /* compute and index to the largest component of D */
+ max=fabs(D[0]);
+ index=0;
+ b=fabs(D[1]);
+ c=fabs(D[2]);
+ if(b>max) max=b,index=1;
+ if(c>max) max=c,index=2;
+
+ /* this is the simplified projection onto L*/
+ vp0=V0[index];
+ vp1=V1[index];
+ vp2=V2[index];
+
+ up0=U0[index];
+ up1=U1[index];
+ up2=U2[index];
+
+ /* compute interval for triangle 1 */
+ *coplanar=compute_intervals_isectline(V0,V1,V2,vp0,vp1,vp2,dv0,dv1,dv2,
+ dv0dv1,dv0dv2,&isect1[0],&isect1[1],isectpointA1,isectpointA2);
+ if(*coplanar) return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2);
+
+
+ /* compute interval for triangle 2 */
+ compute_intervals_isectline(U0,U1,U2,up0,up1,up2,du0,du1,du2,
+ du0du1,du0du2,&isect2[0],&isect2[1],isectpointB1,isectpointB2);
+
+ SORT2(isect1[0],isect1[1],smallest1);
+ SORT2(isect2[0],isect2[1],smallest2);
+
+ if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
+
+ /* at this point, we know that the triangles intersect */
+
+ if(isect2[0]<isect1[0])
+ {
+ if(smallest1==0) { SET(isectpt1,isectpointA1); }
+ else { SET(isectpt1,isectpointA2); }
+
+ if(isect2[1]<isect1[1])
+ {
+ if(smallest2==0) { SET(isectpt2,isectpointB2); }
+ else { SET(isectpt2,isectpointB1); }
+ }
+ else
+ {
+ if(smallest1==0) { SET(isectpt2,isectpointA2); }
+ else { SET(isectpt2,isectpointA1); }
+ }
+ }
+ else
+ {
+ if(smallest2==0) { SET(isectpt1,isectpointB1); }
+ else { SET(isectpt1,isectpointB2); }
+
+ if(isect2[1]>isect1[1])
+ {
+ if(smallest1==0) { SET(isectpt2,isectpointA2); }
+ else { SET(isectpt2,isectpointA1); }
+ }
+ else
+ {
+ if(smallest2==0) { SET(isectpt2,isectpointB2); }
+ else { SET(isectpt2,isectpointB1); }
+ }
+ }
+ return 1;
+}