diff options
Diffstat (limited to 'Runtime/Geometry/TriTriIntersect.cpp')
-rw-r--r-- | Runtime/Geometry/TriTriIntersect.cpp | 719 |
1 files changed, 719 insertions, 0 deletions
diff --git a/Runtime/Geometry/TriTriIntersect.cpp b/Runtime/Geometry/TriTriIntersect.cpp new file mode 100644 index 0000000..03dfdc4 --- /dev/null +++ b/Runtime/Geometry/TriTriIntersect.cpp @@ -0,0 +1,719 @@ +#include "UnityPrefix.h" +/* Triangle/triangle intersection test routine, + * by Tomas Moller, 1997. + * See article "A Fast Triangle-Triangle Intersection Test", + * Journal of Graphics Tools, 2(2), 1997 + * updated: 2001-06-20 (added line of intersection) + * + * int tri_tri_intersect(float V0[3],float V1[3],float V2[3], + * float U0[3],float U1[3],float U2[3]) + * + * parameters: vertices of triangle 1: V0,V1,V2 + * vertices of triangle 2: U0,U1,U2 + * result : returns 1 if the triangles intersect, otherwise 0 + * + * Here is a version withouts divisions (a little faster) + * int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3], + * float U0[3],float U1[3],float U2[3]); + * + * This version computes the line of intersection as well (if they are not coplanar): + * int tri_tri_intersect_with_isectline(float V0[3],float V1[3],float V2[3], + * float U0[3],float U1[3],float U2[3],int *coplanar, + * float isectpt1[3],float isectpt2[3]); + * coplanar returns whether the tris are coplanar + * isectpt1, isectpt2 are the endpoints of the line of intersection + */ + +#include <math.h> +static int coplanar_tri_tri(float N[3],float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3]); +static int tri_tri_intersect(float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3]); +static int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3]); +int tri_tri_intersect_with_isectline(float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3],int *coplanar, + float isectpt1[3],float isectpt2[3]); + +#define FABS(x) ((float)fabs(x)) /* implement as is fastest on your machine */ + +/* if USE_EPSILON_TEST is true then we do a check: + if |dv|<EPSILON then dv=0.0; + else no check is done (which is less robust) +*/ +#ifndef TRUE +#define TRUE 1 +#endif + +#define USE_EPSILON_TEST TRUE +#define EPSILON 0.000001 + + +/* some macros */ +#define CROSS(dest,v1,v2) \ + dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \ + dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \ + dest[2]=v1[0]*v2[1]-v1[1]*v2[0]; + +#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) + +#define SUB(dest,v1,v2) dest[0]=v1[0]-v2[0]; dest[1]=v1[1]-v2[1]; dest[2]=v1[2]-v2[2]; + +#define ADD(dest,v1,v2) dest[0]=v1[0]+v2[0]; dest[1]=v1[1]+v2[1]; dest[2]=v1[2]+v2[2]; + +#define MULT(dest,v,factor) dest[0]=factor*v[0]; dest[1]=factor*v[1]; dest[2]=factor*v[2]; + +#define SET(dest,src) dest[0]=src[0]; dest[1]=src[1]; dest[2]=src[2]; + +/* sort so that a<=b */ +#define SORT(a,b) \ + if(a>b) \ + { \ + float c; \ + c=a; \ + a=b; \ + b=c; \ + } + +#define ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1) \ + isect0=VV0+(VV1-VV0)*D0/(D0-D1); \ + isect1=VV0+(VV2-VV0)*D0/(D0-D2); + + +#define COMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1) \ + if(D0D1>0.0f) \ + { \ + /* here we know that D0D2<=0.0 */ \ + /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ + ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1); \ + } \ + else if(D0D2>0.0f) \ + { \ + /* here we know that d0d1<=0.0 */ \ + ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1); \ + } \ + else if(D1*D2>0.0f || D0!=0.0f) \ + { \ + /* here we know that d0d1<=0.0 or that D0!=0.0 */ \ + ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1); \ + } \ + else if(D1!=0.0f) \ + { \ + ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1); \ + } \ + else if(D2!=0.0f) \ + { \ + ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1); \ + } \ + else \ + { \ + /* triangles are coplanar */ \ + return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \ + } + + + +/* this edge to edge test is based on Franlin Antonio's gem: + "Faster Line Segment Intersection", in Graphics Gems III, + pp. 199-202 */ +#define EDGE_EDGE_TEST(V0,U0,U1) \ + Bx=U0[i0]-U1[i0]; \ + By=U0[i1]-U1[i1]; \ + Cx=V0[i0]-U0[i0]; \ + Cy=V0[i1]-U0[i1]; \ + f=Ay*Bx-Ax*By; \ + d=By*Cx-Bx*Cy; \ + if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \ + { \ + e=Ax*Cy-Ay*Cx; \ + if(f>0) \ + { \ + if(e>=0 && e<=f) return 1; \ + } \ + else \ + { \ + if(e<=0 && e>=f) return 1; \ + } \ + } + +#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \ +{ \ + float Ax,Ay,Bx,By,Cx,Cy,e,d,f; \ + Ax=V1[i0]-V0[i0]; \ + Ay=V1[i1]-V0[i1]; \ + /* test edge U0,U1 against V0,V1 */ \ + EDGE_EDGE_TEST(V0,U0,U1); \ + /* test edge U1,U2 against V0,V1 */ \ + EDGE_EDGE_TEST(V0,U1,U2); \ + /* test edge U2,U1 against V0,V1 */ \ + EDGE_EDGE_TEST(V0,U2,U0); \ +} + +#define POINT_IN_TRI(V0,U0,U1,U2) \ +{ \ + float a,b,c,d0,d1,d2; \ + /* is T1 completly inside T2? */ \ + /* check if V0 is inside tri(U0,U1,U2) */ \ + a=U1[i1]-U0[i1]; \ + b=-(U1[i0]-U0[i0]); \ + c=-a*U0[i0]-b*U0[i1]; \ + d0=a*V0[i0]+b*V0[i1]+c; \ + \ + a=U2[i1]-U1[i1]; \ + b=-(U2[i0]-U1[i0]); \ + c=-a*U1[i0]-b*U1[i1]; \ + d1=a*V0[i0]+b*V0[i1]+c; \ + \ + a=U0[i1]-U2[i1]; \ + b=-(U0[i0]-U2[i0]); \ + c=-a*U2[i0]-b*U2[i1]; \ + d2=a*V0[i0]+b*V0[i1]+c; \ + if(d0*d1>0.0) \ + { \ + if(d0*d2>0.0) return 1; \ + } \ +} + +static int coplanar_tri_tri(float N[3],float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3]) +{ + float A[3]; + short i0,i1; + /* first project onto an axis-aligned plane, that maximizes the area */ + /* of the triangles, compute indices: i0,i1. */ + A[0]=fabs(N[0]); + A[1]=fabs(N[1]); + A[2]=fabs(N[2]); + if(A[0]>A[1]) + { + if(A[0]>A[2]) + { + i0=1; /* A[0] is greatest */ + i1=2; + } + else + { + i0=0; /* A[2] is greatest */ + i1=1; + } + } + else /* A[0]<=A[1] */ + { + if(A[2]>A[1]) + { + i0=0; /* A[2] is greatest */ + i1=1; + } + else + { + i0=0; /* A[1] is greatest */ + i1=2; + } + } + + /* test all edges of triangle 1 against the edges of triangle 2 */ + EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2); + EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2); + EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2); + + /* finally, test if tri1 is totally contained in tri2 or vice versa */ + POINT_IN_TRI(V0,U0,U1,U2); + POINT_IN_TRI(U0,V0,V1,V2); + + return 0; +} + + +static int tri_tri_intersect(float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3]) +{ + float E1[3],E2[3]; + float N1[3],N2[3],d1,d2; + float du0,du1,du2,dv0,dv1,dv2; + float D[3]; + float isect1[2], isect2[2]; + float du0du1,du0du2,dv0dv1,dv0dv2; + short index; + float vp0,vp1,vp2; + float up0,up1,up2; + float b,c,max; + + /* compute plane equation of triangle(V0,V1,V2) */ + SUB(E1,V1,V0); + SUB(E2,V2,V0); + CROSS(N1,E1,E2); + d1=-DOT(N1,V0); + /* plane equation 1: N1.X+d1=0 */ + + /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/ + du0=DOT(N1,U0)+d1; + du1=DOT(N1,U1)+d1; + du2=DOT(N1,U2)+d1; + + /* coplanarity robustness check */ +#if USE_EPSILON_TEST==TRUE + if(fabs(du0)<EPSILON) du0=0.0; + if(fabs(du1)<EPSILON) du1=0.0; + if(fabs(du2)<EPSILON) du2=0.0; +#endif + du0du1=du0*du1; + du0du2=du0*du2; + + if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */ + return 0; /* no intersection occurs */ + + /* compute plane of triangle (U0,U1,U2) */ + SUB(E1,U1,U0); + SUB(E2,U2,U0); + CROSS(N2,E1,E2); + d2=-DOT(N2,U0); + /* plane equation 2: N2.X+d2=0 */ + + /* put V0,V1,V2 into plane equation 2 */ + dv0=DOT(N2,V0)+d2; + dv1=DOT(N2,V1)+d2; + dv2=DOT(N2,V2)+d2; + +#if USE_EPSILON_TEST==TRUE + if(fabs(dv0)<EPSILON) dv0=0.0; + if(fabs(dv1)<EPSILON) dv1=0.0; + if(fabs(dv2)<EPSILON) dv2=0.0; +#endif + + dv0dv1=dv0*dv1; + dv0dv2=dv0*dv2; + + if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */ + return 0; /* no intersection occurs */ + + /* compute direction of intersection line */ + CROSS(D,N1,N2); + + /* compute and index to the largest component of D */ + max=fabs(D[0]); + index=0; + b=fabs(D[1]); + c=fabs(D[2]); + if(b>max) max=b,index=1; + if(c>max) max=c,index=2; + + /* this is the simplified projection onto L*/ + vp0=V0[index]; + vp1=V1[index]; + vp2=V2[index]; + + up0=U0[index]; + up1=U1[index]; + up2=U2[index]; + + /* compute interval for triangle 1 */ + COMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,isect1[0],isect1[1]); + + /* compute interval for triangle 2 */ + COMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,isect2[0],isect2[1]); + + SORT(isect1[0],isect1[1]); + SORT(isect2[0],isect2[1]); + + if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0; + return 1; +} + + +#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \ +{ \ + if(D0D1>0.0f) \ + { \ + /* here we know that D0D2<=0.0 */ \ + /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ + A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \ + } \ + else if(D0D2>0.0f)\ + { \ + /* here we know that d0d1<=0.0 */ \ + A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \ + } \ + else if(D1*D2>0.0f || D0!=0.0f) \ + { \ + /* here we know that d0d1<=0.0 or that D0!=0.0 */ \ + A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \ + } \ + else if(D1!=0.0f) \ + { \ + A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \ + } \ + else if(D2!=0.0f) \ + { \ + A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \ + } \ + else \ + { \ + /* triangles are coplanar */ \ + return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \ + } \ +} + + + +static int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3]) +{ + float E1[3],E2[3]; + float N1[3],N2[3],d1,d2; + float du0,du1,du2,dv0,dv1,dv2; + float D[3]; + float isect1[2], isect2[2]; + float du0du1,du0du2,dv0dv1,dv0dv2; + short index; + float vp0,vp1,vp2; + float up0,up1,up2; + float bb,cc,max; + float a,b,c,x0,x1; + float d,e,f,y0,y1; + float xx,yy,xxyy,tmp; + + /* compute plane equation of triangle(V0,V1,V2) */ + SUB(E1,V1,V0); + SUB(E2,V2,V0); + CROSS(N1,E1,E2); + d1=-DOT(N1,V0); + /* plane equation 1: N1.X+d1=0 */ + + /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/ + du0=DOT(N1,U0)+d1; + du1=DOT(N1,U1)+d1; + du2=DOT(N1,U2)+d1; + + /* coplanarity robustness check */ +#if USE_EPSILON_TEST==TRUE + if(FABS(du0)<EPSILON) du0=0.0; + if(FABS(du1)<EPSILON) du1=0.0; + if(FABS(du2)<EPSILON) du2=0.0; +#endif + du0du1=du0*du1; + du0du2=du0*du2; + + if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */ + return 0; /* no intersection occurs */ + + /* compute plane of triangle (U0,U1,U2) */ + SUB(E1,U1,U0); + SUB(E2,U2,U0); + CROSS(N2,E1,E2); + d2=-DOT(N2,U0); + /* plane equation 2: N2.X+d2=0 */ + + /* put V0,V1,V2 into plane equation 2 */ + dv0=DOT(N2,V0)+d2; + dv1=DOT(N2,V1)+d2; + dv2=DOT(N2,V2)+d2; + +#if USE_EPSILON_TEST==TRUE + if(FABS(dv0)<EPSILON) dv0=0.0; + if(FABS(dv1)<EPSILON) dv1=0.0; + if(FABS(dv2)<EPSILON) dv2=0.0; +#endif + + dv0dv1=dv0*dv1; + dv0dv2=dv0*dv2; + + if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */ + return 0; /* no intersection occurs */ + + /* compute direction of intersection line */ + CROSS(D,N1,N2); + + /* compute and index to the largest component of D */ + max=(float)FABS(D[0]); + index=0; + bb=(float)FABS(D[1]); + cc=(float)FABS(D[2]); + if(bb>max) max=bb,index=1; + if(cc>max) max=cc,index=2; + + /* this is the simplified projection onto L*/ + vp0=V0[index]; + vp1=V1[index]; + vp2=V2[index]; + + up0=U0[index]; + up1=U1[index]; + up2=U2[index]; + + /* compute interval for triangle 1 */ + NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1); + + /* compute interval for triangle 2 */ + NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1); + + xx=x0*x1; + yy=y0*y1; + xxyy=xx*yy; + + tmp=a*xxyy; + isect1[0]=tmp+b*x1*yy; + isect1[1]=tmp+c*x0*yy; + + tmp=d*xxyy; + isect2[0]=tmp+e*xx*y1; + isect2[1]=tmp+f*xx*y0; + + SORT(isect1[0],isect1[1]); + SORT(isect2[0],isect2[1]); + + if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0; + return 1; +} + +/* sort so that a<=b */ +#define SORT2(a,b,smallest) \ + if(a>b) \ + { \ + float c; \ + c=a; \ + a=b; \ + b=c; \ + smallest=1; \ + } \ + else smallest=0; + + +inline void isect2(float VTX0[3],float VTX1[3],float VTX2[3],float VV0,float VV1,float VV2, + float D0,float D1,float D2,float *isect0,float *isect1,float isectpoint0[3],float isectpoint1[3]) +{ + float tmp=D0/(D0-D1); + float diff[3]; + *isect0=VV0+(VV1-VV0)*tmp; + SUB(diff,VTX1,VTX0); + MULT(diff,diff,tmp); + ADD(isectpoint0,diff,VTX0); + tmp=D0/(D0-D2); + *isect1=VV0+(VV2-VV0)*tmp; + SUB(diff,VTX2,VTX0); + MULT(diff,diff,tmp); + ADD(isectpoint1,VTX0,diff); +} + + +#if 0 +#define ISECT2(VTX0,VTX1,VTX2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1) \ + tmp=D0/(D0-D1); \ + isect0=VV0+(VV1-VV0)*tmp; \ + SUB(diff,VTX1,VTX0); \ + MULT(diff,diff,tmp); \ + ADD(isectpoint0,diff,VTX0); \ + tmp=D0/(D0-D2); +/* isect1=VV0+(VV2-VV0)*tmp; \ */ +/* SUB(diff,VTX2,VTX0); \ */ +/* MULT(diff,diff,tmp); \ */ +/* ADD(isectpoint1,VTX0,diff); */ +#endif + +inline int compute_intervals_isectline(float VERT0[3],float VERT1[3],float VERT2[3], + float VV0,float VV1,float VV2,float D0,float D1,float D2, + float D0D1,float D0D2,float *isect0,float *isect1, + float isectpoint0[3],float isectpoint1[3]) +{ + if(D0D1>0.0f) + { + /* here we know that D0D2<=0.0 */ + /* that is D0, D1 are on the same side, D2 on the other or on the plane */ + isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1); + } + else if(D0D2>0.0f) + { + /* here we know that d0d1<=0.0 */ + isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1); + } + else if(D1*D2>0.0f || D0!=0.0f) + { + /* here we know that d0d1<=0.0 or that D0!=0.0 */ + isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1); + } + else if(D1!=0.0f) + { + isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1); + } + else if(D2!=0.0f) + { + isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1); + } + else + { + /* triangles are coplanar */ + return 1; + } + return 0; +} + +#define COMPUTE_INTERVALS_ISECTLINE(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1,isectpoint0,isectpoint1) \ + if(D0D1>0.0f) \ + { \ + /* here we know that D0D2<=0.0 */ \ + /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ + isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \ + } +#if 0 + else if(D0D2>0.0f) \ + { \ + /* here we know that d0d1<=0.0 */ \ + isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \ + } \ + else if(D1*D2>0.0f || D0!=0.0f) \ + { \ + /* here we know that d0d1<=0.0 or that D0!=0.0 */ \ + isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,&isect0,&isect1,isectpoint0,isectpoint1); \ + } \ + else if(D1!=0.0f) \ + { \ + isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \ + } \ + else if(D2!=0.0f) \ + { \ + isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \ + } \ + else \ + { \ + /* triangles are coplanar */ \ + coplanar=1; \ + return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \ + } +#endif + +int tri_tri_intersect_with_isectline(float V0[3],float V1[3],float V2[3], + float U0[3],float U1[3],float U2[3],int *coplanar, + float isectpt1[3],float isectpt2[3]) +{ + float E1[3],E2[3]; + float N1[3],N2[3],d1,d2; + float du0,du1,du2,dv0,dv1,dv2; + float D[3]; + float isect1[2], isect2[2] = {.0f, .0f}; + float isectpointA1[3],isectpointA2[3]; + float isectpointB1[3] = {.0f, .0f, .0f},isectpointB2[3] = {.0f, .0f, .0f}; + float du0du1,du0du2,dv0dv1,dv0dv2; + short index; + float vp0,vp1,vp2; + float up0,up1,up2; + float b,c,max; + int smallest1,smallest2; + + /* compute plane equation of triangle(V0,V1,V2) */ + SUB(E1,V1,V0); + SUB(E2,V2,V0); + CROSS(N1,E1,E2); + d1=-DOT(N1,V0); + /* plane equation 1: N1.X+d1=0 */ + + /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/ + du0=DOT(N1,U0)+d1; + du1=DOT(N1,U1)+d1; + du2=DOT(N1,U2)+d1; + + /* coplanarity robustness check */ +#if USE_EPSILON_TEST==TRUE + if(fabs(du0)<EPSILON) du0=0.0; + if(fabs(du1)<EPSILON) du1=0.0; + if(fabs(du2)<EPSILON) du2=0.0; +#endif + du0du1=du0*du1; + du0du2=du0*du2; + + if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */ + return 0; /* no intersection occurs */ + + /* compute plane of triangle (U0,U1,U2) */ + SUB(E1,U1,U0); + SUB(E2,U2,U0); + CROSS(N2,E1,E2); + d2=-DOT(N2,U0); + /* plane equation 2: N2.X+d2=0 */ + + /* put V0,V1,V2 into plane equation 2 */ + dv0=DOT(N2,V0)+d2; + dv1=DOT(N2,V1)+d2; + dv2=DOT(N2,V2)+d2; + +#if USE_EPSILON_TEST==TRUE + if(fabs(dv0)<EPSILON) dv0=0.0; + if(fabs(dv1)<EPSILON) dv1=0.0; + if(fabs(dv2)<EPSILON) dv2=0.0; +#endif + + dv0dv1=dv0*dv1; + dv0dv2=dv0*dv2; + + if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */ + return 0; /* no intersection occurs */ + + /* compute direction of intersection line */ + CROSS(D,N1,N2); + + /* compute and index to the largest component of D */ + max=fabs(D[0]); + index=0; + b=fabs(D[1]); + c=fabs(D[2]); + if(b>max) max=b,index=1; + if(c>max) max=c,index=2; + + /* this is the simplified projection onto L*/ + vp0=V0[index]; + vp1=V1[index]; + vp2=V2[index]; + + up0=U0[index]; + up1=U1[index]; + up2=U2[index]; + + /* compute interval for triangle 1 */ + *coplanar=compute_intervals_isectline(V0,V1,V2,vp0,vp1,vp2,dv0,dv1,dv2, + dv0dv1,dv0dv2,&isect1[0],&isect1[1],isectpointA1,isectpointA2); + if(*coplanar) return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); + + + /* compute interval for triangle 2 */ + compute_intervals_isectline(U0,U1,U2,up0,up1,up2,du0,du1,du2, + du0du1,du0du2,&isect2[0],&isect2[1],isectpointB1,isectpointB2); + + SORT2(isect1[0],isect1[1],smallest1); + SORT2(isect2[0],isect2[1],smallest2); + + if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0; + + /* at this point, we know that the triangles intersect */ + + if(isect2[0]<isect1[0]) + { + if(smallest1==0) { SET(isectpt1,isectpointA1); } + else { SET(isectpt1,isectpointA2); } + + if(isect2[1]<isect1[1]) + { + if(smallest2==0) { SET(isectpt2,isectpointB2); } + else { SET(isectpt2,isectpointB1); } + } + else + { + if(smallest1==0) { SET(isectpt2,isectpointA2); } + else { SET(isectpt2,isectpointA1); } + } + } + else + { + if(smallest2==0) { SET(isectpt1,isectpointB1); } + else { SET(isectpt1,isectpointB2); } + + if(isect2[1]>isect1[1]) + { + if(smallest1==0) { SET(isectpt2,isectpointA2); } + else { SET(isectpt2,isectpointA1); } + } + else + { + if(smallest2==0) { SET(isectpt2,isectpointB2); } + else { SET(isectpt2,isectpointB1); } + } + } + return 1; +} |